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Abstract—The expansion of Distributed Denial of Service
(DDoS) for hire websites, known as Booters, has radically
modified both the scope and stakes of DDoS attacks. Until
recently, however, Booters have only received little attention
from the research community. Given their impact, addressing
the challenges associated with this phenomenon is crucial. In
this paper, we present a rigorous methodology to identify a
comprehensive set of existing Booters in the Internet. The
methodology relies on well-defined mechanisms to generate a
Booter blacklist, from crawling suspect URLs to characterizing
and classifying the collected URLs. The list obtained using the
methodology presented in this paper has a classification accuracy
of 95.5%, which is 10.5% better compared to previous work. We
also demonstrate the usage of our methodology applied by the
Dutch NREN, SURFNet, which started using our blacklist to
extend their Booters’ activities monitoring.

I. INTRODUCTION

Distributed Denial of Service (DDoS) attacks have become
a daily concern for any service operating in today’s Inter-
net. These attacks aim at overloading services and network
infrastructures causing temporary degradation or even service
unavailability. As a consequence, targets of DDoS face mil-
lions of dollars in financial losses, reputation damage, and
legal actions [1]. In the past DDoS were typically performed
by technically skilled people, but nowadays anyone can hire
DDoS-as-a-service in the Internet through websites known
as Booter or Stresser. Anyone without advanced technical
skills can perform sequential attacks towards any target in
the Internet for as little as 5 USD [2]. The convenience of
DDoS-for-hire helps to boost DDoS popularity reflected by
the constant growth of the phenomenon since 2011 [3].

The majority of Booter customers are teenagers that attack
one another’s residential connection to gain advantage in
online gaming [4]; and most attacks from Booters typically
last up to 5 minutes and send traffic at rates up to 10 Gbps [5].
Some Booter outliers however are able to deliver significantly
more powerful attacks, e.g.,100 Gbps [3], which can cause se-
rious problems on targets that lack proper defense. It is known
that a large number of attacks is launched every day from
Booters, targeting essential services available online. Example
of these events are three noticeable series of attacks occurred in
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recent years: (i) the multiple attacks preventing tens of millions
customers from connecting to Microsoft Xbox Network, Sony
PSN, Instagram, and Tinder for several hours [6]; (ii) the
attacks against a website of an American police department,
preventing citizens from registering crimes [2]; (iii) the attack
against the Dutch online service (DigID) that stores sensitive
information of more than 10 million citizens [7].

While the Booter phenomenon has been extensively re-
ported by the media and security specialists in blog posts, it
has until now been only marginally addressed by the research
community. For example, when asked for booter, stresser and
DDoS-for-hire, Google Scholar lists works from three research
groups only; and most of the available literature is limited to
the investigation of a handful of well-known Booters, ignoring
the other hundreds of Booters that exist. We had the hypothesis
in [8] that since Booters use very similar techniques to perform
attacks [5], in theory they all have the potential to become a
big threat for the Internet. One important evidence to prove this
hypothesis was reported by Akamai [9] that affirmed Booters
as responsible for the majority of mega attacks (i.e.,attacks
that exceeded 100 Gbps) against their clients.

The mitigation of the Booters phenomenon is still a big open
challenge, and blacklists is a promising approach to address
this problem. Previous work [10] has shown that blacklist
is an effective solution to mitigate spam-relate problems by
classifying spam services, using a set of specific characteristics
of websites that offer spam as a service. We believe that such
approach is also relevant to the Booters context: Booters web-
sites share common characteristics that can be used towards
their classification and further generation of Booter blacklists.
These blacklists can be used in mitigation strategies, such as on
the identification of accesses to Booters from within a network
and forecast of potential upcoming attacks.

In this paper we introduce a methodology that uses a
set of 15 characteristics to find Booters in a list of suspect
URLSs. Our classification methodology consists of three steps.
We first collect an extensive list of suspect websites in the
Internet using a crawler implemented by us (§ II). Then
we scrape and analyze these suspect websites based on 15
characteristics (§ III). The results of this analysis are finally



used to classify whether the suspect website is an actual
Booter (§ IV). The blacklist resulted from our methodol-
ogy contains 435 Booters and it is publicly available at
http://booterblacklist.com/. To the best of our knowledge, this
is the most comprehensive list of Booters publicly available.
Although we update this list on a monthly basis, anyone can
create a list of Booters by simply following our methodology
(available at http://github.com/jjsantanna/Booter-black-List/).
SURFnet (the Dutch NREN) has been using our Booter
blacklist since 2015 monitoring the accesses to Booters from
within their network, while they have been monitoring Booter
activities since 2013. We present statistics (§ VI) on what
SURFnet has observed in terms of Booters popularity.

Our scientific contribution is the investigation of eight well-
established classification methods to design a methodology
for Booter blacklist generation. We strongly believe that it
is important to look at other domain areas to find solutions
for open problems before proposing something completely
new; and in this case, this approach worked very well. We
also propose our own machine-learning algorithm to improve
the result of the other well-established methods. (Note that
we extend our previous work in [11], in which we intro-
duced a straightforward classification heuristic based on 9
characteristics to generate Booter blacklists). In addition to
the direct contributions described above our goal is to raise
awareness, in the research community and network operators,
of the challenges and open issues that still have to be addressed
for the mitigation of Booters and their operations.

II. CRAWLER: LISTING SUSPECT BOOTERS URLS

The first step of our methodology for generating a blacklist
of Booters consists in collecting a list of URLs from suspect
websites. To do so, we developed a crawler that retrieves URLSs
mainly from search engines using three keywords relevant to
Booters: booter, stresser and ddoser. Our choice for these
three keywords derives from the dictionary of keywords used
in our previous work [11]. Although the additional keywords
ddos-for-hire and ddos-as-a-service were also used in previous
work, we observed that all URLs identified by these two
keywords were also associated with at least one of the three
other keywords.

Our crawler scrappes results of the Google search engine
as the main source for suspect URLs. Using the aforemen-
tioned keywords, our crawler is able to retrieve around 800
suspect URLs per search term. This number is a limitation
by the Google engine as the maximum number of results
per search. This number is a significant improvement when
compared to previous work [11] that was able to retrieve
around 370 suspect URLs using the Google search API In
addition to Google search engine, our crawler looks for suspect
URLs in the description of around 500 videos returned from
searches on YouTube using the same keywords, and also at
millions of posts in the Market Place section of the forum
http://hackerforums.net/. The total number of distinct URLS
collected by our crawler (considering Google search engine,

Youtube, and hackerforums.net) was 928, which is used in the
remainder of this paper.

Additional sources for searches and keywords could lead to
larger lists of suspect URLs than those that our crawler returns.
For example, we tested search engines for TOR networks
as source of information, such as ahmia.fi and torsearch.es.
However, the few URLs returned from this analysis consisted
of a subset of those also identified from the analysis of the
hackerforums.net posts. In contrast to Youtube and hackerfo-
rums.net, search engines for TOR returned duplicated results
only and are therefore not included in the set of sources of
information for our proposed crawler. Our experience suggests
that extra suspect URLs are likely to be either duplicates or
false positives (not a Booter).

The comprehensiveness and relevance of the retrieved list of
suspect URLs by our crawler is what makes it more efficient
than simply using existing crawler APIs (a list of public APIs
can be found at https://en.wikipedia.org/wiki/Web_crawler).
The source code of our crawler is available
at https://github.com/jjsantanna/Booter-black-
List/tree/master/Crawler/.

III. SCRAPPER: COLLECTING URL INFORMATION

The second step of our methodology for generating a
blacklist of Booters consists of acquiring information of each
URLs collected by the crawler (described in the previous
section). We combine the most relevant set of characteristics
found in the general literature of website classification. In
contrast to the previous approaches, however, we take all of
them into account, which provide more information to used
by the classifier (described in the next section). Our set is
composed of 15 characteristics, which are the 7 most relevant
characteristics proposed in [11] and 8 coming from multiple
works. From [11] we use the following characteristics:

P1. Number of pages: the total number of internal pages in
the website;

P2. Time span: the time span of the domain name since its
registration;

P3. DDoS Protection Service (DPS) subscription: deter-
mines if the suspect Booter website subscribes to DDoS
protection services offered by third-party companies;

P4. WHOIS private: determines if sensitive information of
a domain name (e.g., contact name, address and e-mail)
is retrievable or not using WHOIS protocol;

PS5. URL type: defined by the website’s landing page, it
indicates if the URL of the landing page is the suspect
URL itself, or if it is nested within another website, or
even within a subdomain of another general high-level
domain;

P6. Depth level: indicates the maximum amount of inbound
hyperlinks to reach any internal page within the website;

P7. Terms of services page: indicates whether the website
contains a page disclaiming the rules to use the service.

The other 8 characteristics we use and their respective
source are:



TABLE I: Relevance of each of the 15 characteristics using a dataset of 928 URLs (113 Booters).

Normalized values Normalized
ID Description Booters Non-booters Booters Non-booters | Odds ratio Odds ratio
P1  Number of pages 7.88 981.75 0.93 0.23 40.97 1.00
Al  Outbound hyperlinks 0.41 14.10 0.84 0.19 22.83 0.56
P2  Domain age 395.96 3564.29 0.78 0.14 22.19 0.54
A2 Page rank 1.1x107 3.2x108 0.90 0.30 20.93 0.51
A3 Content size 127.00 679.08 0.70 0.16 12.26 0.30
P3  DPS subscription. 0.73 0.21 0.71 0.21 9.07 0.22
A4 URL length 24.93 53.65 0.36 0.07 7.00 0.17
P4  WHOIS private 0.73 0.28 0.71 0.29 5.98 0.15
PS5 URL type 1.04 1.20 0.96 0.80 6.00 0.15
A5  Domain exp. time 310.93 812.22 0.90 0.61 5.77 0.14
P6  Depth level 0.92 1.75 0.87 0.57 5.03 0.12
A6  Content dictionary 0.039 0.014 0.49 0.24 3.00 0.07
A7  Login-form depth level 1.38 2.06 0.52 0.27 2.92 0.07
A8  Resolver indication 0.22 0.19 0.24 0.19 1.39 0.03
P7  Terms of services page 0.47 0.44 0.47 0.44 1.13 0.03

Al. Outbound hyperlinks [12]: indicates the amount of
outbound hyperlinks (pointing to other domains);
Alexa rank [13]: the website rank within Alexa world-
wide ranking (http://alexa.com);

Content size [14]: number of words of the visible
content in the landing page;

URL length [14]: the number of characters in the URL
excluding the domain name;

Domain expiration time [15]: time span between the
current date and the expected expiration date for the
URL’s domain name;

Content dictionary [15]: defined by the ratio between
the number of matching words to our defined keywords
(§ II) and the content size;

Login-form depth level [16]: number of links required
to reach the login form (every Booter website contains
a login form);

Resolver indication [17]: determines whether a website
has a service that reveals IP addresses of target systems
based on, e.g., the domain name, a Skype account or an
online game account.

A2.
A3.
A4.

AS.

A6.

A7.

AS8.

To determine the relevance of each of the 15 characteristics
we use a list of 928 suspect URLs collected using our crawler
(described in the previous section). From a manual analysis,
we identified 113 URLs from this list as being actual Booters.
Although very labor, this classification must to be manually
performed to guarantee the quality of our training dataset
(as ground truth). We then scrape each of the Booter URLs
collecting data related to each characteristic of interest. Finally
we determine the characteristic relevance using the odds-ratio
metric [18], commonly used to define weights of character-
istics between two different elements. We use the odds-ratio
metric to find characteristics that are more likely to be related
to Booters than to other websites. For example, consider a

list of 100 suspect URLs from which 40 are actual Booters;
and that 35 of these Booters have a terms of service (ToS)
page, what only 12 of non-Booter websites have. The higher
ratio (7 : 1) of ToS presence in Booter websites compared
to the lower ratio (0.25 : 1) in other websites indicates that
the ToS page is a characteristic more relevant to Booters. For
this example, the final value of odds-ratio for ToS page is 28
(7/0.25).

Table I shows the relevance values for the 15 characteristics
for determining if a suspect URL is a Booter website. The
values in the left half (PART I) are the average result of
scrapped values and the normalized values for each char-
acteristic. (Normalization is important due to the different
scales among the characteristics.) The right half (PART II)
shows the odds-ratio and respective normalized values. The
last column indicates the order of the characteristics, from
the most important (highest normalized odds-ratio) to the
least important (lowest). From the normalized odds-ratio we
observe that characteristics from [11] (normal font in Table I)
and those from other sources (italic font) intercalate in terms
of relevance. Therefore, we use all the 15 characteristics in
the classification approach (§ IV).

The source code of our scraper was merged with
the crawler for optmization purposes. It was intended
to collect the information of each URL at the
moment that a URL is found. The source code is
available  at  https://github.com/jjsantanna/Booter-black-
List/tree/master/Crawler. Note that Booters can potentially
change their characteristics. However this change can be easily
addressed as the source code is available and modifications
are straightforwards to be made.



IV. CLASSIFIER: DETERMINING BOOTER WEBSITES

The final step of our methodology is the classification of the
potential Booter websites found through the previous two steps
(§ II and § III). There are many well-established classification
methods that can be use to classify Booter websites (e.g.,the
ones proposed in [19], [20], [21]). There is not a single
classification method that succeed for all the cases. In this
section we evaluate the best classification method among 8
well-established. Firstly (in § IV-A) we describe metrics used
to measure classification accuracy, which we apply in our
analysis (in § IV-B) to define the best classification method
for Booters.

A. Classification Accuracy Metrics

The accuracy of a classification approach is measured in
terms of successes and errors typically given in a confusion
matrix [12]; this matrix implies that a URL is classified in one
of the following groups:

o True positive (1p): when a website is correctly classified
as a Booter;

o True negative (7): when a website is correctly classi-
fied as a non-Booter website;

« False positive (F'p): when a non-Booter website is in-
correctly classified as a Booter;

o False negative (Fy): when a Booter website is incor-
rectly classified as a non-Booter website.

The classification success is defined by the Classification
Accuracy Rate (CAR) given by

CAR=(Tp+Tn)/n (D)

where n is the total number of tested websites. The misclas-
sification (error) rate is given by the false positive error rate
(F'P.;) and the false negative error rate (F' N.,), which are
given by

FP.. = Fp/n )

and, respectively
FN.,. = Fn/n 3)

where F'p is the total number of false positives and Fly the
total false negatives.

B. Towards the Best Booter Classification Method

To determine the best classification method for Booter
websites we analyze the 8 most used methods from the
literature of website classification. Our goal is to define
which of them provides the highest CAR. Five of these
methods are distance metrics: Euclidean distance [19], squared
Euclidean distance [22], Manhattan distance [20], Fractional
distance [23], Cosine distance [21]. We include the k-Nearest
Neighbors (k-NN) [21] and the Naive Bayes [14] classification
methods to our investigation. Finally, we propose a supervised
machine learning algorithm to improve the results of the best
method among the previous described.

The distance metric methods aim at classifying a vector
o, which contains a set of n dimensional features, based on

another vector p' that contains a perfect set of features. When
the distance between the two vectors is smaller than a defined
threshold, the vector v is classified positively, otherwise nega-
tively. Not that when we use distance metric we want to meet
the following objective function

max CAR

min FP,, | FP,, < FN,, “)

Fo(threshold) = {
where the ‘threshold’ is such that vector v and p have the
highest CAR and lowest F'P,,.

For our study on Booters, vector ¢’ is a new list of 465
suspect URLs and their respective 15 characteristics (collected
using § II and § III); vector p'is our trained data and is based
on the characteristics of 928 URLs (previously presented in
Table I column ‘normalized values’ of ‘booters’). To be able
to calculate CAR, F'P., and F N, we manually analyzed
the 465 suspect URLs and observed that the set contains 140
Booters and 325 other websites.

For the analysis of each one of the 5 distance metric meth-
ods we vary the threshold from 0 to 1 (steps of 0.01). Then,
for each value of the threshold we look at the resulting CAR,
FP,. and FN,.. The results of the analysis are presented
in the left graphs of Figure 1 called as unweighted analysis.
Additionally, we repeat the experiments multiplying weights to
vector . The ‘normalized values’ of the ‘odds ratio’ in Table I
were chose as weights. We perform this additional analysis
to determine the gain in terms of accuracy of a weighted
approach over an unweighted one. The results of the weighted
analyses are presented in the right graphs of Figure 1.

In Figure 1 the variation of the threshold generates the
same two patterns in all the classification methods. The first
pattern C' AR increases with the threshold value. The second
pattern C'AR increases proportionally to the decrease of F'P,,.
Both patterns have an exception when F'N., > 0. From this
point CAR has a turnaround and starts decreasing. For this
reason in all the graphs the value of threshold that best fits
the objective function is right before F'N., equal to FP,,
(depicted in Figure 1 as a vertical line). Weighted approaches
achieve better results in all methods than the unweighted ones.
For example, the Cosine distance in the unweighted approach
reaches the optimal threshold (0.78) for CAR, FP,., and
F'N,, equal to, respectively 0.914, 0.049 and 0.037; and for
the weighted approach the optimal threshold (0.95) is reached
with 0.944, 0.022 and 0.034.

Among all the distance metrics, Manhattan achieves the
best result for the unweighted approach, and Cosine for the
weighted (highlighted in Figure 1 in a gray background). We
also present the best results of CAR, F'P., and F' N, for both
the weighted and unweighted approaches in Table II. This table
is sorted by the highest C AR of the unweighted approach.

Besides the results for the distance metrics Table II also
summarizes the results of the others classification methods
(k-NN, Naive Bayes and machine learn). Differently from
the distance metrics the inputs for the k-Nearest Neighbors
metric are defined using actual distance metrics. Another
difference is that k-NN requires an empirically value for k,



TABLE II: Summary of results for the distance metrics.
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Fig. 1: CAR, FP., and F N, generated for different dis-
tance metrics and different threshold values; highlighted (in
gray background) the best approaches for the weighted and
unweighted approaches, Cosine and Manhattan respectively.

machine learning algorithm in Algorithm 1.

The main goal of the algorithm is to updates weights
towards an optimal weight vector. The inputs are the vectors
¥ and p, which is multiplied by the vector & to calculate the
original CAR, F'P,,., F N,,. The values of vector w are the



Algorithm 1 Weight adaptability learning

in: v, p,w,CAR, FP.,, F N,
in: max_interactions, u, o

out: W ,CAR',FP,. FN,,

procedure WEIGHADAPT2ABETTERCAR (input,output)
while (i < max_interactions)||(CAR = 1) do
for i = 0 to len(w) do
w'[i] + w[i] * rand_gauss(u; o)
end for -
CAR',FP..,FN., < cosine_dist(¥,p,w’)
if CAR' > C AR then
CAR + CAR'
end if
end while
end procedure

TYRRINE RN

—_—

‘normalized values’ of the ‘odds ratio’ in Table 1. During every
algorithm interaction the weights are multiplied by a random
number within a Gaussian function with mean p = 0.5 and
standard deviation o = 0.5, generating a new weight vector
W’ (line 4). The values of 1 and o are such to force the new
vector W’ stays in the interval |0, 1], which is the interval of
the original weights w. After generate w’ the new values of
CAR,FP,,.,FN,, based on Cosine distance (line 6). Then
CAR assumes C AR’ if a better value is found. The algorithm
runs until CAR achieves the highest possible number (i.e., 1)
or until the number of max_interactions is reached. We
decided to run one thousand times expecting the best value
to be reached before this value.

In the 824 iterations of the algorithm, we obtain the follow-
ing optimal weights

[1,0.4,0.3,0.47,0.21,0.32,0.17,0.19,
0.16,0.18,0.13,0.1, 0.04, 0.04, 0.03] (5)

w =

where the order of elements follow the order of the 15
characteristics in Table I. That is, the first element of the vector
' corresponds to the weight of the number of pages, and the
last element to the ToS page.

The conclusion of our analysis (summarized at Table II)
is that the Cosine Distance metric is the best one to classify
Booter websites based on the 15 characteristics (§ III). Using
the optimal weights vector 117’, and threshold of 0.95, the
Cosine Distance achieves a classification accuracy of 95.5%.
Recently using the Cosine Distance and the vector w' to clas-
sify 10K URLs resulted in only 7 false positive occurrences,
while all the 160 reachable Booters were classified correctly. In
this recent experiment our classification accuracy was almost
100%. More experiments must be done to determine the
stability of our approach.

The source codes of the methods presented in this sec-
tion, including the machine learning algorithm, are pub-
licly available at https.://github.com/jjsantanna/Booter-black-
List/tree/master/Classifier/.

V. RELATED WORK

Our work in [11] was the first one to investigate methods
for generating Booter blacklists. In such work we used a set
of 9 website characteristics to classify suspect URLs based
on a classification heuristic. Instead of increment our heuristic
defined in the previous work, we investigate which well-known
classification approaches is the most suitable for Booter clas-
sification, which improved the accuracy of our classification
approach from 85% to 95.5%. In addition, compared to [11]
we reduced the number of search terms used to gather suspect
URLs, from a larger number of sources (search engines,
YouTube and hackerforum.net).

There are many papers that address the generation of
blacklists within other areas, such as intrusion detection, spam,
phishing and child pornography. Most of them rely on data
classification for improved accuracy. For this work (§ IV)
we surveyed several classification methods, highlighting those
that could potentially be used for the Booters case, named:
Euclidean distance [19], [24], Squared Euclidean distance [22],
Manhattan distance [20], Fractional distance [19], [23], Cosine
distance [20], K-Nearest Neighbors [21], [25], [26], and Naive
Bayes [14], [15], [25], [13]. From all the studied methods
Support Vector [27], [28], Hamming distance [29] and Genetic
Algorithm [30] were not tested in our classification investiga-
tion. However, we consider these three methods as a future
work opportunity to improve our classification accuracy.

There are papers related to Booters that are not related to
blacklist generation. Historically, first, there were two papers
[2], [31] that described characteristics of TwBooter, which
was a Booter that called too much attention of security
specialists. In those papers they brilliantly analyze TwBooter
leaked database containing information of the attack infras-
tructure, customers, and victims. The authors also introduced
the methodology based on hiring Booter attacks to understand
their characteristics. Almost at the same period we published
a positioning paper [32] describing how we consider the
Booters’ phenomenon should be addressed over time. In that
paper we also introduced the idea of a Booter crawler and
a manual classification, which lately resulted in the paper
described in the first paragraph of this section [11].

In the same year that we published [11] we scrutinize the
characteristics of attacks provided by 14 different Booters [5].
We also performed a thorough analysis of 16 databases of
Booters that were hacked and appeared publicly available at
pastebin.org [4]. Very similar to this previous two papers there
is the work in [33] and [34], both combined the analysis of
attacks and database. While in the first there is not much nov-
elty, the latter presented an impressive payment intervention
conducted in collaboration with PayPal and the FBI, which
minimize the financial operation of 23 Booters.

Differently from attacks and database analysis there is the
work in [35] that use criminology theory to explore how and
why offenders begin providing booter services. There is also
our positioning paper in [8], in which we argue that by observ-
ing how Booters perform attacks we must to be prepare for



future attacks that would potentially “bring down the Internet”.
(Un)fortunately our observation are coming true. Accordingly
Akamai [9] the majority of mega attacks (i.e.,more powerfull
than 100 Gbps) have Booters as responsible, while a few
years before Booters were restrictively responsible for 10 Gbps
attacks and lower.

Finally, related to Booters investigation in general (and
not related to blacklist generation), there are dozens of blog
posts written by Brian Krebs at http://krebsonsecurity.com.
This journalist is undoubtedly one of the main investigators
about the Booters phenomenon. His investigation skills and
his freedom to write privacy sensitive details makes his blog
posts unique and insightful.

VI. BOOTER BLACKLIST USAGE

The blacklist of Booters available at
http://booterblacklist.com/ is public and periodically
maintained by us. This blacklist can be used by anyone
to, e.g filter traffic or simply monitor Booter operations
within a given network.

In this section we analyze the dataset from an actual deploy-
ment of our Booter blacklist. SURFnet (the Dutch NREN) has
been seeing many daily (small and large) DDoS attacks to and
from network in their domain; and many of these attacks are
known to be from Booters. Using our Booters blacklist they
are (since June 2015) monitoring the access to Booters from

Most accessed Booters (from top 10 Booters in Q1, Q2, and Q3)

within their network. This monitoring is running for almost a
year, and we present next some statistics of what they see.

Measurement dataset. The results presented in this section
are based on the monitoring of Booters access across one year
at SURFnet. In short, SURFnet records information about who
is accessing which Booter (based on DNS records). During
this measurement period, we see more than 4.7 K accesses
from 441 SURFnet users to 345 Booters; the daily average of
is 53 accesses to an average of 14 different Booters. All the
scripts used to perform the analyses in this section is available
at https://github.com/jjsantanna/booterblacklist_use_cases.

Figure 3 shows the statistics of the most accessed Booters.
Firstly, in the top plot we present the monthly number of
access per Booter (within the top 10 in three different 4-
month periods, a quarter) during the measurement period from
June 2015 to May 2016. Clearly two Booters detach from
the others: booter.xyz and mostwantedhf.info, with a monthly
median number of accesses of 186 and 147 respectively.
For all other Booters there were eventual peaks on number
of accesses, such as around 200 accesses on Nov 2015 to
ipstresser.com.

The three middle plots of Figure 3 show the top-10 most
accessed Booters in a quarter. A first observation is the remark-
able increase on the number of accesses from Q1 compared to
Q2 and Q3; in Q2 the top-2 most accessed Booters accounted
for 2.5 times more accesses than in Q1. These plots also show

400
%88 —— booter.xyz.
250 —@— mostwantedhf.info.
200 .
%88 A— inboot.me.
50 —%— powerstresser.com.
? —@— ipstresser.com.
2016 —A— titaniumstresser.net.
1000 Q1 [Jun/Sep] 1000 Q2 [Oct/jan] 1000 Q3 [Feb/May] % iddos.net.
— T T T T T T T T T T — T T T T T -9 xplodestresser.pw.
--@-  ragebooter.net.
—— ipstresstest.com.
—&— vbooter.org.
AN purestress.net.
Ye ¢ EEQ D 30 E YL EDPD L@ E E E N 2YQ EDEEE 2 E |—* quezstresser.com.
xc Eo6coccc@c o X c 66 c £Ec 606 o xEc o606 o0Go
[ T R I S S [ S R C e =2 Yo Q9o s 0 (- bootd4free.com.
Q€ O < v 0 o g ] 05009 uH sda 0 Qc 0L s d 8 )
5T 8 0 auTuas D 5T 86388 ¢P gy 2935 88382 4§35 |-a ragebooter.com.
oL cuvuwol oy 68 wolR ¢ g B ux S c 8 v on g oT Yy
ac =905 = 2 c 9o =3 a8 oY a-=¢c 999 97D o |[-*- vdos-s.com.
© 5 5 0 n o g c & > L U & 0 c 5 > 59 > a .
z 28 $5 z 2 2E5R 8 =2 393 X |- ddos.city.
f= o 25 B eq =l 25 i a F=l| 22 o
8 2 = s 2 3 2 3 =] < --@-  expokent.com.
€ S o x £ 53 g s
10* b
T
5 I Overall
10 Il Ql
10? / Q2
N B Q3
10 L L
NG} g £ > £ k] £ © £ 2 @ € Z 1S ko] € 1S
X c £ o S 1) c o c 1) a c o S ) c o o
I = o © & © % C o © = = N 5 © % < ©
o = o o o o o I o o Q I} o 0 4 a o w
9 o [} f} [} S 0 = O [ 0 [0 ] c [} Q |
o ° a 0 o 0 o] o Q 0 ] ® ° ] el = ")
o Q c 0 o Il i) + o [ [ F] 0 kel ~ =) o o
kel € = [ o 9] A o) < s = [J) ° 0 IS} °
5 > =] o [3} 8 4 @ = a g Q >
g @ ] = o S @ = 1] x ] 23
= e P 2 & <o § 5 9] o 2 &
o g_ = - c (33 -
€ x £ 3
S

Fig. 3: Monthly number of accesses to the most accessed Booters (top plot) during the whole measurement period; the top-10
most accessed Booters per 4-month period (middle plots); and the aggregation of the access per 4-month period of the most

accessed Booters (bottom plot).
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Fig. 4: CDF of the number of distinct Booters accessed by
users and the number of accesses by the top-10 users (and
the share of accesses for each Booter—identified in different
colors.

that there is a variation among the most accessed Booters over
time. Although booter.xyz is the most accessed Booter across
all measurement period, vbooter.org that did not rank among
the top-10 in Q1 appears as 4th most accessed in Q2 and fifth
in Q3; and inboot.me ranked third in Q1 drops to sixth in Q2
and later becomes the second most accessed in Q3. In Q3,
the last four months of measurements, three Booters from the
top-10 most accessed were not observed in Q1 and Q3.

Finally in the bottom plot of Figure 3 we reinforce the
observations of the middle plots. In this plot we aggregate the
occurrences of Booters per quarter. This aggregation reveal
clearly the Booters that were the most accessed (top 10) but
appeared only in one of the 4-months period. Note that the
top 10 overall (blue bar) are the ten most accessed Booters
over the entire measurement period (one year). Such overall
hide the other Booters that are becoming more popular, for
example the ones that appeared only in the Q3.

Figure 4 shows the access statistics for the top-10 users (/24
IP blocks) that most accessed Booters. All these users accessed
many Booters during the measurement period, but the figure
indicates that users definitely have preference for a handful
of Booters. All users (except number 2) mostly accessed the
Booter booter.xyz.(yellow); this Booter accounted for half of
the accesses from user 3. The other two most accessed Booters
mostwantedhf.info (pink) and inboot.me (blue) followed in
order of preference (what is in line with results from Figure 3).
These three Booters accounted for an average of 48% of all
accesses from the top-10 users.

We present the CDF of distinct Booters accessed per user in
Figure 4 to shows that half of all users (62% users) accessing
Booters in the measurement period accessed at most 4 distinct
Booters. This low number of accessed Booters is because
around 40% of users accessed a single Booter only (one
or multiple times). The CDF shows that roughly 20% of
users accessed 10 or more Booters and that very few users

(< 1%) accessed 30 Booters or more, for example as the ones
presented in the inner plot.

The analysis of access to Booters does not necessarily tell
us if an attack was ordered. However, it does shed a light
on the initial understanding of the relationship between users,
which are potential customers, and Booters. By investigating
users that access Booter SURFnet together with the Dutch
cybercrime unit police successful found and prosecute users
that launched attacks. As future work we plan to combine this
dataset to DDoS events known to be launched from Booters,
and establish a pattern between user behavior and effective
Booter hiring.

VII. CONCLUSIONS

The DDoS-for-hire phenomenon has been gaining in pop-
ularity and attacks from Booters are becoming a daily threat.
However, the power of this phenomenon has been underes-
timated and only a handful of academic work, led by two
research groups, have addressed this problem. In addition,
despite these research efforts, previous work has mainly
focused on a few known Booters only, overlooking how
large the whole phenomenon can be. In order to pave the
way for more comprehensive research on Booters and fur-
ther mitigation of this threat, in this paper we proposed a
thorough methodology to identify them. The methodology
presented in this paper goes from crawling the Internet for
suspect URLSs to classifying these URLs and finding as many
Booters as possible. Our methodology is easily extensible
(in terms of key-words, characteristics, and classification
methods) given that the source code is publicly available at
https://github.com/jjsantanna/Booter-black-List.

An important note is that Booters are (so far) easy to find
by general Internet users, via a Google search for exam-
ple, and not hide in the dark web. Therefore, our proposed
methodology does not facilitate the discovery of Booters in
the web. Our methodology does not disclose any privacy
related information as it works by using URLs and DNS
information, which is all public. Another note is that there
is the possibility of Booters in others languages (e.g.,Russian
and French), however by following the goal of Booter owners
(i.e.,earn money by attracting more customers in the public
Web) the great majority of them are found in English.

As future work we aim to investigate other classification
metrics such as hamming distance, logistic regression, and
support vector machines, which can potentially improve the
classification accuracy.

With the work presented in this paper we wish to encourage
initiatives such as the one of SURFnet (§ VI). We wish our
methodology to support large scale operations to mitigate
Booters and their business. For example, that of Paypal on
breaking the payment link between Booters and their cus-
tomers, causing the number of attacks from Booters to re-
duce [34]; the operation resulting in the prosecution of Booter
owners convicted of cyber crimes [36]; and the operation
resulting in the prosecution of Booters’ customers [37].
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