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Abstract—Automated network traffic analysis using machine
learning techniques plays an important role in managing net-
works and IT infrastructure. A key challenge to the correct
and effective application of machine learning is dealing with
non-stationary learning data sources and concept drift. Traffic
evolves overtime due to new technology, software, services being
used, changes in user behavior but also due to changes in
network graphs like dynamic IP address assignment. In this
paper, we present an automatic online method to detect change-
points in network traffic based on IP flow record analysis. This
technique is used to segment an observed behavior into smaller
consecutive behaviors differing one from another. The segmented
traffic is used to learn small communication profile characterizing
accurately the activities present between two observed change-
points. We validate our method using synthetic data and outline
a real-world application to botnet hosts behavior modeling.

I. INTRODUCTION

Network management and intrusion detection systems heav-
ily rely on automatically identifying communication behaviors
[1], [2]. To keep up with new malware and changing usage
patterns, models and detection rules must be updated regularly.
The network traffic generated by a machine evolves overtime
depending on its current activity e.g. different attacks (denial
of service, malware spreading, scan, command-and-control,
etc.) performed by a malicious host. Applying machine learn-
ing to the whole network traffic observed leads to build one
model representing several activities and does not give a fine-
grained representation of the communication behavior. A key
assumption in machine learning algorithms is the stationarity
of the data source [3]. In practice, concept drift, i.e. the
relationship between input and desired output, is changing
over time and needs careful treatment. However, identifying
a change, e.g. to relearn models, is not straightforward and is
often done every predefined time period without considering
changes in input data.

To learn fine-grained communication profiles representing
single activities and to cope with concept drift, we propose
a technique to detect changes in communication behavior. It
relies on a change-point detection algorithm that can identify
when a drift affected the input data and aid the decision
to learn a new model [4]. An example application is for
monitoring incoming honeypot traffic and detect the different
attacks performed. We can easily isolate the traffic corre-
sponding to one given attack in order to extract an accurate

signature that can further be applied for the detection of this
specific attack. Learning signatures from specific, well-defined
malicious activity reduces the chance for false alarm when
applied in intrusion detection.

Several conceptual approaches have been identified for con-
cept drift and change-point detection [4]. The methods, often
coming from statistics, have been applied to various problems
in networking individually, e.g. detection of SYN-flood attacks
[5], DoS attack [6] or network traffic behaviors [7] using the
CUSUM algorithm. These methods often consider a single-
feature time series and need to be aggregated for multiple
features. Anomaly detection in networking is often seen as a
change-point identification problem, see e.g. [8]. Within finite
state machine learning, [9] presents a change-point detection
method leveraging a similarity threshold on the probability
distributions of the automaton transitions. In contrast with
previous work, our approach clusters the continuous traffic
flow of a given host in different segments corresponding
to its different activities over time, working on aggregated
features, rather than interpreting change-points in individual
features as indicators of a specific activity itself. We show
that it is particularly relevant, but not limited, to automata-
based algorithms. This class of algorithm has been successfully
applied in traffic analysis and malware detection [10], [11],
[12] and is used as the basis to apply our clustering technique
on IP flow records.

To summarize the contributions of this paper:

• We introduce the concept of freshness, an indicator to
identify new observations in data and use it to detect
change-points in network traffic.

• We present how to use freshness computation on unla-
beled IP flow records to cluster the traffic generated by
a host according to its different activities overtime.

• We validate this clustering technique on synthetic and
real-world data to model the different behaviors of botnet
hosts.

The remaining of the paper is organized as follows: Section II
provides background knowledge about finite states machine
learning. Section III introduces our solution for detecting
change-points in communication profiles built from finite state
machines. Section IV and V present experiments and their
evaluation. We conclude in Section VI.
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II. BACKGROUND

A. Probabilistic Deterministic Finite Automata (PDFA)

Finite state automata are a type of automaton model often
used to describe computation and processes in a formal way.
We use finite state automata with probabilities, called proba-
bilistic deterministic finite automata (PDFA). Introductions to
the field of automaton theory can be found in [13] and [14].
A Probabilistic Deterministic Finite Automaton (PDFA) is
quintuple A = 〈Q,T,Σ, q0, P 〉 where Q is a finite set of states,
T : (Q,Σ)→ Q are labeled transitions with labels drawn from
an alphabet Σ, q0 ∈ Q is the start state. The probability matrix
P gives the probability of observing event a ∈ Σ in state q
by pa,q . A PDFA starts in the start state q0 and generates
strings by traversing transitions and drawing events using P .
For example, the probability of generating abc is given by
pa,q0pb,q1pc,q2 where q1 = T (q0, a) and q2 = T (q1, b). Figure
1 (right) shows the graphical depiction of an automaton with
4 states represented as nodes and 5 transitions represented as
directed edges. Edges labels l describe the transition symbol
l ∈ Σ. Transition probabilities are omitted in the figure.

B. State-Merging Algorithms

Inferring a PDFA from a given set of observations is the
task of finding a PDFA accepting the words representing
the observed behavior. State-merging algorithms [15] outper-
formed other approaches in learning competitions [16]. For a
set S+ of observed input behaviors, encoded as words over
an alphabet Σ called the input sample, the goal is to find
a (non-unique) smallest PDFA A that is consistent with S+.
To be consistent with S+, a PDFA needs to satisfy a type
of Markov property: for every prefix s ∈ S+ that reaches
the same state q in A, the sample probabilities of future
suffixes P (s′ | s) = count(ss′)/count(s) of the states are
not significantly different. State-merging algorithms typically
start from a a tree-shaped PDFA A constructed from the input
sample S+, called augmented prefix tree acceptor (APTA).
Figure 1 (left) shows a prefix tree for a small input sample.
It contains all samples from S+ in a directed graph, using
the symbols of the samples in S+ as labels for the edges.
Two samples share a path if they share a prefix. A state
merging algorithm reduces the size of the automaton iteratively
by reducing the tree through heuristically merging a pair of
states in A. This reduces the size of the automaton (number
of states), and introduces loops which generalize the model
beyond the input training sample. Too much generalization
introduces false positives, too little leads to many false neg-
atives. Figure 1 (right) depicts the automaton after a state-
merging operation.

III. BEHAVIOR CHANGE DETECTION AND CLUSTERING

A. Building Communication Profiles with PDFA

Our goal is to extract key behaviors from IP flow records
using features listed in Table I that are extracted from each IP
flow. We use the notion of communication profile, previously
presented in [17], to reduce IP flow data into a compact

Features Description Values
protocol transport protocol of the flow categorical: tcp, udp, etc.
time time since previous flow started timestamp
duration duration of the flow time in ms
pakets Count of packets exchanged numerical
dataexc Amount of data exchanged numerical, in KB
datarec Amount of data received numerical, in KB

TABLE I: Features of IP flow records. Hosts of interest
are filtered by IP address and remaining fields are input for
learning. Time is used to aggregate sliding windows.

Fig. 1: Left: a prefix tree for a dataset containing the words
{231, 231.615, 231.374, 111, 121}. States contain occurrence
counters. Transitions are labeled with the symbol firing them.
Right: an automaton obtained by merging the transitions 615
with the root and 374 with the state lead to by 121.

snapshot describing an observed behavior over a time period.
Formally speaking, a communication profile is a PDFA learned
from sequences of IP flow records as described in Section II.

To obtain input words for PDFAs from IP flow records,
we follow the approach presented in [17] to convert each
IP flow record into a discrete symbol. Each numeric feature
of a record, as given in Table I, is put into a discrete bin
and represented by the bin number. We use percentiles as
bin boundaries, e.g. using 25-percentile ranks we create four
bins (labeled [0, 1, 2, 3]) and calculate feature values such
that 25%, 50%, 75% and 100% of the data fall below. For
categorical values (protocol), we assign each feature value a
unique number. The symbolic representation of an IP flow
record is the concatenation of the values for all its five
features (excluding time) and represents a letter e.g. 01323.
All flow representations starting within a short, fixed time are
concatenated by sliding a window over the recorded flows,
incrementing the start of the window one flow at a time.
The input for a communication profile then is a sequence of
symbols forming a window.

B. Measuring Information and Detecting Change Points

To handle data sources that evolve overtime, it is necessary
to detect changes in their observed behavior. In our case, the
data is IP flow records. The detection can either happen before
encoding as in Section III-A, or after. We chose the latter,
as it allows to observe all relevant features at the same time
and ensures that observed changes in behavior are relevant
to the learning algorithm. Formally speaking, we observe the
joint distribution over all features, rather than the individual
distributions.



The prefix tree is created from the dataset by inserting a state
between each symbol of a word, and introducing a transition
for each symbol in each sample to connect the states. Words
with common prefixes share states and transitions. To measure
the amount of new data in a sample with respect to a given
prefix tree, we calculate how many new transitions are created
versus the number of transitions present in the APTA. The
number of new transitions created measures the longest suffix
of the sample, not yet contained in the ATPA, and tells us
how new the information in the sample is. Formally, for a
given APTA A and a word w, the ratio ∆ = JwK

|w| is called
the freshness of w with respect to A. JwK is the number of
transitions newly created in APTA A when adding the sample
w and |w| is the length of w (total number of transitions) in
APTA A. J·K denotes the length of the word w minus the length
of its longest prefix in A. When w is a set, we define JwK =∑

wi∈sJwiK as the sum of states created from the samples in
the set, and |w| as Σv∈w|v|. The freshness ranges from 0 to 1.
Low values indicate that the input sample already has many
duplicates or long prefixes in the APTA.

The freshness of the set {121, 111, 231, 231.615, 231.374}
with respect to an empty prefix tree is calculated as follows.
There are 7 transitions in total. Only the words 231, 231.615
and 231.374 share one transition, so there are 5 unique
transitions, and the single shared prefix is 231. The freshness
therefore is 5

7 . The freshness with respect to the prefix tree in
Figure 1 (left) is 0, as all data of the set is already in the tree.

C. Clustering using Freshness

The freshness is used to divide the input dataset into mul-
tiple segments along the identified change-points: It measures
redundancy in observed data. The freshness is not a monotone
and falling function, but for redundant and repetitive data, it
decreases. It can be used as an indicator for clustering. A
period of monotone falling freshness with low values indicates
redundant observed data, indicating the lack of new behavior.
Subsequent increases in freshness, and extreme values indicate
new information contained in the input data. By identifying
these changes we can determine when the behavior of a host
changes by introducing new, different behaviors.

IV. EXPERIMENTS

A. Datasets

We use data from two different sources to validate our
approach. To validate the concept of freshness, we analyze
synthetic IP flow records generated using the fs flow-level
traffic generator [18]. It allows to generate homogeneous
network traffic presenting a given characteristic. Table II lists
the four activities with distinct traffic patterns created for the
experiments (Synthetic X). A second dataset is composed of
publicly available real-word botnet traffic and is represented as
two scenarios [19]. Scenario 10 contains 106,316 malicious
flows from botnets and 18,565 benign flows from clean hosts
among 5,180,852 flows in total collected over 4.75 hours for
ten infected hosts. Scenario 11 contains 8,161 botnet flows

Name Type #flows duration
Synthetic 1 normally distributed 19,241 15min
Synthetic 2 short TCP flows 41,620 15min
Synthetic 3 variable rate UDP flows 23,771 15min
Synthetic 4 SYN flood 87,121 15min
Scenario 10 UDP flooding / ICMP spam 5,180,852 4h15min
Scenario 11 botnet traffic 40,836 15min

TABLE II: Flow captures. Synthetic X represents traffic syn-
thetically generated. Scenario X represents botnet hosts traffic.

among 40,836 flows in total collected over 0.26 hours for three
infected hosts.

B. Data Preparation

We extracted words from the IP flow traces using the strat-
egy presented in Section III-A. Bin boundaries were calculated
on an initial segment of the data using percentiles in 25%-
steps (4 bins). This initial segment of data was discarded from
any further experiment to prevent any knowledge transfer. All
flows irrespective of their duration, starting within a fixed time
period (time window) are aggregated. Windows are advanced
on a per-flow level i.e. a new word is computed for every new
starting flow.

C. Change-points and Cluster Identification

We observe two indicator values based on freshness. First,
the freshness of the overall dataset, indicating the redundancy
globally. Second, the freshness of the last update containing
10% of the dataset with respect to the APTA created up to the
update. This indicates how much new information was in the
last update. Between two minima in the freshness, we learn
a communication profile using the dfasat software package
[20]. The obtained communication profiles indicate whether a
given sequences of IP flow records agrees with its associated
segment of the data or not by accepting or rejecting a sequence
of IP flow records aggregated into a window.

V. RESULTS

A. Behavioral Clustering

The freshness computation is used to identify different
network activities in a single IP flow capture as presented in
Section IV-C.

1) Synthetic Datasets: The synthetic traces from Table II
are appended to produce single traces of different activities.
Table III presents the combinations used for experiments e.g.
Synthetic 1-2 means one capture containing Synthetic 1 flows
followed by Synthetic 2 flows. Figure 2(a) shows the freshness
evolution (overall and last update) in Synthetic 3-1-4 traffic.
We observe two minimas in last update freshness at 20%
and 60%, indicating two changes in the underlying network
activity. In contrast, we can observe that the overall freshness
is not a good indicator of activity change with no abrupt
variation in this plot. Table III presents as well the count of
network activities in the different synthetic captures and the
count of activities we identified using last update freshness
computation, which shows a 100% identification rate.



(a) (b) (c)

Fig. 2: Freshness evolution for Synthetic 3-1-4 (a), Scenario 11 (b) and Scenario 10 (c). The plain line shows the freshness of
the first x% of the dataset with respect to an empty APTA. The dashed line shows the freshness of the last update containing
10% of the data with respect to the APTA at point x. Figure (a) presents three different activities, (b) one and (c) two, separated
by the minima observed in last update freshness (red vertical lines).

Experiment Activities present Activities identified
Synthetic 1-2 2 2
Synthetic 1-3 2 2
Synthetic 3-1-4 3 3
Scenario 10 2 2
Scenario 11 1 1

TABLE III: Count of labelled different activities in the traces
and activities identified by clustering using freshness.

2) Botnet Dataset: Figures 2(b)(c) show the freshness
evolution for the botnet dataset. Figure 2(b) shows a single
behavior in Scenario 11 with fluctuating global and local
freshness, but no clear extreme values. Figure 2(c) shows one
minimum around 40%. According to the dataset description,
the botnet first started UDP flooding followed by ICMP spam
with increasing bitrates. The change in protocol together with
the bandwidth increase causes to extract longer windows with
different symbols, leading to the spike in last update freshness
at around 60%.

The global conclusion of this experiment is that the fresh-
ness is efficient at distinguishing different activities in network
traffic for both synthetic and real-world data. However, we
must consider the freshness computed with respect to the
APTA under ongoing generation i.e. last update.

B. Cluster Communication Profiles

By using the freshness as a change-point indicator, we split
the dataset of malicious botnet flows into clusters. On each
cluster we learn a PDFA as a communication profile. Table
IV shows the performance obtained by applying this method
to data of Scenario 10. The dataset is split in clusters 1 and
2 according to Figure 2(c), and profiles 1 and 2 are learned to
identify data from the respective cluster. We use benign traffic,
i.e. traffic not from botnets, as a control. It should be reject,
as a profile learned on botnet data characterizes only botnet
behaviors. Because of behaviors present in both clusters, e.g.
command and control flows, each PDFA also accepts, some
flows from the other clusters, i.e. some behaviors are assigned
to both clusters. Likewise, because profile 2 was only trained
on cluster 2, it rejects behaviors only present in cluster 1.
In this table we can see that profile 1 accepts all windows

Cluster 1 Cluster 2 Benign
Profile 1 100% 58% 6%
Profile 2 38% 60% 0%

TABLE IV: Classification accuracy for profile built from
Scenario 10. Profiles 1 and 2 are built from cluster 1 and
cluster 2 respectively. The reported values are percentages of
flow windows accepted, i.e. the accuracy of the classification
task. The acceptance for benign traffic is presented as well.

from cluster 1 while most of them are rejected by profile 2.
Almost all benign activity is rejected by both profile learned
from malicious traffic. This proves that our method is able
to differentiate malicious behaviors in network traffic and
discriminates malicious activities from benign activities with
high accuracy.

VI. CONCLUSION

This paper provides an approach for clustering behavioral
observations and matching models from network level data
in face of an unknown and possibly changing number of
behaviors. Our analysis method leveraged the prefix tree,
a central component in state-merging algorithms for PDFA
models. The results showed that we can accurately detect
changes in synthetic as well as real-world data without having
to aggregate multiple classical change-point detectors. Our
controlled experiments show that the freshness can detect
changes backed-up by evidence. The approach is computation-
ally efficient as we update counters for freshness in linear-time
as flows are available, i.e. in real-time. For a given batch of
data, the freshness is calculated in a single pass at the same
time as the prefix tree is created.

While not yet an automatic solution, freshness can be
successfully used as a manually inspected indicator in a similar
fashion as the elbow test in clustering [21]. In the future, we
plan to introduce a time-decay factor to forget parts of the
prefix tree—if updates on these parts do not occur anymore
overtime—and thus emphasize recent behaviors over past ones
in an online-learning fashion, as well as working towards
automatically deciding on the change-point.
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[12] T. Krueger, H. Gascon, N. Krämer, and K. Rieck, “Learning stateful
models for network honeypots,” in ACM AISEC, 2012, pp. 37–48.

[13] J. E. Hopcroft and J. D. Ullman, Introduction To Automata Theory,
Languages, And Computation, 1st ed. Boston, MA, USA: Addison-
Wesley Longman Publishing Co., Inc., 1990.

[14] T. A. Sudkamp, Languages and Machines: an introduction to the theory
of computer science, 3rd ed. Addison-Wesley, 2006.

[15] J. Oncina and P. Garcia, “Inferring regular languages in polynomial
update time,” in Pattern Recognition and Image Analysis, ser. Series in
Machine Perception and Artificial Intelligence. World Scientific, 1992,
vol. 1, pp. 49–61.

[16] S. Verwer, R. Eyraud, and C. De La Higuera, “PAutomaC: a probabilistic
automata and hidden Markov models learning competition,” Machine
learning, vol. 96, no. 1-2, pp. 129–154, 2014.

[17] C. Hammerschmidt, S. Marchal, G. Pellegrino, R. State, and S. Verwer,
“Efficient learning of communication profiles from IP flow records,” in
Proceedings of the 41st IEEE Conference on Local Computer Networks
(LCN). IEEE, pp. 1–4.

[18] J. Sommers, R. Bowden, B. Eriksson, P. Barford, M. Roughan, and
N. Duffield, “Efficient network-wide flow record generation,” in INFO-
COM, 2011 Proceedings IEEE, 2011, pp. 2363–2371.

[19] S. Garcia, M. Grill, J. Stiborek, and A. Zunino, “An empirical compar-
ison of botnet detection methods,” Computers & Security, vol. 45, pp.
100–123, Sep. 2014.

[20] N. Walkinshaw, K. Bogdanov, C. Damas, B. Lambeau, and P. Dupont,
“A framework for the competitive evaluation of model inference tech-
niques,” in Proceedings of the First International Workshop on Model
Inference In Testing, ser. MIIT ’10. New York, NY, USA: ACM, 2010,
pp. 1–9.

[21] D. J. Ketchen and C. L. Shook, “The application of cluster analysis
in strategic management research: An analysis and critique,” Strategic
Management Journal, vol. 17, no. 6.


