
NEMEA: A Framework for Network Traffic Analysis

Tomas Cejka∗, Vaclav Bartos∗, Marek Svepes∗, Zdenek Rosa∗ and Hana Kubatova†

∗CESNET, a.l.e.
Zikova 4, 160 00 Prague 6, Czech Republic
{cejkat,bartos,svepes,rosa}@cesnet.cz

†CTU in Prague, FIT
Thakurova 9, 160 00 Prague 6, Czech Republic

kubatova@fit.cvut.cz

Abstract—Since network attacks become more sophisticated,
it is difficult to discover them using traditional analysis tools.
For some kinds of attacks, it is necessary to analyze Application
Layer (L7) information in order to detect them. However, there is
a lack of existing tools capable of L7 processing and manipulation.
Therefore, we propose a flow-based modular Network Measure-
ments Analysis (NEMEA) system to overcome the situation.
NEMEA is designed with respect to a stream-wise concept, i. e.
data are analyzed continuously in memory with minimal data
storage. NEMEA is developed as an open-source project and is
publicly available for world-wide community. It is designed for
both experimental and operational use. It is able to process off-
line traffic traces as well as live network flows. The system is
very flexible and can be easily extended by new modules. The
modules are developed within a NEMEA framework that is a
key component of the project. NEMEA thus represents a unified
platform for research and development of new traffic analysis
methods. It covers several important topics not limited to analysis
and detection. Originally, NEMEA has been developed for the
purposes of Czech National Research and Education Network
operator. Therefore, it is focused on handling high speed network
traffic with links working at 100 Gbps.

I. INTRODUCTION

Monitoring computer networks belongs to important tasks
of every network operator. Monitoring systems can provide
valuable information about status and utilization of a network
infrastructure. Network security must be kept in mind due to
the importance of computer networks, safety of users and their
data. Due to the huge volume of data that is transferred via
modern network infrastructures, monitoring systems usually
aggregate information about traffic into smaller flow records.
These traditionally consist of network addresses, ports, times-
tamps and volume information. This data can be used for ac-
counting, statistical analysis to improve situational awareness
or for anomaly detection. An overview of concepts of the flow-
based network monitoring can be found in [1], [2].

Since network attacks are becoming more sophisticated and
hidden, it is sometimes very difficult to recognize them in
normal benign traffic. There are several methods for detection
of malicious traffic based on traditional flow records. The
records can even be used for detection of some attacks on
Application Layer (L7) (e. g. SSH bruteforce [3]). However,
for some kinds of malicious traffic, traditional flow records
are not sufficient and information from L7 headers is needed
for reliable detection. L7 information is however not well
supported in current flow analysis tools.

Monitoring
Probe

Monitoring
Probe

Monitoring
Probe

Collector
NEMEA
System

Alert
Handling

Fig. 1. Monitoring system infrastructure is based on exporting flow records
(by Monitoring probes) that are passed for storage (Collector) and analysis
(NEMEA). Detection modules of NEMEA produce alerts in a unified format
suitable for subsequent processing and storage.

To overcome a lack of existing tools, we developed a new
platform for online stream-wise traffic analysis and anomaly
detection, capable of L7 data processing – Network Mea-
surements Analysis (NEMEA). Fig. 1 shows a typical flow
monitoring infrastructure with traffic analysis done by NE-
MEA. The network is monitored by monitoring probes (flow
exporters) which send flow data to a central collector in form
of flow records. The probes contain plugins to parse selected
information from L7 protocols and extend the flow records by
this information. The IPFIX protocol is used to transfer such
data. In our deployment at CESNET2 network (Czech NREN),
we use FlowMon [4] probes based on special devices with
hardware acceleration in order to process backbone traffic (up
to 100 Gbps) without sampling. However, any exporter capable
of parsing L7 protocols can be used. Collectors usually store
received flow records and in our case the collector (IPFIXcol
[5]) also resends them for analysis to the NEMEA system. The
probes with the collector are the source of data for analysis.
The results of the analysis are statistics of traffic and alerts
produced by various detection mechanisms.

NEMEA was firstly introduced in our technical report [6] in
2013 but since that time, it is still being improved. This paper
presents main features of NEMEA. The system is composed
of independent interconnected modules, it is extensible and
it can run in distributed environment. Every module has its
own task that can be, for example, anomaly detection, filtering
or statistics computation. Each module is built using a set
of libraries that create a common framework. Everything
is developed as an open-source project and is available at
github.com1.

1https://github.com/CESNET/NEMEA

978-3-901882-85-2 c© 2016 IFIP



This paper is organized as follows. Section II compares
the NEMEA system with existing related projects. Section III
describes architecture and shows main features of the NEMEA
system. Section IV lists real use-cases that we target and
Section V presents results that we have achieved using the
NEMEA system. Finally, Section VI concludes the paper.

II. RELATED WORK

This section describes related existing systems for traffic
monitoring and analysis. The analysis and anomaly detection
is often done using Intrusion Detection Systems (IDS) or
Intrusion Prevention Systems (IPS). Such systems analyze the
network based on packets or network flows. The most popular
packet based systems are Bro [7] and Snort [8]. They process
every packet and use pattern matching, possibly enhanced by
scripting, to search for suspicious traffic and perform actions
when a predefined rule matches. Since these systems operate
on packets, they can see more details than flow based systems.
In contrary, flow based systems usually analyze data on a
higher level of abstraction and are thus able to detect different
kinds of events. Also, since they process less detailed data,
they usually have better performance. These two approaches
may complement each other in many scenarios.

Nfdump [9] is a set of tools for storage and processing
of flow records. It receives data from the network and stores
them into files corresponding to time windows, typically 5
minutes long. Nfsen [10] is a graphical frontend for nfdump
that visualizes the stored data in form of graphs and reports.
It also allows manual analysis of the data and it can be
configured to automatically generate alerts based on simple
rules. More advanced data analysis can be done using plugins.
The disadvantage of this approach is that the data must be
stored to a disk and then read by all the plugins. This is often
a performance bottleneck in large networks. Moreover, nfdump
does not support flow records extended by L7 information.

The Network Situational Awareness (NetSA) group at
CERT created Analysis Pipeline [11] based on SiLK [12].
SiLK is a set of tools for manipulation of records in a flexible
data format containing information from flow records. Analysis
Pipeline processes the data according to a configuration file
that describes a sequence of operations in three stages — fil-
tering, evaluation or statistics computation, and alerting. There
is a set of predefined options for each stage. By combining
them into a pipeline a complex query can be assembled.
Building a complex analysis task from simpler modules is an
approach very similar to that of NEMEA. The latest version
of Analysis Pipeline also adds a support for L7 data. However,
functionality of the building blocks of the pipeline and their
possible interconnections are very limited in comparison to
NEMEA.

III. NEMEA SYSTEM

A. Overview

The NEMEA system is designed as a heterogeneous modu-
lar system. Modules are independent processes interconnected
by unidirectional interfaces for communication. The interfaces
transfer data in the form of streams of messages — flow
records, results of some analysis etc. A simple example of
an instance of the NEMEA system is shown on Fig. 2. Each

Preproc.

Statistics

Input

Detector

Filter Logger

ReportingDetector

Detector

Fig. 2. Example of several NEMEA modules and their interconnection.

module is basically a program which performs a specific task,
such as flow data preprocessing, filtration, anomaly detection,
or logging and reporting results.

Each instance of the NEMEA system can be put together
out of different sets of modules, interconnected in various
ways. Different deployments of the NEMEA system may
use completely different configurations of modules and thus
perform different tasks. Therefore, NEMEA is very flexible. In
a typical configuration, modules are interconnected into a tree
or directed acyclic graph with a single module acting as main
input of the whole system. This module gathers or creates flow
records and sends them to other modules which process them.
On the other end of the system, there are usually modules for
logging the results to log files, a database or for sending alerts
via email. In our deployment, we use a plugin for IPFIXcol
collector as an input of the system — the collector receives
and parses IPFIX data from our monitoring probes, the plugin
transforms them to a format used by NEMEA and forwards
them to NEMEA modules. This was shown in Fig. 1. However,
for smaller deployments or for testing it is possible to use
NEMEA module flow meter as an input. It can read packets
from a network interface or a PCAP file, generate flow records
and send them directly to the rest of the NEMEA system, so
no external exporters and collector are needed.

NEMEA is not only easily reconfigurable, it can also be
easily extended by new functionality. The NEMEA framework
is designed to allow quick and easy implementation of new
modules. Although NEMEA can be used in production en-
vironment for analysis of live traffic, it is also designed to
serve as a common platform for researchers in the area of
network security and monitoring. It allows for fast prototyping
of new traffic analysis methods, testing them on both offline
and online data and comparing them with existing methods.
Therefore, although we already provide a number of modules
for common tasks and several detectors of malicious traffic,
we hope a community will develop much more in the future.

The framework used by the NEMEA system is developed
in C language and brings support for implementation of
NEMEA modules in C, C++ or Python (with possibility to add
more languages later). The system should run on any UNIX-
like operating system.

B. Architecture

Figure 3 shows a simplified architecture of the NEMEA
system. There is a set of running modules (interconnected by
interfaces, which is not shown here). The set of modules can
be controlled and monitored by a tool called Supervisor. All



NEMEA Framework

Module Module Module

Supervisor NEMEA Module

Algorithm

NEMEA Framework

IF
C

IF
C

Fig. 3. High level look at the NEMEA system.

the modules are programs built upon NEMEA framework, i. e.
the modules use functionality that is implemented in shared
libraries of the NEMEA framework.

The right side of Fig. 3 points out usual inner organization
of a module. Every module implements an algorithm or method
for traffic analysis or detection and it uses features of the
NEMEA framework for communication with other modules
and for access to information contained in data records.

The most important part of the framework is TRAP library
(Traffic Analysis Platform), which implements the communi-
cation interfaces and other basic functions needed by every
NEMEA module. Another library – UniRec – implements
a data format for binary representation of flow records and
other information. UniRec is the default data format used for
communication of modules. There is a Python wrapper around
these two libraries that supplies API for modules written
in Python. The last part of the NEMEA framework is the
common library that provides a number of functions and data
structures commonly used in network data analysis algorithms,
such as various hash functions, hash tables, Bloom filter, prefix
tree, or B+ tree.

The NEMEA system follows stream-wise concept of data
processing. That means it is designed to process data con-
tinuously at real-time or near real-time without a need of a
data storage. Writing and reading flow data to/from hard-drive
is often a performance bottleneck in other systems for flow
data analysis. In NEMEA, all the data remains in operation
memory (unless some module intentionally stores them to
disk or database), allowing real-time processing of data even
from large networks using a single server. However, if needed,
NEMEA can be distributed to more servers since each module
can run separately and communicate with others via network.

C. Communication interfaces

TRAP Communication Interfaces (IFC) allow modules to
communicate with each other. The IFCs are unidirectional,
each one represents either input or output of the module. Each
module can use multiple input and output IFCs. An output IFC
of a module (sender) can be connected to one or more input
IFCs of other modules (receivers). All receivers connected to
the same sender get the same data.

The data are sent over an IFC as a potentially infinite
stream of short messages (max 64 kB each). A message may be
a flow record, result of a detection algorithm (alert), statistics
computed from flow records in some time window or anything
else. Formats of the messages are described later.

The IFCs are in fact an abstraction of several different
underlying methods of interprocess communication. The two
main ones are based on UNIX domain sockets and TCP
sockets. The former one is used for communication between
modules on the same system, the latter one for communication
over a network. There are also two special types of IFCs – file
and blackhole. The file type allows to store a stream of data
into a file (when used as output IFC) and replay it later (when
used as input IFC). The blackhole type can be used as output
IFC only. It simply discards all messages sent to it.

The key point is that a data processing algorithm inside a
module is completely abstracted from the type and parameters
of module’s IFCs. It just calls functions to receive data from
or send to a specified interface. The types of interfaces to
use, together with parameters specifying where they should
be connected (socket name, IP address and port, file name),
are passed as command-line parameters when the module is
started. The parameters are processed by the TRAP library
so the developer of the module do not need to care about it.
The library also handles most of the IFC related errors that
may occur, for example if a connection to the other module
breaks (e. g. because the other module is restarted) the library
automatically tries to reconnect.

Generally, NEMEA is designed in such a way that the
developer of a module can focus on data processing algorithm
only, leaving all the integration work up to the TRAP library.
It significantly shorten the time needed to develop, test and
deploy a new traffic analysis method. It also opens the system
to less experienced programmers, e. g. researchers focusing
rather on traffic analysis methods than on programming.

D. Data formats

Data are exchanged over IFCs in one of three supported
formats – unstructured data, JSON and NEMEA’s own binary
format UniRec. The first two are rarely used, flow data as well
as most of other data records are transferred in UniRec format.

UniRec is an efficient binary format for storage and transfer
of simple data records similar to plain C struct. In addition to
the C struct it supports fields with variable length. UniRec
itself is a generic data structure, a particular format is given
by template, i. e. a set of fields in a record.

In comparison to other formats for transfer of simple
records like IPFIX, JSON or its binary equivalents BSON
or MessagePack, UniRec has two key differences. First, it is
designed to allow very fast access to fields of a record. While
other formats have to be parsed before fields can be accessed,
UniRec fields can be read directly, with access speed almost
equal to plain C struct2. But contrary to C struct, an UniRec
template can be defined at run-time. Second, all records sent
over a single IFC have the same template. This is not a problem
in most use cases (when it is, JSON can be used instead) and
it significantly simplifies data processing.

The data format compatibility is checked automatically by
IFCs. Each output IFC specifies the data format it is able
to send, while each input IFC specifies a set of required
fields. These formats can be specified at run time, which

2There is one additional memory access to a small table which easily fits
into L1 cache.



adds to flexibility of the system. When two IFCs are about
to be connected, their formats are checked. If the output
IFC contains all the fields required by the input IFC, the
connection is established and data transfer begins. Otherwise
the connection is refused.

Therefore, if a module for processing HTTP traffic needs
flow data with URL field and a user tries to connect it to an
IFC providing only basic flows with no L7 data, the connection
fails.

This mechanism is useful not only for error checking.
For example, it allows to create a generic logging module
which automatically recognize what data it receives. Using
this information, the module knows how to interpret messages
and how to log them.

We want to explicitly point out that NEMEA natively
supports flow records extended by L7 information. UniRec is a
generic format whose records can contain any fields, therefore,
flow records can be naturally extended by any new information
elements, even at run-time. In general, the system allows to
add or remove modules at run-time without an interruption
of other modules. This property is important for production
deployment of complex configurations of the NEMEA system.

E. Central Configuration and Monitoring

Modules of the NEMEA system can be run manually as
any other set of UNIX processes. However, the system can
also be controlled and monitored centrally by a tool called
nemea-supervisor, which is usually a better option, especially
for instances composed of a large number of modules. Nemea-
supervisor can run as a system daemon or in an interactive
mode. It also supports configuration via the standard NET-
CONF protocol [13].

Nemea-supervisor takes care of modules according to an
XML configuration file. The file defines modules, their pa-
rameters and a grouping to profiles – groups of modules that
can be started or stopped together, e. g. for an experiment. The
configuration can be changed at run-time using provided thin
client or any NETCONF client.

As a monitoring tool, nemea-supervisor periodically re-
trieves state information of every module and, with respect
to the configuration, performs actions needed to keep the
modules running or stopped. Besides the module’s status,
nemea-supervisor reads some statistics about the resource con-
sumption of modules (CPU and memory usage) and also about
their interfaces. Every module’s IFC automatically updates
counters of received or sent messages and the counters are
read by nemea-supervisor via a special service IFC opened in
every module. All statistics about modules can be periodically
exported into the Munin system [14].

F. System Performance

Overall performance of the NEMEA system depends
mainly on a set of deployed modules and their resource
requirements. However, there is a limitation given by maximal
throughput of IFCs. Every output IFC uses a buffer to optimize
utilization of data transfer in order to increase throughput.

Maximal number of messages per second (MPS) that can
be sent depends on a message size. Fig. 4 shows a relation

0

1

2

3

4

5

6

7

8

M
e
ss

a
g
e
s 

p
e
r 

se
co

n
d

1e6

65
53

3

32
76

7

16
38

3
81

91
40

95
20

47
10

23 51
1

30
0

25
5

20
0

12
7 66

Message size

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

B
y
te

s 
p
e
r 

se
co

n
d

1e9

Bytes per second Messages per sec.

Fig. 4. Impact of message size on throughput of the socket based IFC.

2 4 6 8 10 20 30 40 50 60
Number of modules

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

N
u

m
b

e
r 

o
f 

m
e
ss

a
g

e
s 

p
e
r 

se
co

n
d

1e7

total

1 module

Fig. 5. Impact of number of running modules to IFC throughput. The number
of modules (x-axis) contains all running modules (senders and receivers).

between MPS and message size measured between a pair
of test modules (one sender and one receiver) on the same
machine, whereas, messages were generated in memory. The
green bars in the figure show the number of MPS that can
be sent/received via IFC. The highest number of MPS (over
7 million per second) was measured for 66 B message size,
which is the size of a basic flow record that we use. Due to
significant overhead for this size of message, the transmission
speed in bytes per second (purple line in the figure) is the
lowest (over 480 MB/s). L7 information consumes additional
memory besides the basic flow information. For the biggest
measured messages (65 KB messages), the number of MPS is
low (53 thousand MPS) but the transmission speed is about
3.5 GB/s.

Philosophy of NEMEA is based on running several mod-
ules at once. However, the more running modules, the less
resources are available for each module. Figure 5 shows
throughput of IFCs when running multiple pairs of modules.
All the modules were sending messages of a fixed size (66 B
was chosen). The purple bars represent the average number
of MPS that was received by a single receiver, the green bars
represent the sum of MPS from all receivers. For two modules
(one pair), the total number equals to the MPS of one receiver.

The real-world performance of a complete system heav-
ily depends on a particular set of instantiated modules and



complexity of algorithms they implement. However, as shown
in Sec. V, it is not a problem to process flow data from a
medium-sized NREN by tens of modules using only a single
server.

IV. TARGETED REAL USE-CASES

NEMEA already contains a number of modules for differ-
ent purposes, mostly for detection of various kinds of malicious
traffic. This section describes main topics that are covered by
the modules. Most of them are currently in use in CESNET2
network.

A. Detection up to L4

Network scanning belongs to the most common activities
that occur in the Internet. It is usually harmless, however, it can
be used by attackers to gather information. There are NEMEA
modules for scans detection (port scans were analyzed in [15]).

Denial of Service (DoS) and Distributed DoS (DDoS)
belongs to the most powerful types of attack. According to
various reports (e. g. [16]), number of DoS/DDoS attacks
increases and volume of traffic that attackers can generate
gets higher. Detection and mitigation of these attacks is a
challenging task, since it is very difficult to reliably and
timely recognize malicious and benign traffic. The NEMEA
system tries to get into the topic by providing several detection
modules based on different analysis methods. For example,
we implemented a detection method based on MULTOPS tree
[17]. There is also a specialized NEMEA module for detection
of amplification attacks.

B. Detection using L7

Session Initiation Protocol (SIP) can be used as a signalling
protocol for Voice over IP (VoIP) that is a modern successor of
telephone services. In specific circumstances, a misconfigured
SIP Private Branch Exchange (PBX) allows to call to a PSTN
phone number just by using the correct prefix, added to the
number. Attacks trying to guess the prefix and make calls to
premium-rate numbers are quite common and if successful,
they can lead to a significant financial loss for the owner of
the vulnerable PBX. A NEMEA module detecting this kind
of attack using flow records extended by selected SIP headers
was proposed in [18].

DNS protocol is usually not restricted by security poli-
cies and firewall settings because it belongs to indispensable
services. It can sometimes be used to circumvent a network
connection restrictions or escape from a secured network
by encapsulating data into DNS messages and thus creating
a communication tunnel. There is a NEMEA module for
detection of such tunnels based on statistical analysis of DNS
messages, further described in [19].

Heartbleed is a critical bug discovered in the OpenSSL
library in 2014. It gives an opportunity for attackers to re-
motely read random chunks of memory from a server that
uses the vulnerable version of OpenSSL. A NEMEA module
for Heartbleed exploit detection was developed in a few days
after the bug was published. It analyzes information from SSL
protocol headers which are extracted by a special plugin for
flow exporter. Within the first two months of operation, the

module discovered more than a thousand vulnerable hosts in
our network that were attacked (or probed) from the outside.
The detection mechanism is described in detail in [20].

NEMEA can be used to detect devices infected with
malware as well. The paper [21] presents that, having samples
of malware, it is possible to retrieve valuable information for
the detection of infected devices connected to the network. A
generic filter module can be used to find a communication with
suspicious servers. In such a scenario, extended flow records
with domain names and URLs of HTTP are the input of the
filter. The filtering condition can contain the suspicious ad-
dresses, domain names and URLs. Every matching connection
is immediately reported, since its source is probably infected
by the malware.

C. Alert Handling

The detection modules generate records about detected
security incidents (alerts). To abstract the detectors from tasks
related to alert handling, such as logging or reporting, NEMEA
provides a means to handle the alerts in a unified way. This is
represented by a set of modules called reporters that convert
alerts from detectors into a unified format and then they
can: log alerts into files, store alerts into database, send e-
mails containing information from alerts, send alerts into the
Warden3 system.

Since these modules are implemented as Python scripts, it
is easy to extend them to support any output data format or to
export alerts to any other system.

D. Offline testing

NEMEA does not have to be used just in a production
deployment processing live data. It can work offline and
process stored data as well. There are modules for reading
flow data from files in nfdump format, fastbit database used
by IPFIXcol or CSV files. It is also possible to store and replay
a stream of data generated by any NEMEA module directly in
UniRec format.

This allows to repeatedly send the same data into a set of
processing modules, which is useful for testing modules (and
therefore processing methods) as well as for research, e. g. for
comparison of different methods or parameter settings using
the same input data.

Detector
under test

LoggerMerger

Attack
trace

generator

Live flow data from networkCollector
plugin

Artificial attack trace

Fig. 6. Testing a detector by injecting artificial attack traces into a live stream
of flow data

An interesting use-case is also a possibility to mix two or
more streams of data using the merger module. For example a

3Warden is a system for sharing information about detected inci-
dents within a community of security teams, developed at CESNET,
https://warden.cesnet.cz/



stream of flow records got from normal traffic can be merged
with a stream generated by an attack simulator or with a trace
of an attack stored previously. Thus, attack traces can be mixed
into normal traffic to test abilities of detection modules, as
shown in Fig. 6.

V. REAL WORLD DEPLOYMENT AND RESULTS

An instance of NEMEA system is deployed at CESNET
since early 2014. It receives and analyzes flow data from
probes deployed on the perimeter of CESNET2 network, that
is ten lines with capacity ranging from 10 Gbps to 100 Gbps
connecting CESNET2 to other backbone networks. The data
are not sampled in any way. On average, the probes generate
120,000 flow records per second during peak hours.

At the time of writing (June 2016), our instance of the
NEMEA system consists of 28 modules. All the modules run
on a single server with 6 CPU cores and 12 GB of memory
and are able to process all incoming data without any loss. In
fact, no more than 40 % of server’s resources (both CPU and
memory) are utilized in normal circumstances.

The system is able to detect port scans, DDoS attacks
(simple SYN floods as well as DNS and NTP amplification at-
tacks), dictionary attacks on SSH, and watches for connections
to several malicious IP addresses and URLs. Also, various
statistics about the traffic are computed and stored. At last, one
of the modules performs on-the-fly anonymization of the flow
data and re-sends them to a server with less restricted access.
This is used for development and testing of new modules by
network security students and other academic people who can
not get access to real data due to privacy concerns.

On average, every day the NEMEA system detects and
reports the following events in the CESNET2 network:

• 110,000 horizontal port scans4 (76 every minute).

• 12,000 dictionary or bruteforce attempts to log in to
SSH (8.3 per minute).

• 2,400 DDoS attacks (mostly DNS and NTP amplifi-
cation).

The number of DDoS attacks may seem very high. This
is partly caused by the fact that a single attack may be
reported by two modules and that long attacks may be reported
several times due to properties of methods used for detection.
Therefore, it is rather a number of alerts generated by detectors
than real number of attacks. Nevertheless, even if the alerts
are aggregated, the number of attacks is still in the order of
hundreds. This is because most of the DDoS attacks today
use thousands of DNS or NTP servers across the world for
reflection and amplification of the attack traffic. If traffic to
just one of the servers passes through the CESNET2 network,
the attack can be detected. In fact, we often observe use of a
single server for several separate attacks at the same time.

We also have several modules for analysis of L7 data
present in our extended flow records, for example a detector of
attacks on VoIP servers or detector of DNS tunnels. They are

4To avoid false alerts, we set thresholds quite high. Port scan is reported
when more than 200 connections on different destinations are attempted within
5 minutes.

still considered experimental and are not running on the main
NEMEA instance, but for example, the VoIP detector reports
around 1,100 attacks per day if it gets data from all the probes.

We also often use L7 data for ad-hoc filtering by URL in
HTTP or hostname in DNS requests based on current needs of
security management. That means ad-hoc addition of modules
for filtering and logging the traffic of interest. For example we
recently acquired a sample of a new malware and analyzed it in
cooperation with our forensic laboratory [22]. This resulted in
a list of IP addresses and URLs used to control a botnet. A set
of filter modules looking for those IP addresses and URLs in
L7-extended flow data was immediately added to our NEMEA
system. It revealed 11 infected devices in our network during
2 weeks. The detection was done continuously and alerts were
sent at near real-time.

VI. CONCLUSION

Flow-based measurement and analysis became a standard
approach for network monitoring. Traditional flow records
provide visibility to transport layer (L4) only. However, for
detection of some kinds of problems, application layer (L7)
information is necessary. Although there exist exporters capa-
ble of parsing L7 information, it is hard to process them with
current tools. We therefore created a new platform for analysis
of L7-extended flow data – NEMEA.

The NEMEA serves for both experimental and operational
use. One of its most important features is the capability of L7
processing. At the same time, it is a flexible modular system
that allows researchers and network operators to extend its
functionality by implementing new NEMEA modules. It can
also be viewed as a common platform for development of
traffic analysis algorithms, which allows to easily test them on
both offline traces and live data, compare to other algorithms
and eventually deploy them operationally. The modularity of
NEMEA also makes the system scalable to handle even large
numbers of flow records. In case one machine does not have
enough resources, it is possible to distribute the computation,
i. e. start NEMEA modules on multiple hosts.

In this paper, we have shown a complex deployment
combining NEMEA system with a set of high performance
exporters and an open-source collector IPFIXcol. However,
since NEMEA contains its own minimalistic exporter, it can
also be used independently on smaller networks.

Deployment at CESNET2 network have proven that
NEMEA can be successfully used to monitor large networks
and detect various kinds of malicious traffic. Thousands of
incidents have been detected thanks to NEMEA.

ACKNOWLEDGMENT

This work was partially supported by the
“CESNET E-Infrastructure” (LM2015042), CTU grant
No. SGS16/124/OHK3/1T/18 both funded by the Ministry
of Education, Youth and Sports of the Czech Republic and
by the Technology Agency of the Czech Republic under
No. TA04010062 Technology for processing and analysis of
network data in big data concept.



REFERENCES

[1] R. Hofstede, P. Celeda, B. Trammell, I. Drago, R. Sadre, A. Sperotto,
and A. Pras, “Flow Monitoring Explained: From Packet Capture to Data
Analysis With NetFlow and IPFIX,” IEEE Communications Surveys &
Tutorials, vol. 16, no. 4, pp. 2037–2064, 2014.

[2] A. Sperotto, G. Schaffrath, R. Sadre, C. Morariu, A. Pras, and B. Stiller,
“An overview of IP flow-based intrusion detection,” IEEE Communi-
cations Surveys & Tutorials, vol. 12, no. 3, pp. 343–356, 2010.

[3] L. Hellemons, L. Hendriks, R. Hofstede, A. Sperotto, R. Sadre, and
A. Pras, “SSHCure: A flow-based SSH intrusion detection system,” in
Dependable Networks and Services. Springer, 2012, pp. 86–97.

[4] Flowmon Networks, “The Most Powerful NetFlow Probes in the
World.” [Online]. Available: https://www.flowmon.com/en/products/
flowmon/probe

[5] CESNET, “IPFIXcol.” [Online]. Available: https://github.com/
CESNET/ipfixcol/

[6] V. Bartoš, M. Žádnı́k, and T. Čejka, “Nemea: Framework for stream-
wise analysis of network traffic,” CESNET, a.l.e., Tech. Rep., 2013.
[Online]. Available: http://www.cesnet.cz/wp-content/uploads/2014/02/
trapnemea.pdf

[7] V. Paxson, “Bro: a system for detecting network intruders in real-time,”
Computer networks, vol. 31, no. 23, pp. 2435–2463, 1999.

[8] M. Roesch and et. al., “Snort: Lightweight intrusion detection for
networks,” in LISA, vol. 99, 1999, pp. 229–238.

[9] P. Haag, “NFDUMP – Netflow processing tools.” [Online]. Available:
http://nfdump.sourceforge.net/

[10] ——, “NfSen – Netflow Sensor.” [Online]. Available: http://nfsen.
sourceforge.net/

[11] CERT/NetSA at Carnegie Mellon University, “Analysis Pipeline.”
[Online]. Available: {http://tools.netsa.cert.org/analysis-pipeline}

[12] ——, “SiLK (System for Internet-Level Knowledge).” [Online].
Available: http://tools.netsa.cert.org/silk

[13] R. Enns, M. Bjorklund, J. Schoenwaelder, and A. Bierman, “Network
Configuration Protocol (NETCONF),” RFC 6241, Internet Engineering
Task Force, Jun. 2011.

[14] “Munin.” [Online]. Available: http://munin-monitoring.org

[15] T. Cejka and M. Svepes, Analysis of Vertical Scans Discovered
by Naive Detection. Munich, Germany: Springer International
Publishing, 2016, pp. 165–169. [Online]. Available: http://dx.doi.org/
10.1007/978-3-319-39814-3 19

[16] Kaspersly Lab, “Kaspersky DDoS Intelligence Re-
port Q3 2015,” November 2015. [Online]. Avail-
able: https://securelist.com/analysis/quarterly-malware-reports/72560/
kaspersky-ddos-intelligence-report-q3-2015/

[17] T. M. Gil, “MULTOPS: A data structure for denial-of-service attack
detection,” Ph.D. dissertation, Vrije Universiteit, 2000.

[18] T. Cejka, V. Bartos, L. Truxa, and H. Kubatova, “Using Application-
Aware Flow Monitoring for SIP Fraud Detection,” in Intelligent Mecha-
nisms for Network Configuration and Security (LNCS 9122). Springer
International Publishing, 2015, pp. 87–99.

[19] T. Cejka, Z. Rosa, and H. Kubatova, “Stream-wise detection of surrep-
titious traffic over DNS,” in 19th International Workshop on Computer
Aided Modeling and Design of Communication Links and Networks
(CAMAD). IEEE, 2014, pp. 300–304.

[20] V. Bartoš, “Heartbleed Detection at CESNET using Extended Flow
Monitoring,” in Proceedings of 8th International Scientific Conference
on Security and Protection of Information, 2015.

[21] T. Cejka, R. Bodó, and H. Kubatova, “Nemea: Searching for Bot-
net Footprints,” in The 3rd Prague Embedded Systems Workshop
(PESW2015), 2015.

[22] CESNET, “FLAB – Forensic laboratory.” [Online]. Available:
https://flab.cesnet.cz/


