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Abstract—Predicting Web service response time percentiles
is often an important aspect of service level management
exercises. Existing techniques can be very time consuming
since they involve the manual construction of complex analytic
or simulation models. To address this problem, we propose
Prospective, a fully automated and data-driven approach for
predicting Web service response time percentiles. Prospective
relies on historical response time data collected from a Web
service. Given a specification for workload expected at the Web
service over a planning horizon, Prospective uses this historical
data to offer predictions for response time percentiles of inter-
est. At the core of Prospective is a lightweight simulator that
uses collaborative filtering to estimate response time behaviour
of the service based on behaviour observed historically. Results
show that Prospective is able to predict various response time
percentiles of interest with high accuracy for a wide variety of
workloads.

Index terms— Software performance engineering, Perfor-
mance prediction, Response time percentile, Machine learning

I. INTRODUCTION

Web services need to respond quickly to transactions
issued by their users. Often, Web service operators have
Service Level Agreements (SLA) with end users that specify
acceptable thresholds for service response times. Typically,
an SLA will stipulate targets for service response time
percentiles. Since the objective is to avoid long response
times for users, percentiles that capture the tail of the
response time distribution, e.g., the 95" percentile, are often
used while defining SLAs.

Operators need systematic techniques to ensure that their
service will meet response time percentile requirements
when deployed in production mode. Specifically, given a
planning horizon, i.e., a future time period, and an estimate
of user workload over this planning horizon, an operator
needs predictions of the various response time percentiles of
interest. Such predictions can help the operator take remedial
actions if percentile thresholds are likely to be exceeded.

Load tests combined with performance modeling has been
widely used to support such SLA management exercises.
With this approach, an operator conducts a load testing cam-
paign to establish the performance behaviour of their service
under some sample user workloads. Since load tests are very
time consuming to setup and conduct, typically only a very
small number of test workloads and system configuration
settings are considered. Consequently, an analytic Queueing
Network Model (QNM) or a discrete event simulation model
may be used to predict the response time behaviour of the
service under workloads and settings that were not explored
during the testing phase. Measurements from the load tests
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are used to parametrize as well as validate the predictive
model.

While performance models can be very effective, devel-
oping such models can be time consuming. QNM based
techniques have been applied widely for Web services [1]—
[3]. However, these models focus on predicting mean re-
sponse times. Models capable of predicting percentiles [4]—
[6] are significantly more complex and hence require a lot
more effort to develop. Similar effort is also needed for
constructing and validating queueing simulation models.

To address these problems, we propose Prospective, a
fully automated and data-driven approach for predicting
Web service response time percentiles. Prospective exploits
historical performance trace data collected either from load
testing campaigns or from a live system deployment. Given
a specification for workload expected at the Web service
over a planning horizon, Prospective uses this historical data
to offer predictions for response time percentiles of interest
over this period. At the core of Prospective is a lightweight
simulator that interacts with a collaborative filtering (CF)
[7] based response time prediction module to estimate the
service’s response time behaviour.

Prospective works as follows. We consider a Web service
that supports many different types of transactions. Each
transaction type refers to a specific function invoked by
the end user, e.g. browse and buy. We define the load at
any given time instant as a vector that records the numbers
of concurrent transactions of each type at the service at
that time instant. The central idea behind Prospective is the
combined use of load and transaction type for predicting a
transaction’s response time. Prospective’s simulator traverses
an input synthetic workload trace of transactions, represent-
ing the expected workload, to produce initial estimates of
the loads experienced by these transactions. Given the load
estimated for a synthetic transaction and that transaction’s
type, the response time prediction module then estimates
the transaction’s response time. This prediction is carried
out by analyzing the historical data to obtain past response
times detected for the desired transaction type and load
combination. Prospective uses a novel CF based method
for scenarios where the historical data has not encountered
this combination. Specifically, the CF method infers the
response time for this previously unseen transaction type
and load combination based on response times recorded
in the repository for similar combinations. The simulator
iteratively refines the load and response time estimates for
the synthetic transactions and then finally calculates the



desired percentiles. We note that Prospective’s simulator is
fully automated and does not require the construction of a
simulation model.

Results from a benchmark Web service testbed show
that Prospective achieves high accuracy for a wide variety
of workloads. In particular, it is 16 times more accurate
than a technique that is agnostic to transaction types. In
over 80% of the experimented scenarios, the 95" and the
99" percentile prediction errors are below 15%. Results
also indicate that Prospective is robust and can continually
improve its predictions by incorporating new response time
data.

II. RELATED WORK

Analytic queueing modeling techniques are often used in
SLA management. Such exercises [1]-[3] typically leverage
Mean Value Analysis (MVA) [8], which is a very efficient
technique for analytically estimating mean values of perfor-
mance metrics. For example, Krishnamurthy et al. propose
a technique called the Weighted Average Method (WAM),
which combines a trace-driven simulator and M VA to predict
the mean response time of a Web service under any given
workload [2]. While MVA has been used extensively, it is
not intended for predicting response time percentiles.

Modeling techniques that are considerably more complex
than MVA have been proposed for predicting response time
percentiles [4]-[6]. Casale proposes a numeric approxima-
tion algorithm for estimating response time distributions of
queueing models satisfying a certain set of assumptions [4].
Others have proposed techniques based on fluid analysis
that work for certain types of queueing models [5], [6].
While queueing models are powerful, they require consid-
erable effort and expertise to construct. Furthermore, such
models often make simplifying assumptions that can impact
accuracy [9].

Regression based approaches provide an alternative to
queueing analysis. Several studies have used quantile regres-
sion to predict a response time percentile as a function of
input parameters such as workload and system settings [10],
[11]. Regression models can be time consuming to develop
since they require the manual selection of an appropriate
function that relates a response time percentile to input
parameters.

Queueing simulations are used in situations where it is
difficult to abstract a system using an analytic model. Un-
fortunately, the process of constructing a simulation model
and validating it is often time consuming. This motivates
the need for automated simulation approaches such as
Prospective that do not require explicit model construction.
Spicuglia et al. propose an automated simulation method to
predict response time percentiles of cloud applications [12].
Similar to our work, the paper uses results from controlled
load tests to drive a simulation that estimates transaction
response times. However, unlike Prospective the technique
presented in the paper can only handle a single transaction
type. We show in Section V that not distinguishing between
transaction types can cause significant errors.

III. PROSPECTIVE

We propose ”Prospective”, a system for Predicting
RespOnSe Time Percentiles using CollaboraTIVE Filtering.
The high level architecture of Prospective is described in
Section III-A. Sections III-B to III-D discuss in detail the
implementation of Prospective.

A. Overview

Fig. 1 shows the architecture of Prospective. Prospective
predicts response time percentiles of an application for a
given workload. The target application is a Web service with
n distinct types of transactions with each transaction type
assigned a unique id in the range 1 to n. To use Prospective,
a Web service operator should specify as input a workload
specification W over a planning horizon . W represents the
workload for which a prediction is desired. It consists of
the tuple of transaction mix M, transaction arrival model
A, and the total number of transactions NN. M defines
the probabilities of observing each transaction type in the
workload. A provides a statistical model that governs the
time instants at which transactions in the workload arrive at
the Web service. W can be obtained by exploiting workload
prediction techniques [13], [14] or using expert knowledge.
It can also be obtained by perturbing the current workload
of the service for the purpose of a sensitivity analysis. As
shown in Fig. 1, a workload generator is used to transform
W to a trace T of N workload records. Each record
pertains to a transaction and contains the time at which the
transaction arrives at the Web service and an id indicating
the transaction’s type.

From Fig. 1, Prospective predicts the response time per-
centile for an operator-defined percentile value P. Prospec-
tive also takes as input a historical data repository D. Each
record in the repository pertains to a transaction <. It includes
the transaction’s type k, load Lj, and its load-dependant
response time resfi. L; is an n-dimensional vector where
the jth element in L;, L;[j], shows the number of transac-
tions of type j executing concurrently on the service during
the execution of transaction 7. As mentioned previously, D
can be constructed by processing trace data, Ty ep, from a
load testing campaign or the actual Web service deployment.
Prospective only requires that each line of Tyep contain the
arrival instant of a historical transaction, its transaction type,
and its response time.

As shown in Fig. 1, the final inputs to Prospective are the
overlap parameter O and the number of iterations parameter
I. O defines the minimum overlap between the execution
of two transactions for them to be considered as concurrent
transactions. I is the number of times Prospective attempts
to refine the response time estimates for a transaction. O and
I together provide a mechanism to simultaneously improve
prediction accuracy and limit simulation time. These pa-
rameters are automatically calculated from a pre-processing
phase described in Section III-C.

Prospective uses a lightweight simulator in combination
with a CF based response time prediction module to estimate
response times of transactions in the input trace T. These
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Fig. 1: High level architecture of Prospective

response times are then used to calculate the P percentile
of response times. Furthermore, multiple independent sim-
ulation runs can be carried out to calculate a mean of
such predictions along with a confidence interval for the
mean. The Web service operator can use the predictions to
take remedial decisions about system sizing and application
deployment.

Fig. 1 also shows the high-level interaction between the
simulator and the response time prediction modules. The
simulator module takes as input the workload trace T. It
then calculates the load L; experienced by a transaction ¢ in
the trace and queries the response time prediction module
to get a response time estimate pres%“ at this load for the
transaction. This process is repeated for all N transactions
to obtain the response time percentile of interest. We next
discuss in detail the implementation of these two modules.

B. Simulator

Algorithm 1 describes Prospective’s simulator. The simu-
lator takes as input the trace T, the desired percentile value
P, and the input parameters derived from the pre-processing
phase namely, the overlap parameter O and the number
of iterations parameter /. We will defer the description
of the pre-processing phase to Section III-C. The output
of Prospective is resgredicted, a prediction for the P
percentile of response time.

As shown in Fig. 2 (a), the simulator first generates a time
line consisting of the arrival instants of all transactions in
T arranged in chronological order (lines 2-7 of Algorithm
1). It then starts processing these arrival events as described
in the second loop of Algorithm 1. Specifically, processing
each arrival instant involves calculating the response time
of that transaction and hence the time instant at which the
transaction completes, i.e., the departure time. The simulator
uses the response time prediction module to compute the re-
sponse time of that transaction using the historical repository
D. To calculate the response time of any given transaction
¢ the simulator requires the load over the execution of that
transaction L;. However, L; is unknown when the simulator

Algorithm 1: Main Steps of Prospective

1 Input: T, P, O, I, Output: res;edicwd

2 foreach (transaction in T) do

3 arrival < transaction.arrivalTime

4 k < transaction.type

5 event < createEvent(k, arrival, null)

6 AddToTimeline(event)

7 end

81+ 0

9 foreach event in Timeline do

10 i+i+1

11 k < event.transactionType

12 arrival; < event.arrivalTime

13 L; < calcLoad(i, arrival;)

14 presf‘ < PredictResponseTime(i, k, Lj)
15 departure; < arrival; + pres?‘

16 foreach iteration in (1, 1) do

17 L; < calcLoad(arrival;, departure;, O)
18 pres:-“i < PredictResponseTime(z, k, L;)
19 departure; < arrival; + presiLi

20 end

7 RESPs.add(pres™)

22 end

23 resfmdicted < calculatePercentile(RESPs, P)

processes the arrival instant. As a result, the simulator has
to guess L; and iteratively refine that estimate.
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Fig. 2: Example of load and response time estimation

The simulator uses the known instantaneous load at the
arrival instant of ¢ as an initial estimate of L;. The instan-
taneous load is a known quantity since the simulator knows
the arrival instants of all previous transactions and has also
calculated the departure instants of those transactions. As
shown in Fig. 1, the simulator provides this L; estimate as
well as the transaction’s type k as inputs to the response time
prediction module and obtains pres;* as an initial response
time estimate. This response time is then used to compute an
initial departure time of transaction . As shown in Fig. 2 (b),
calculation of the departure time (denoted by a solid grey
circle) allows the simulator to obtain a different estimate of
L; that captures other concurrently executing transactions.
This triggers an iterative process where the initial estimate of
L; is refined taking into account the departures and arrivals



that happen during the newly estimated execution time line
of ¢. This is shown in lines 16-20 of Algorithm 1.

We first refine L; using O. O allows the simulator to only
include those transactions that have a significant overlap with
the execution of ¢. For any given transaction ¢ and any other
transaction j, the overlap O; ; between them is described as
the difference between the departure time of the predecessor
transaction and the arrival time of the successor transaction
expressed as a percentage of the response time of transaction
1. The simulator only considers those transaction pairs whose
O;,; values are greater than or equal to O for computing the
load L;.

Fig. 2 (c¢) illustrates the use of O. In this example,
transactions pl and p2 arrive prior to transaction i. The
simulator has already computed their departure times (solid
black circles) and they are both predicted to end after
the arrival of 4. Transactions sl and s2 arrive after ¢ but
their departure times have not been estimated yet. For this
example, only p2 and sl satisfy the acceptable overlap
criterion specified by O. Consequently, the load vector L;
is updated such that the number of transactions of the type
to which pl belongs is decremented by 1. This ensures that
pl does not influence the load. Similarly, the number of
transactions of the type to which sl belongs is incremented
by 1. Transaction s2 is not involved in the load calculation
since it did not meet the overlap criterion. The updated L; is
used to calculate a revised departure time for 4, as shown in
Fig. 2 (d). This refinement process is repeated I times. The
pre-processing step is used to select O and I values that can
yield accurate predictions.

C. Pre-Processing for automated parameter selection

The basic idea in this step is to predict the measured
response times of transactions in the historical trace data
Trep using the simulator. The simulator employs various
O and I values and selects the values that most accurately
predict the historically measured response time percentiles
embodied by Trep.

The simulator takes as input a workload trace Tiyne.
Each line of T¢yne corresponds to a transaction recorded
in Tyep. It contains the arrival instant of the transaction and
the transaction’s type. The simulator also takes as input the
percentiles for which predictions are desired. For the sake of
simplicity, Prospective independently searches for the best O
and [ values. During the process for selecting the value of
O, the value of I is set to 1. The simulator first conducts
experiments using progressively increasing O values and
selects the value that yields the least error between the sim-
ulator predicted percentiles and the corresponding measured
percentiles as calculated from T'.¢p. The simulator then uses
this value of O and searches similarly for the best values of I
for each of the percentiles of interest. We note that multiple
independent runs are carried out for each parameter setting
and the average of prediction errors over these runs is used
for selecting the final values.

D. Response time prediction module

Response time prediction involves a machine learning
approach and is an extension of a method we proposed
earlier [15]. The earlier work focused on predicting abnormal
response times of cloud-based Web services. In this work, we
modify that algorithm to predict response time percentiles.

As shown in Algorithm 2, the response time prediction
module takes as input the transaction type k of transaction
1 and the load L;. The module first looks up the repository
D to check if any transactions of type k experienced the
load L; when the historical data was collected. If there
is a hit for the k£ and L; combination, then the module
obtains a list HlI(‘i containing past transaction response times
observed for this combination. Finally, a response time value
is selected at random from this list and returned as pres}‘,
the response time prediction for transaction ¢. This process
is depicted in lines 2-4 of Algorithm 2. If there is no hit for
the desired transaction type and load combination, then a CF
based method is used to predict response time. This involves
finding similar transaction types that have experienced the
load L; in D.

The CF method relies on the computation of similarity
measures between pairs of transaction types in the system.
Two transaction types j and k are considered to be similar
if their mean response times are similar to each other for all
observed loads in the repository. Their similarity measure
S[j, k] characterizes the extent of their similarity. While
several similarity measures have been proposed in literature
[16], [17], we use a formulation based on the commonly
used Pearson correlation coefficient. The exact formulation
of the similarity measure is not discussed further here due
to space constraints but is similar to what we used in our
earlier work [15]. We note that the similarity measures need
to be computed only once by processing the repository D.

To predict the transaction’s response time using CF, the
module first generates a random number 7 using a uniform
distribution between 0.0 and 1.0. It then identifies Nf(“ as
the set of other transaction types similar to k that have
encountered the load L; in D. For simplicity, we only
consider the top 5 most similar transaction types in NE‘.
For each similar transaction type j in Ni“, the module then
constructs a list HJ.Li that contains response times recorded
for j under L;. Next, the module selects the pth quantile
of response time from this list as pres?‘. This process is
depicted in lines 6-12 of Algorithm 2.

The final step of the CF method is to aggregate all the
pres?‘ values pertaining to the similar transaction types into
a single response time prediction pres{-‘i for the transaction .
This aggregation uses the similarity measures between k and
the similar transaction types recorded in Ni“. Specifically,
we use the aggregation approach proposed by Breese ef al.
[18] implemented as Eq. 1 in our context. In Eq.1, resj, and
res; are the mean response times of transaction types k and
j under all system loads recorded in D, respectively. S[k, j]
is the similarity between transaction types k£ and j. This for-
mula ensures that response times drawn from highly similar



transaction types contribute more to the final response time
prediction than those from less similar transaction types. We
note that any negative values of the weighted sum in the
equation are set to 0.

Lines 14 to 16 of Algorithm 2 handle the case when
no transactions in D have experienced the load L;. In this
case, the module simply returns the predicted response time
pres}‘ as the mean response time of all transactions of type
k in the repository D. We refer to the percentage likelihood
of this scenario as the miss rate.

Algorithm 2: Response Time Prediction

1 Input: D, 4, k, L;, Output: presiL‘
2 HII{‘i + query repository (k, L;)
3 if (Hi‘i is not empty) then

4 ‘ presg“ — randomValue(HL“)

5 else

6 Ni‘ < query similar transactions(k, L;)
7 if ( Nti is not empty) then

8 r < randomNumber()

9 foreach j € N do

10 H}“ + query repository (7, L;)
11 pres;“‘ + getValue(r, H}“‘)

12 end

13 pres?“ + adjusted value of all pres?‘i (using Eq.1)
14 else

15 ‘ presg“‘ < mean response time of £
16 end

17 end

> (presyt —res;) x Sk, j]
L; * jENti
pres;' =res; +

> 1S W

jENL
IV. EXPERIMENT SETUP

A. Experiment Testbed

We use the RUBIS benchmark [19] as our Web service.
RUBIS emulates the behavior of an auction server. The
service supports 26 distinct types of transactions. We use the
httperf tool [20] for generating workloads to RUBiS. RUBiS
and httperf are installed on separate multicore servers. The
servers are connected by an Ethernet switch that provides
dedicated 1 Gbps connectivity. Finally, Prospective is im-
plemented as a collection of Python scripts.

B. Experiment Factors

Table I lists the experiment factors and their levels.
Default levels are shown in bold.

TABLE I: Experiment factors

Factor Value
Percentile 25, 50, 75, 95, 99
Arrival (1) Low-Exp, (2) Medium-Exp, (3) High-Exp,
Patterns (4) Low-High, (5) High-Low, (6) Periodic-Gradual,
(7) Periodic-Rapid, (8) Erlang, (9) HypoExp,
(10) HyperExp-CV2, (11) HyperExp-CV5
Mix Mix 40S-60D, Mix 60S-40D, Mix 100S-0D
Estimation | Prospective, Avg-Tr, Avg-Load, Avg-Tr-Load

We study Prospective’s ability to predict the behaviour of
different types of transaction arrival patterns. Patterns 1 to
3 use the exponential distribution to generate inter arrival
times. Their mean inter arrival times are selected to cause
low (30%), medium (50%), and high (70%) mean per-core
utilization of the RUBIS server.

As shown in Fig. 3, patterns 4 to 7 emulate time varying
arrivals, which are typical of many real Web services.
Patterns 4 and 5 use exponential distributions with different
means to achieve the time varying behaviour. In pattern 4,
the mean inter arrival times are chosen such that the RUBiS
server’s mean per-core utilization increases from 10% to
40%, to 60%, and then decreases from 60%, to 40%, to
10%. In pattern 5, the mean per-core utilization decreases
from 60% to 10% and then increases from 10% to 60%.
Inter arrival times of pattern 6 and pattern 7 do not follow
the exponential distribution. Pattern 6 causes mean per-core
utilization to gradually vary between 10% to 65%. Pattern 7
utilizations vary similarly but the variations are more rapid.

Patterns 8 to 11 are used to study the impact of distribu-
tions with lower and higher variability than the exponential
distribution. While patterns 8 and 9 have lower coefficients
of variation (CV) than exponential, patterns 10 and 11 have
2 times and 5 times the CV of exponential, respectively. For
patterns 8 to 11 we use the same mean inter arrival time as
in the default Medium-Exp pattern to facilitate comparisons.

We also study the sensitivity of Prospective to transac-
tion mix. We use three different mixes that differ in the
percentages of static transactions (S), i.e., transactions that
don’t require dynamically generated content, and dynamic
transactions (D).

Finally, several different response time estimation strate-
gies are compared. The Avg-Tr approach ignores the depen-
dency of transaction response times on load. It estimates the
response time of a transaction by computing the average of
the response times recorded for that transaction’s type in
the historical repository. The Avg-Load approach considers
load but ignores transaction type. For each transaction, it
estimates the load, i.e., total number of concurrent transac-
tions. It then obtains the prediction as the average response
time of all transactions, regardless of transaction type, that
have experienced the estimated load. We note that this
approach is similar to the approach used by Spicuglia et
al. [12]. Finally, the Avg-Tr-Load approach considers both
load and transaction type similar to Prospective. However,
unlike Prospective it merely estimates the response time of
a transaction as the average response time of all records
with the desired load and transaction type. We note that
a comparison with the regression approaches in literature
[10], [11] is not presented since they are not designed for
predicting the impact of changes in arrival distributions and
mixes.

C. Experiment Process

Before starting the evaluation, we need to create a his-
torical repository. Our intent is to create a repository that
covers a diversity of transaction types and CPU utiliza-
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Fig. 3: Time varying arrival patterns used in experiments

tions. To create such a repository, we use the default mix,
Mix40S — 60D, that contains all the RUBIS transaction
types. We then submit to the service traces of transactions
conforming to this mix and having exponential inter arrival
time distributions. The mean inter arrival times of the dis-
tributions are selected to generate various levels of intensity
(10% < per-core utilization < 75%). For each utilization
level, we repeat the experiment using 5 different samples
drawn from the relevant exponential distribution.

Each run contains 9000 transactions. As mentioned pre-
viously, transaction traces are collected from the system
and used for creating the repository. After creating the
repository, the pre-processing steps discussed in Section
II-C are carried out.

For each experiment, we use a sequence of inter arrival
times sampled from one of the 11 arrival models. We submit
to the Web service a trace of 9000 transactions conforming to
this arrival pattern and exhibiting the desired mix. Response
times are measured and recorded for transactions in the trace.
Next, for the same trace, we run Prospective and record
the predicted response time values. Each measurement and
simulation experiment has 10 independent replications. The
average and the 95% confidence interval for each response
time percentile value is recorded for both the actual mea-
surements and their predicted values.

D. Evaluation Metrics

To evaluate the accuracy of Prospective, we use the abso-
lute relative error of the predicted response time percentile
values as shown in Eq. 2.

P P
res ic —Tres ;
_ predicted measured
errp = | osP | x 100 2)
measured

In Eq. 2, P represents the desired percentile level and
errp is the error for the P'™ percentile response time
prediction. res;edicted and res! . . . are the mean of
the predicted and measured P percentile values.

V. RESULTS
A. General observations

The pre-processing to deduce O and [ is carried out once
and took approximately 20 minutes for this study. The max-
imum duration of each test run to measure actual response
times is about 5 minutes. A simulation run using Prospective
is very fast. In our experiments, the simulation run times

are in the range 45 seconds to 90 seconds depending on the
choice of I. We also verify that the number of transactions
simulated is large enough to yield consistent results across
independent runs of a simulation.

B. Pre-processing

Fig. 4 shows the selection of the overlap parameter O.
From the figure, values around 40% to 50% yield the lowest
errors considering all percentiles of interest for this study.
With lower values, transactions that have very low overlap
are counted towards the load leading to overly pessimistic
response time estimates. Values higher than 50% ignore the
effects of some transactions that have quite a bit of overlap
leading to optimistic estimates.

As mentioned previously, the tuning of I is specific for
each percentile of interest. We omit presenting detailed
results due to space constraints. We notice in general that the
value of I needs to be greater than 1 for the tail percentiles,
e.g., the 99" percentile, for better accuracy.

Error (%)

g L L g L L g |
10 20 30 40 50 60 70 80 90
Overlap (%)

Fig. 4: Selecting the value of overlap parameter

C. Effect of estimation approaches

This experiment compares the average error over all per-
centiles of interest of the estimation approaches introduced
in Section IV-B. AVG-TR, which ignores load, produces a
large error of 39.8%. AVG-LOAD, which considers load
but ignores transaction type, also does poorly with an error
of 72.9%. These results establish the importance of incor-
porating both load and transaction type into the prediction
process.

Among the two methods that consider both load and
transaction type, Prospective, which has an error of 4.6%,
outperforms AVG-TR-LOAD, which has an error of 12.5%.
Recalling from Section IV-B, AVG-TR-LOAD uses average
of the response times recorded for a transaction type and
load combination. In contrast, Prospective randomly draws
from a list of historical response times recorded for that
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combination. Fig. 5 compares their predicted response time
distributions. From the figure, the averaging done by AVG-
TR-LOAD causes probability masses to bunch together over
a few values causing the distribution to deviate signifi-
cantly from the actual measured distribution. The Prospec-
tive method avoids this problem and follows the measured
distribution more closely.

D. Effect of arrival patterns

Table II compares Prospective’s accuracy for the different
arrival patterns. Patterns 1 to 5 use either exponential or
time varying exponential distributions. While the repository
is constructed using exponential, the parameters of the repos-
itory’s arrival model are different from those of patterns 1 to
5. Results show that Prospective yields very good accuracy
with the maximum average error being 15.7%.

The worst errors are 14.6% and 26.8% for the 95" and
99" percentiles of the High-Exp pattern (pattern 3), respec-
tively. This pattern causes the heaviest load on the system.
We notice that at very high loads there is more diversity
in the number of unique loads experienced by the system.
As a result, there is a higher likelihood that Prospective
will have a miss, i.e., not find a match for a transaction
type and load combination in the repository either by using
historical response times directly or by applying the CF
method. As discussed previously, Prospective merely uses
the mean historical response time for the relevant transaction
type as its prediction when there is a miss. This leads to
optimistic predictions for the 95" and 99" percentiles. We
find that defining a lower value of O is beneficial for high
load scenarios since it improves Prospective’s sensitivity
to load. Enhancing the simulator to incorporate a load-
dependent choice of O is deferred to future work.

Table II also shows that Prospective is very accurate
for the Periodic-Gradual and Periodic-Rapid patterns, which
have non-exponential, time varying arrivals. This indicates
that Prospective can offer predictions for inter arrival time
distributions different than that governing the repository.
Specifically, it can provide good predictions as long as there
is a good match in the repository for the transaction type
and load combinations seen by the simulator.

From Table II, Prospective is very accurate for the Erlang
and HypoExp patterns, which both have lower C'V's than the

exponential distribution. It also performs well for HyperExp-
CV2 whose CV is twice that of exponential. However,
accuracy suffers for the extremely variable HyperExp-CV5
pattern, whose C'V' is five times that of exponential. In this
scenario, there are periods where the system is subjected to
extremely high loads where the per-core utilization exceeds
80%. Such extreme loads are not observed in the repository.
The miss rate (defined in Section III-D) encountered by
the simulator is about 31% leading to errors. We note that
the miss rate information provided by Prospective can be
exploited to infer the quality of predictions. Also, predictions
can improve if the repository is expanded with load test or
live system response time data pertaining to such extreme
load scenarios.

From Table II, the errors are somewhat high for the 25t
percentile predictions. The measured 25" percentiles are
very small and as a result even small deviations in predic-
tions result in large errors. We note that SLA compliance
typically focuses on higher percentiles.

TABLE II: Percentile prediction errors(%)

25t0 [ 50tP [ 75t [ 95th [ 99th | Ayg
Low-Exp 6.4 2.1 58 71 111 | 65
Medium-Exp 110 | 24 62 .1 24 | 4.6
High-Exp .1 34 6.5 146 | 269 | 157
Low-High a7 31 9.6 a1 a1 | 51
High-Low 23 2.6 56 36 80 | 54

Periodic-Gradual 11.3 3.5 9.7 3.5 5.6 6.7

Periodic-Rapid 11.1 3.7 9.0 1.9 6.4 6.4

Erlang 13.5 32 9.1 32 5.3 6.9

HypoExp 33 | 34 | 92 13 58 | 66

HyperExp-CV2 2.0 4.0 1.5 15.8 9.7 6.6

HyperExp-CV5S 30.8 11.9 48.5 66.9 729 | 46.2

Fig. 6 compares the measured and predicted confidence
intervals for all the patterns. For a vast majority of cases
that correspond to the utilization ranges of real life servers
[21] the measured and predicted confidence intervals overlap
or are very close to one another. The largest gaps between
the measured and predicted confidence intervals are for
cases such as HyperExp-CV5 where the system experiences
extreme bursts that are not captured by the repository.

E. Effect of transaction mix

We submit each of the mixes shown in Table I with
the same arrival pattern (Medium-Exp). Fig. 7 shows that
they have very different response time behaviours. Table III
shows the prediction errors. Predictions degrade slightly for
the non-default mixes Mix60S —40D and Mixz100S — 0D
but are still quite accurate. Errors correlate well with
the miss rates seen by the simulator. The miss rates for
Miz60S — 40D and Mixz100S — 0D are 16% and 4%,
respectively.

TABLE III: Percentile errors(%) for different mixes

25t0 [ 50tP [ 75th T g5th [ ggth T Ayg
Mix 40S-60D | 11.0 | 24 6.2 .1 24 | 46
Mix 60S-40D | 9.3 71 21 147 | 162 | 9.9
Mix 100S-0D | 9.1 120 | 10.1 59 60 | 83

We explore Mix60S — 40D further to show the value of
incorporating the CF method into Prospective. Disabling CF
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increases the miss rate from 16% to 34%. As a result, the
error for the 95" percentile and the average error increase
from 14.7% and 9.9% to 19.9% and 13.7%, respectively.
The accuracy of Prospective depends on the quality of
the historical repository. Prospective can continually expand
its repository to include new measurements, e.g., data from
the live system. We now study the impact of evolving the
repository to include a new mix. We exposed the system to
a workload that uses Mix60S — 40D and a time varying
exponential inter arrival time distribution. Response time
information from this workload is then integrated into the
repository, which causes its size to almost double. We
then conduct a simulation to predict for Miz60S — 40D

with the default Medium-Exp arrival pattern. Due to the
expanded repository, the error for the 95" percentile and
the average error decrease from 14.7% and 9.9% to 5.8%
and 5.5%, respectively. This shows that Prospective is robust
and can learn to continually refine its predictions. Our future
work will conduct a more extensive analysis to study the
sensitivity of Prospective to the quality of the repository.

VI. CONCLUSIONS AND FUTURE WORK

We tackle the challenging problem of predicting Web
service response time percentiles. Existing approaches re-
quire manual model building and also rely on simplifying
assumptions about the Web service that may not be valid.
Prospective addresses these problems. Prospective uses his-
torical data to predict response time percentiles for any given
workload. A novel aspect of this work is the use of CF to
improve prediction accuracies for load scenarios not directly
observed in the historical data. Results show that Prospective
is effective for a wide variety of the workloads.

Future work will refine Prospective to better handle ex-
treme load and bursty scenarios. This can for example be
achieved through a load dependent overlap factor or by
clustering transaction types to reduce the number of unique
load vectors. We will also study Prospective’s use in dynamic
environments where activities such as load balancing can be
triggered in response to the current load.
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