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Abstract—As Cloud platforms are becoming more popular,
efficient resource management in these Cloud platforms helps
the Cloud provider to deliver better quality of service to its
customers. In this paper, we present an online characterization
method that can identify potentially failing jobs in a Cloud
platform by analyzing the jobs’ resource usage profile as the job
runs. We show that, by tracking the online resource consumption,
we can develop a model through which we can predict whether
or not a job will have an abnormal termination. We further show,
using both real world and synthetic data, that our online tool can
raise alarms as early as within the first 1/8th of the potentially
failing job’s lifetime, with a false negative rate as low as 4%.
These alarms can become useful in implementing either one of
the following resource-conserving Cloud management techniques:
alerting clients early, de-prioritizing jobs that are likely to fail
or assigning them less performant resources, deploying or up-
regulating diagnostic tools for potentially faulty jobs.

I. INTRODUCTION

Resource usage monitoring of large server farms and High
Performance Computing platforms (HPC) is required to main-
tain the cost effectiveness of such large infrastructure invest-
ments by guaranteeing SLAs, high availability, reliability and
shorter downtime of services to end users.

Detecting “faulty” programs in a Cloud environment opens
up the possibility of more efficient resource management by
the Cloud provider. An early identification of a failure can
serve for improving resource usage or job diagnosis in the
following ways: i) alerting the user about the potential fate of
their job, so that the user can help save resources by killing
the job themselves, ii) de-prioritizing jobs that are likely to
fail or migrating them to a different platform or assigning
them less performant resources to run on, and iii) deploying
or upregulating diagnostic tools for potentially faulty jobs.

Either or all of these methods are expected to achieve two
goals. First, we reduce the number of times a faulty jobs is
resubmitted to the Cloud, by providing the user with more
comprehensive diagnostic data and second, we selectively
provide better quality of service to users with non-faulty jobs.

In this paper we present novel techniques to build online
classifiers to predict the fate of a running task as successful
termination or buggy based on run-time metrics. Our technique
shows that there is a correlation between the on-line variation
in resource usage over the lifetime of a job, and the likelihood
of abnormal termination for the job.

We quantify this normal vs. buggy behaviour of a program
as a multidimensional signal, where each dimension represents
usage time-series of a particular resource. We present and
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evaluate effectiveness of the trained classifiers using both real-
world dataset obtained from Google cluster data [16] and
our own generated data using a well-known benchmark suite
containing faulty applications — BugBench [18].

We believe it would be useful for the cloud system admin-
istrator to monitor and learn over time to determine whether
some users may submit a larger fraction of faulty jobs than
others.

In summary, in this paper, we answer the following impor-
tant research questions:

o What are the correlations between the on-line resource
consumption monitoring data of a job and the job’s fate
while running on a Cloud, if any?

o Is it possible to predict a job’s fate early in its life cycle
using its resource consumption statistics?

II. RELATED WORK

Many researchers have studied the statistical properties of
the interarrival times of failures (i.e. the elapsed times between
failures), to better understand the temporal characteristics of
failures [1], [2], [3], [4], [5]. A series of studies have looked
into using Reliability, Availability, and Serviceability (RAS)
logs that are collected at HPC systems to improve failure
prediction techniques [6], [3], [7], [8]. Some of the work that
studied failure prediction in HPC systems used event-driven
approaches [3], [7]. Alternatively, a period-based approach was
studied [9] where different classifiers are periodically explored
and evaluated using BlueGene/L RAS logs. A recent work also
looks into online failure prediction by parsing logs [24]. Our
approach is very lightweight as compared to heavy log analysis
and therefore more proactive in an online setting for failure
detection.

Some recent studies focused on utilizing failure predictors
in improving checkpointing strategies in HPC systems [6],
[10]. In a more recent study, Gianaru et al. [6] introduced
a hybrid approach for predicting failures in HPC systems that
is based on both signal-processing concepts and data-mining
techniques. Recent studies that analyzed field data collected
from HPC production systems indicated that failures are highly
unlikely to be independent, and that both temporal and spatial
correlations exist between failures [11], [1], [2], [12], [5], [13].

Another, more recent study from Google by Ford et al. [11]
characterizes the availability of data in Google’s main storage
infrastructure observed over the course of a year. Several
studies briefly discussed the effect of environmental issues as



part of a more general analysis of HPC failure behaviour [14],
[5], [15].

Researchers have come up with online prediction schemes
for Google dataset [21], [22], [23]. Our work differs from them
in two ways: (1) None of the previous research has presented
a comprehensive study using both real world but unknown
dataset and a dataset whose behaviour is well understood. (2)
Our approach is very lightweight as compared to heavy log
analysis or offline modeling.

III. MOTIVATION

Our techniques are based on the fact that there are sections
of code in the application that put forth clues in the resource
consumption that can help identify the application’s fate in
case of a faulty run. In this section we present code sections
from real world buggy applications and show the correspond-
ing deviation in the resource consumption from a normal run.

Listing 1: Code Snippet from gnu man [18].

1. static char xx

2. get_section_list (void) {

3. int i;

4. char xp;

5. char =xend;

6. static char xtmp_section_list[100];

//some code

7. i = 0;

8. for (p = colon_sep_section_list; ; p = end+1) {

9. if ((end = strchr (p, ’:’)) != NULL)

10. xend = "\0’;

11. tmp_section_list[i++] = my_strdup (p);

12. if (end == NULL || i+l == sizeof(
tmp_section_list))

13. break ;

// more code

}

14. static void
15. split (char *string,

int perrs) {
16. char *p, xq,

void (xfn)(char %, int),
T}

17. if (string) {

18. p = my_strdup(string);
19. for (q = p; 3 ) {
20. r = index(q, ’:7);
21. if (r) {
22. *1r = 0;
23. fn (q, perrs);
24. q=r+1;
25. } else {
26. fn (q, perrs);
27. break ;
}

28.
29. free (p);

}

}

Listing 1 shows buggy code from the GNU man ap-
plication, which is part of the BugBench [18] suite. The
get_section_list function appears in lines 973-981 in the

file man.c. This function creates a list of sections based
on the argument given to the man application, where the
sections are separated by ‘:” given in the argument. In function
get_section_list, the for loop in line 8-13 has a wrong exit
condition in line 12. The sizeof(tmp_section_list) should be
sizeof(tmp_section_list)sizeof(char *), otherwise there will be
an overflow of the static array tmp_section_list, causing the
application to crash. The bug will be triggered when the
application is called with an argument that has more than 100
”’ in it’s name. But fewer number of :’s will not cause the
application to fail.

In the man application, just before the execution of
get_section_list, there is a call to a function called
init_manpath that performs the initialization work of splitting
the argument based on the ‘:’s present in it by making a call to
the function split. Listing 1 also shows the relevant part of the
split function. The for loop at lines 19-28 will cause a spike
in the CPU utilization and also memory consumption for a
buggy input with hundreds of :’s in it, therefore giving a hint
to a bug detection tool about predicting the failure outcome.

IV. PREDICTION OF APPLICATION’S FATE

Given the motivation, we develop our application behaviour
characterization technique based on the resource consumption
statistics collected periodically as the application runs. In
this paper we focus mainly on memory related failures and
therefore we use memory related resources for consideration.

In the next sections, we describe step-by-step the details of
our online characterization methodology.

A. Step 1: Identifying Resources to Profile

Google provides a real-world dataset collected in their
datacenter clusters so that researchers can play with it and gain
important insights [16]. We use the resource consumption data
provided by Google as a standard on what metrics a typical
cloud provider can gather for jobs running on their platform.
A job in the Google cluster may have three different fates — (1)
Successful, (2) Killed or (3) Failed. We explicitly take a look
at successful vs killed jobs. A job in the cluster may be either
killed by the user of the job or by an inspector in the Google
cluster if the job is consuming an unusually higher amount of
resources than what is allocated to it. Previous work has looked
into the behaviour of failed jobs and found out that there is
correlation between the failed jobs and their I/O activity [17].

We take a look at explicitly killed jobs because we found
that many jobs are killed due to having memory issues, prob-
ably due to a memory leak in the code or an underestimation
by the user of the required memory resource by the task.

The memory and CPU related resource consumption fea-
tures provided by Google are the following: Canonical Mem-
ory Usage (CMU), Cycles Per Instruction (CPI), CPU Utiliza-
tion (CPU Usage), Memory Accesses Per Instructions (MAI),
Maximum memory usage, Total Page Cache: Total Linux page
cache (file-backed memory), Unmapped Page Cache (UPC).

For any machine learning algorithms to work, it is useful
to filter out redundant features. Not only does it make the



algorithm run faster but also saves the sampling overhead of
redundant features. In the next step we identify the redundant
features from the above list.

B. Step 2: Filtering out Redundant Statistics

To identify the most significant features that determine the
fate of a job, we extract and plot the trace of different resource
consumptions related to memory for 100 (randomly selected)
killed and 100 (randomly selected) successful jobs over their
lifetime. We find that there exists a high correlation between
the following feature pairs:

« MAI and CPI

o Total Page Cache and Unmapped Page cache

e Maximum memory usage and Canonical memory usage

Therefore we can use either of the features in each feature
pair for building our machine learning model and discard the
rest. We observe the exact same behaviour for the successful
jobs as well.

Therefore, we use the following four resource consumption
statistics for building our machine learning model and classi-
fication: (1) CPI, (2) CPU Utilization, (3) Memory Usage, (4)
Total Page Cache.

C. Step 3: Feature Set for Prediction

After discarding the redundant features, we have to find a
useful feature set that can be used in online characterization
of a job. We use signal processing techniques to extract the
feature set from the sampled resource utilization data. The
behaviour B of a job in our case is represented by a n-
dimensional signal, where each dimension is representative of
a particular resource usage (e.g. CPU or Memory consump-
tion) over the job’s lifetime.
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Here n is the number of resources sampled. In our case n = 4
as we are using four features as described in the previous
section.

Next, we need a way to represent a dimension s; so that
it can be fed to a machine learning classifier. Typically we
want a dimension of a signal s; to be equivalent of a set of
aggregate metrics f.

Our job is to identify pairwise matching m between same
dimensions s; and s; of two signals.

BE{Sl,SQ,...

m = match (s;, ;) 3)

m = match (i, fh oo £3) (BB 1)) )

Once we have the aggregate metrics for all the n dimen-
sions, we have a complete representation of the signal. We use
the following statistical methods to compute aggregate metrics
fi from each resource consumption dimension s;.

1) Simple Statistics: The minimum, maximum, average and
standard deviation of the sampled values of the dimension over
the job’s lifetime.

2) Higher Order Statistics:

o Skewness The measure of the asymmetry of the distri-
bution of the signal dimension about its mean. Skewness
indicates the symmetry of the probability density function
(PDF) of the amplitude of a time series. A time series
with an equal number of large and small amplitude values
has a skewness of zero.

o Kurtosis The measure of the “tailedness” of the signal
dimension. Kurtosis measures the peakedness of the PDF
of a time series. A kurtosis value close to three indicates
a Gaussian-like peakedness.

« ARIMA Model features The Autoregressive integrated
moving average (ARIMA) model is used to make fore-
casts from time series data. ARIMA models are generally
denoted ARIMA (p, d, g) where parameters p, d, and g are
non-negative integers, p is the order of the Autoregressive
model, d is the degree of differencing, and ¢ is the order
of the Moving-average model.

We calculate the values p, d and g of the ARIMA model
for each signal to extract the behaviour of time series data
and use them as features in our prediction.

D. Step 4: A Machine Learning Classifier

We use a binary classifier for predicting the fate of an
application. We use supervised learning to train a Support
Vector Machine (SVM) [19]. For training, our predictor takes
the following tuple for each application under consideration.

i = (features;, fate;) (5)

Where the feature set feature; can be represented using
the following equation.

-, aggn} (6)

Here each agg; represents the various statistics calculated
for each dimension s; of that signal and is given by the
following equation.

features; = {agg1,aggs, ..

agg; = (minj, max;, avg;, std;, skew;, kurt;, p;, d;, q;)
(N
Once we have trained the model using the feature; and the
observed fate fate;, we calculate the same feature;.s; for a
test case and input it to our prediction model. The prediction
model then uses the representation statistics for a given signal
to make its prediction fatepyeq.

E. Step 5: Predicting Early

We use the state machine shown in Figure 1 for evaluating
the confidence of our online prediction scheme. The prediction
p of a task can be in any state from the set of stated S.

S = {initial, weak, stronger, strongest} (8)

We select a window size w of sample datapoints and extract
the aggregate features for those datapoints. Then the machine
learning model makes a prediction for the window and stores
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Fig. 1: State machine for online prediction of a task’s fate.

the prediction at its initial state. The machine learning model
keeps making predictions for subsequent windows and com-
pares the prediction with the last prediction. A match between
the current and the last prediction improves the confidence
level of the prediction; therefore we move the prediction state
to a stronger state. Once the state of the prediction reaches the
strongest state (after making a threshold number of successful
predictions), we make our final prediction about the fate of
the job.

V. EXPERIMENTAL EVALUATION

In this section, we describe the results of predicting a job’s
fate using a classifier model built using our method. We define
our problem as a binary classification problem as we have two
states for a job to predict — buggy or successful. We present
the results for both the Google Dataset and BugBench. We
run the BugBench application in our private machine that has
an Intel(R) Xeon(R) CPU E5-2650 at 2.00GHz processor with
32GB of main memory. For creating buggy and successful runs
of BugBench, we use input data provided by the benchmark.
We take an average of 5 runs for getting each resource
consumption time series. Also we set a sampling rate of 10K
instructions using the PAPI [20] performance monitoring tool.

A. Predicting From Whole Lifetime of Jobs

In this section, we present the prediction results using
the resource consumptions for the whole lifetime of the job.
We gather statistics until completion of a job (in case of a
buggy job, until crash) and calculate the aggregate statistics
features;.

For building the classification models, we use a python
implementation of a binary SVM classifier. We test with
different kernel functions for the SVM classifier and have
found the rbf kernel to be working best. We also use cross-
validation and grid search to find the optimal parameter values
to be used with the rbf kernel.

First we train the SVM classifier with features from 1000
jobs. The training set contains aggregate metrics of resource

consumption for the 1000 jobs (a mixture of killed and
successful jobs) along their whole lifetime. After training we
perform predictions on 100 “test” jobs that were not seen
during the training phase. The features used for the tested
jobs are the same aggregate metrics over their whole lifetime.
We notice that the SVM classifier is able to predict 100%
of the killed jobs (no false positives). But for the successful
jobs, the prediction success rate is 88%. Closer investigation
of the data set reveals that for most of the killed jobs, the
lifetime is long, giving rise to 8000 sampling points in the
data stream of resource usage. Therefore, the aggregate metrics
collected from them are more information rich. While for most
successful jobs, the lifetime is very short (around 20 sampling
points) and therefore the classifier does not have enough
information to classify the successful jobs. For BugBench
applications, we first train our model using a total of 500
runs of four applications with different inputs. The inputs are
chosen such that half of them will cause the application to
fail and half of them will not. We observe a better prediction
accuracy (90%) here than the Google dataset due to successful
jobs having enough samples.

B. Predicting early

To determine the earliest time we can predict the fate of a
job, after training the SVM classifier, instead of considering
the aggregate metrics from the whole lifetime of a job, we
compute aggregate metrics for different durations from the
submission of a job.

We find that the predictions for the killed jobs reach a
strongest state at as early as within éth of the total duration
of the job for the Google dataset and within half of the job’s
duration for the BugBench applications.

C. Considering User and Hardware Information

In a datacenter, we have more information on the users of
a job and the machine on which the jobs run. An earlier study
on “failed” jobs by Nosayba et al. [17] showed that some users
are prone to submit failed jobs. When we include the user ID
as one of the features, our machine learning model was able
to bring the false negative rate from 12% to 4%. But when
we use the machine ID on which the jobs run, the prediction
does not improve.

VI. CONCLUSION

In the paper we present an online characterization technique
based on the resource usage data of jobs. With machine
learning, we are able to detect the killed jobs with 100%
accuracy and no false positives for both real world and
synthetic workloads. We propose a mechanism to detect a job’s
fate early in its life cycle, which might greatly help the cloud
administrator. We strongly believe that our work will greatly
help users and cloud administrators to filter out harmful jobs
in the cloud and save costly resources from being wasted.



REFERENCES

[1] Song Fu and Cheng-Zhong Xu. 2010. Quantifying event correlations for
proactive failure management in networked computing systems. J. Parallel
Distrib. Comput. 70, 11 (November 2010), 1100-1109.

[2] Song Fu and Cheng-Zhong Xu. Exploring event correlation for failure
prediction in coalitions of clusters. In Proc, of SC07, 2007.

[3] Y. Liang, Y. Zhang, M. Jette, Anand Sivasubramaniam, and R. Sahoo.
BlueGene/L failure analysis and prediction models. In Proc. of DSN06,
2006.

[4] Ramendra K. Sahoo and Mark S. Squillante. Failure data analysis of a
large-scale heterogeneous server environment. In In Proceedings of the
2004 International Conference on Dependable Systems and Networks,
pages 772-781, 2004.

[5] B. Schroeder and G. Gibson. A large-scale study of failures in high-
performance computing systems. In Proc. of DSNO06.

[6] Ana Gainaru, Franck Cappello, Marc Snir, and William Kramer. Fault
prediction under the microscope: a closer look into HPC systems.
In Proceedings of the International Conference on High Performance
Computing, Networking, Storage and Analysis, SC 12, 2012.

[7]1 R. K. Sahoo, A. J. Oliner, I. Rish, M. Gupta, J. E. Moreira, S. Ma, R.
Vilalta, and A. Sivasubramaniam. Critical event prediction for proactive
management in large-scale computer clusters. In Proceedings of the ninth
ACM SIGKDD international conference on Knowledge discovery and
data mining, KDD 03.

[8] Li Yu, Ziming Zheng, Zhiling Lan, and S. Coghlan. Practical online
failure pre- diction for blue gene/p: Period-based vs event-driven. In De-
pendable Systems and Networks Workshops (DSN-W), 2011 IEEE/IFIP
41st International Conference on, pages 259 —264, june 2011.

[9] Yanyong Zhang and A. Sivasubramaniam. Failure prediction in ibm
bluegene/l event logs. In Parallel and Distributed Processing, 2008. IPDPS
2008. IEEE International Symposium on, april 2008.

[10] Eric Heien, Derrick Kondo, Ana Gainaru, Dan LaPine, Bill Kramer, and
Franck Cappello. Modeling and tolerating heterogeneous failures in large
parallel systems. In Proc, of SC11, 2011.

[11] Daniel Ford, Franc ois Labelle, Florentina I. Popovici, Murray Stokely,
Van-Anh Truong, Luiz Barroso, Carrie Grimes, and Sean Quinlan. Avail-
ability in globally distributed storage systems. In Proc. of OSDI10, 2010.

[12] R. Ren, X. Fu, J. Zhan, and W. Zhou. LogMaster: Mining Event
Correlations in Logs of Large scale Cluster Systems. ArXiv e-prints,
March 2010.

[13] T. Thanakornworakij, R. Nassar, C.B. Leangsuksun, and M. Paun.
The effect of correlated failure on the reliability of HPC systems. In
Proc. of Parallel and Distributed Processing with Applications Workshops
(ISPAW), 2011.

[14] E. Pinheiro, W. D. Weber, and L. A. Barroso. Failure trends in a large
disk drive population. In Proc. of Usenix FAST 2007.

[15] B. Schroeder, E. Pinheiro, and W.-D. Weber. DRAM errors in the wild:
a large- scale field study. In Proc. of SIGMETRICS 09, 2009.

[16] https://github.com/google/cluster-data/blob/master/ClusterData2011_2.md

[17] El-Sayed, N.; Schroeder, B., "Reading between the lines of failure
logs: Understanding how HPC systems fail,” in Dependable Systems and
Networks (DSN), 2013 43rd Annual IEEE/IFIP International Conference
on , vol, no., pp.1-12, 24-27 June 2013

[18] S. Lu, Z. Li, F. Qin, L. Tan, P. Zhou, and Y. Zhou. BugBench: A
benchmark for evaluating bug detection tools. In Bugs 2005 (Workshop
on the Evaluation of Software Defect Detection Tools) on Programming
Language Design and Implementation (PLDI) 2005, 2005.

[19] https://en.wikipedia.org/wiki/Support_vector_machine

[20] http://icl.cs.utk.edu/papi/

[21] A.Rosa, L. Y. Chen and W. Binder,“Catching failures of failures at big-
data clusters: A two-level neural network approach,” 2015 IEEE 23rd
International Symposium on Quality of Service (IWQoS), Portland, OR,
2015, pp. 231-236.

[22] A. Rosa, L. Y. Chen and W. Binder, "Predicting and Mitigating Jobs
Failures in Big Data Clusters,” Cluster, Cloud and Grid Computing
(CCGrid), 2015 15th IEEE/ACM International Symposium on, Shenzhen,
2015, pp. 221-230.

[23] X. Chen, C. D. Lu and K. Pattabiraman, “Failure Prediction of Jobs
in Compute Clouds: A Google Cluster Case Study,” Software Reliability
Engineering Workshops (ISSREW), 2014 IEEE International Symposium
on, Naples, 2014, pp. 341-346.

[24] T. Kimura, A. Watanabe, T. Toyono and K. Ishibashi, “Proactive
failure detection learning generation patterns of large-scale network logs,”
Network and Service Management (CNSM), 2015 11th International
Conference on, Barcelona, 2015, pp. 8-14.



