Efficient Detection of Flow Anomalies with Limited
Monitoring Resources

Jalil Moraney, Danny Raz
Computer Science Department
Technion - Israel Institute of Technology
{jalilm, danny}@cs.technion.ac.il

Abstract—Real time detection of flow anomalies is a critical
part of wide range of management and security applications
in many Cloud and NFV systems. Solutions based on per-flow
records have become impossible due to the increasing traffic
volumes and the limited available resources such as TCAM
entries and fast counters.

In this paper we study a novel dynamic control mechanism
that allows detecting flow anomalies using only a limited number
of counters. Starting from the simple observation that it is
impossible to guarantee instantaneous detection of flow anomalies
with a limited amount of counters, we study the trade-off between
the time required to detect the anomaly and the number of
available counters.

We implemented the scheme in an OpenFlow enabled switch,
where the logic is implemented in the controller, and demonstrate
that it can be used to detect a single flow anomaly within large
real traffic volume. To further reduce the detection time, we also
implemented the scheme logic inside the switch and used the
controller only for configuration. This implementation indeed
yielded a faster detection and lower monitoring communication
overhead while not introducing any significant observable costs
at the switch itself.

I. INTRODUCTION & MOTIVATION

Network traffic monitoring is a critical building block in
various management, control and security applications. Tra-
ditionally, network monitoring tools collect per-flow traffic
information that can be stored locally or polled to a centralized
management station and analyzed. This analysis provides
important information like trends in network load and utiliza-
tion, performance of traffic engineering systems, or security
vulnerabilities. In current networks, more and more network
analytics tools process this information online to generate real
time alerts regarding performance or security issues.

Solutions based on per-flow records, which is the case
for most monitoring tools existing today, are not adequate
anymore due to the increasing traffic volumes in many cloud
and NFV scenarios and the limited available resources such as
TCAM entries and fast counters. Contrary to popular belief,
the shift into SDN will not resolve this issue. Indeed, software
is more flexible and more counters can easily be provisioned
in a softswitch, however, the performance burden on the
VM running the software device will make it hard or even
impossible to support large number of counters in real time.
Thus, there is a vital need to detect flow anomalies with a
limited number of counters.

The term “flow anomaly” is very broad and it covers
any deviation from the normal traffic characteristics; this

The research leading to these results has received funding from the
European Community’s Seventh Framework Programme (FP7/2007-2013)
under grant agreement n° 610802 (Project CloudWave).

978-3-901882-85-2 (¢) 2016 IFIP

includes malicious traffic such as a Distributed Denial-of-
Service (DDoS) attack, heavy hitter - flow that uses an unusual
large portion of the available bandwidth, or an unusual increase
in the demand for a certain network service. In this paper we
study the ability to detect these flow anomalies in an SDN
setting where the number of counters is substantially smaller
than the number of flows.

It is not hard to observe that when the number of counters
is smaller than the number of (active) flows, one cannot
guarantee the instantaneous exact identification of all flow
anomalies. One way to approach this situation is by giving up
accuracy and identify a set of flows that contains the anomaly
as done for example in [1]. Our approach is different; we
want to exactly identify the anomaly flows, but are willing to
give up on the instantaneous requirement. That is, we allow a
trade-off between the number of counters and the time it takes
to identify an anomaly but we insist on exact identification
of the problematic flows. In fact, as we show in this paper,
the actual time to detect an anomaly in realistic scenarios is
around 3 seconds while the needed number of counters is a
small constant independent of the number of active flows.

We start with a formal definition of the problem and study
the trade-off between the number of counters and the number
of rounds' needed to identify a problematic flow in this
theoretical framework. We then develop a provable accurate
monitoring algorithm that can exactly identify a problematic
IPv4 flow in a constant number of rounds.

We implement this algorithm on top of Open vSwitch [2],
where the algorithm’s logic is executed in the SDN controller.
That is, at each round the controller polls the counters from
the switch, reports a problematic flow if identified, decides
on the new rules to be deployed, and configures the switch
accordingly.

This solution requires a considerable communication over-
head, and does not scale when the controller controls many
network elements. Thus, we also implemented an additional
solution where the monitoring algorithm logic is embedded
inside the vSwitch code. For that, we extended the OpenFlow
protocol [3] to allow the controller to configure the switch
with the appropriate parameters as needed.

We then evaluated the performance of the algorithm using

A round (or an epoch) is an iteration where counters data are collected
and analyzed.

these distinguished two methods. The evaluation is done by
injecting network anomalies of various types’ into CAIDA
real life traffic trace [4], and replaying them into the SDN
network. Our evaluation shows that one can detect an anomaly
as fast as 3-4 seconds after it first appears using only a few
counters (regardless of the number of flows) and with very
little overhead. The evaluation also shows that implementing
the monitoring logic inside the switch indeed yielded a faster
detection and lower monitoring communication overhead,
while not introducing any significant observable costs at the
switch itself.

To best of our knowledge this work is the first one focusing
on the trade-off between the amount of available resources and
the time required to exactly identify an anomaly in the SDN
domain. We go all the way from a theoretical analysis to the
details of the implementation, tying together the fundamental
abstract aspects with system issues related to the specific
implementation and deployment. Thus, providing interesting
and relevant insight regarding this important problem.

In Section II we define the problem and in Section III we
introduce our algorithm and prove its characteristics. In sec-
tions IV and V we consider possible deployment schemes and
discuss implementation details. The setup of the experiments
and the performance evaluation are described in Section VI.
In Section VII we survey related work and in Section VIII we
present short conclusions.

II. THE MONITORING PROBLEM

We focus on detecting flow anomalies that appear in real
situations in a specific network node using only a limited num-
ber of counters. For example, Heavy Hitter flows, are flows
(i.e., an aggregated set of packets identified by certain fields
in the header) that exceed a specified volume. DDoS attack,
close enough to the victim, is actually a heavy hitter flow
aggregated by the IP destination address, and the threshold is
proportional to the maximal bandwidth the victim can handle.

A slightly different kind of network anomalies are the one
defined by ratio rather than value. In these anomalies the ratio
of certain type of “offending” packets out of all packets in the
flow is higher than a characteristic threshold. One example of
ratio based anomaly is SYN flood attack, in which the attacker
tries to cause a resource exhaustion at the victim system. This
is achieved by opening as many as possible TCP sessions
without ever completing the three-way handshake, in order to
keep resources bound to the half open sessions and preventing
the system from opening legitimate sessions. For normal real
TCP traffic the ratio of SYN packets in a flow (also known as
SYN Arrival Rate - SAR) is about 0.07 (see [5]).3

To model the problem, we partition the time into constant
length discrete segments (called epochs or rounds) and assume
that the flow rates are fixed within each epoch but can change

2We present results for SYN flood attacks and for heavy hitters.

3The theoretic characteristic ratio depends on the exact anomaly in concern,
for SYN flood attack the SAR is always smaller than quarter, since in a
legitimate TCP connection there is one SYN packet and two non SYN packets
completing the three-way handshake followed by at least one additional data
packet.

arbitrarily between consecutive epochs. We also assume that
at most n unique flows are going through the network node
of interest. The amount of usage (e.g., the actual number of
packets) of the flows in this node at (the end of) epoch ¢ is
represented by a series of n real-valued variables, {u;(t)}=7.
We are given a series of n fixed real-valued per-flow limits,
{l;}i=7, and say that over usage condition holds at epoch t if
there exists ¢ such that u;(t) > I;.

Under an appropriate setup, the problem of detecting flow
anomalies can be reduced to the problem of detecting over
usage condition. The detection of heavy hitter anomaly can
be modeled as detecting over usage condition of a flow, when
the flow is aggregated by a specific header field and the flow’s
limit is the maximal traffic allowed for that header field. The
detection of ratio based anomalies, requires calculating the
ratio of offending packets out of all packets in a flow and
comparing this ratio against the characteristic ratio. Thus, it
can be modeled as detecting over usage condition of a flow,
when the flow’s limit is the characteristic ratio. That being
said, this approach is not able to detect more complex forms
of flow anomalies that can not be reduced to detecting over
usage conditions.

As mentioned, we are interested in detecting over usage
condition by any of the flows, using only a bounded number
of counters, m, which is usually far smaller than the number of
(active) flows, n. To achieve that, in each epoch we assign to
each of the counters a subset of the variables u; to measure. We
denote by S;(t), the subset of variables measured by counter
Jj at epoch ¢ and by Y;(t) the aggregated usage value of the
subset .S; at the end of epoch ¢, i.e., Y;(t) = Zuesj(t) u(t).

We define a monitoring algorithm to be an algorithm which
in each epoch t:

1) Obtains the measurement data of the previous epoch, i.e.

the values Y1 (t — 1), Ya(t — 1),..., Y, (¢ — 1).

2) Decides on the new assignment of flows to counters
(the subsets S;(¢ + 1)7_}"). This is done based on the
obtained measurement values, the previous assignment
(the subsets S; (t);zn) and the monitoring strategy.

3) Checks whether an over usage condition occurred ac-
cording to the obtained measurements and reports it.

A monitoring algorithm is k-correct if it is able to detect
any over usage condition that holds for at least k consecutive
epochs. We say that a monitoring algorithm is immediately
correct, if it is 1-correct. The motivation of this definition
is that an immediately correct monitoring algorithm is able
to detect over usage of any flow as it occurs, however this
may require a large number of counters. Furthermore, we say
that a monitoring algorithm is eventually correct, if it is k-
correct for some k£ > 1. This allows the relevant management
application to relax the instantaneous detection requirement
and dramatically reduce the number of required counters.

We do not allow false negative as we want to detect all
anomalies. However, in some cases it makes sense to have
false positive alerts. A monitoring algorithm is p-accurate,
if its false positive rate (FPR) is less than p. We say that
it is accurate, if it is 0O-accurate. In this terminology, the

algorithm is accurate in the sense of never detecting an over
usage condition if it did not occur. We say that a monitoring
algorithm is ideal, if it is both immediately correct and
accurate.

It is clear that using m > n counters, one can detect any
over usage condition as soon as it occurs, by the straight-
forward ideal monitoring algorithm that simply assigns each
counter to measure a distinct flow variable (thus n counters
are sufficient), and at the end of each epoch checks that none
of the counters passed the limit of the variable assigned to it.

When the number of counters is strictly smaller than the
number of flows this algorithm cannot be used and the
situation becomes more complex. For a small number of flows
one can show that exactly n counters are needed. This is best
illustrated when we are limited to use 1 counter to monitor 2
unique flows (n = 2), for any assignment of the counter there
is an input which shows that the algorithm is not ideal.

More generally, it is possible to show that at least m =
fm} counters are needed for ideal monitoring algorithm.
Let consider a simpler problem where each flow usage is either
0 or 1, and we want to detect which flows have a value of 1.
There are 2" possible distinct states for the flows, each counter
have n+1 values (0,1,...,n) and there are m counters, thus there
are (n+ 1)™ possible distinct states for the counters. In order
to have ideal algorithm it easy to see that (n+1)™ > 2™ must
hold, since (n+1)™ = 2!eg((n+1)™) — gmlog(n+1) e can take
logarithm from both sides and end up with m > m.

Thus, when the number of counters is smaller than the
number of flows, we might not be able to guarantee imme-
diate detection. A straightforward generalization of the trivial

n

(assign each flow a counter) algorithm yields a []-correct,

accurate monitoring algorithm. In this generalization, we split

the flows into [L] groups each of size m at most, and at each
epoch we assign the counters to measure one of the groups. In
order to guarantee the detection of any over usage condition
that holds for [] epochs, we reassign the counters in a cyclic
manner throughout all the groups. Note that in practice this
requires the network device to reconfigure the counters very
often which in many cases is associated with a considerable
overhead.
ITII. THE MONITORING ALGORITHM

In this section we introduce an eventually correct and
accurate monitoring algorithm called “IPv4 prefixing”, for the
over usage detection problem. The algorithm itself is based on
a variation of the MRT algorithm [6] presented in [7], where
the main concept is to use prefix-trie to decide which flowsets
to monitor in the next epoch.

In this approach, we identify each flow by a unique string
above some alphabet and each flowset by a regular expression
above the same alphabet, such that all flows contained in
the flowset are the flows represented by the strings matching
the flowset’s regular expression. The motivation behind this
approach, is to identify each flow by an IP address and each
flowset by a CIDR mask, such that a flowset is the group of
all flows that their corresponding IP address is included in the
flowset’s CIDR mask.

The basic idea behind the algorithm is as follows. At each
epoch the algorithm monitors a set of disjoint flowsets, F'; that
is, for each flowset f € F, it assigns a counter to measure the
aggregated value of all flows contained in f. At the end of
each epoch, the algorithm examines the values of the counters
and classify flowsets to be either “interesting”, “uninteresting”
or “keep”. Since the main target is to detect an over usage
condition, we say that a flowset is interesting, if the current
aggregated value of this flowset is higher than the minimal
limit of each of its flows. Furthermore, we say that a flowset
is uninteresting if the current aggregated value of this flowset
is lower than half the minimal limit of each of its flows, and
otherwise the flowset is keep.

When a flowset f is classified as interesting, the algorithm
generates a partition of f, refine(f). After generating the
refined flowsets, the set I’ is modified to include the new
flowsets and to exclude f. If a flowset was classified as
interesting and it contains only one flow, then the algorithm
reports this flow as “over using”. This is correct since the
classification of interesting flowsets is based on the minimal
limit of all flows in it.

When a flowset is classified as uninteresting, we are inter-
ested in removing it from the monitoring at next epoch. Due
to the requirement of disjoint flowsets in F', we can not simply
remove the flowset from F', we need to remove its “siblings”
too and add their “most recent” ancestor. Such folding should
take place if and only if none of the siblings is classified
as interesting in the current epoch. If there is a flowset
classified as interesting, we should change the classification
of its uninteresting siblings to keep.

If a flowset is identified as keep, it will stay in F' unless
at least one of its siblings is classified as uninteresting in the
same epoch. The pseudo code of the algorithm is presented
in Fig. 1.

The algorithm makes use of several auxiliary procedures
to manage the assignment of the variables to the counters.
These procedures are (1) getCounter(f) which returns the
index of the counter that is measuring the flowset f, (2)
assignCounter(f) which assigns the flowset f to be mea-
sured by an available counter, and (3) freeCounter(f) which
releases the counter measuring the flowset f, this is achieved
by assigning ¢ to that counter. Additionally, the algorithm
uses the notation of flows(f) to describe the set of all flows
contained in the flowset f, sometimes we also abuse the
notation to describe flows of a set of flowsets.

The input to the algorithm is a set of disjoint flowsets called
root flowsets, the algorithm is restricted to look for over usage
condition only in flows contained in one these flowsets. The
algorithm initialization step assigns counters only to these root
flowsets. The specific behavior of the algorithm is determined
by the definition of the following operations:

e fineThreshold(f): which returns the threshold that if
the aggregated value of flows in f is above it, then we
should refine the flowset f.

o foldThreshold(f): which returns the threshold that if
the aggregated value of flows in f is below it, then we

Algorithm *IPv4 Prefixing”

Algorithm “IPv4 prefixing operations™

Initialization:
F + roots and W1 < i < m, 5;(0) + ¢
for each f € F do assignCounter(f) end for
At the end of each epoch #:
1: Obtain the measurements from the counters for the current epoch, y; +
Yi(t). y2 « Ya(t), oo ym + Yau(t).
: interesting + {f € Fle = getCounter(f),y. > fineThreshold(f)}
3: uninteresting + {f € Fle = getCounter(f),y. < foldThreshold(f) A
siblings(f) N interesting = ¢}
: toddd + o
: toRemove + ¢
: for each f € interesting do
if |flows(f)| =1 then
Report flows(f).
else
toAdd + toAdd Urefine(f)
toRemove + toRemove U { f}
end if
3: end for
: for each f € uninteresting do
uninteresting + uninteresting \ siblings(f
toAdd + toAdd U fold(f, siblings(f))
toRemove + toRemove U { f} U siblings(f)
: end for
: for each f € toRemove do
freeCounter(f)
: end for
: for each f & toAdd do
assignCounter(f)
: end for
: F + F\ toRemove U toAdd

[

=5

o

b e
S o owa o

1515 e ks s

i

Fig. 1. eventually correct and accurate monitoring algorithm for IPv4 prefixes
using m counters

should fold the flowset f.

o refine(f): returns a set of flowsets which is a partition of
f-ie., Vg1, g2 € refine(f), flows(g1) N flows(gz) = ¢
and flows(|Jrefine(f)) = flows(f).

e fold(G): returns a flowset which is the lowest common
ancestor of the flowsets in G, ie. flows(fold(G)) =
flows(|J G).

o siblings(f): returns a set of flowsets which were added
to F' in the same refine operation as f.

The pseudo code of these operations is described in Fig. 2.

We are interested in the properties of the algorithm in the

most general case where the algorithm starts by measuring the
flowset which includes all possible IPv4 flows in the switch,
generally roots = {“0.0.0.0/0”}. If at the end of an epoch
there is a flowset that needs refinement then it is performed by
adding two flowsets that have bigger CIDR mask and differ by
the least significant bit not covered by the mask. If at the end
of an epoch there is a flowset that needs to be folded, then it
is performed by removing the flowset and its sibling in favor
of a flowset that have smaller CIDR mask and the common
IPv4 prefix of both siblings. In order to guarantee accuracy,
the fining threshold of a flowset should be the minimal limit
of all flows included by that flowset.

Theorem 1. Algorithm “IPv4 prefixing” with the “IPv4 pre-
fixing operations” is 32-correct monitoring algorithm.

Proof. Assume there is a flow f; with limit /; that is overus-
ing for 32 epochs starting from epoch ¢, i.e., u;(t),u;(t +
1), ...,u;(t + 31) > ;. Since roots contains the flowset that
contains all flows, it contains f; too, then by the refinement

1: function fineThreshold(f)

2 return min g, ¢ frows() {i|li is the limit of flow f;}

3: end function

4: function foldThreshold(f)

5 return {imelireshold(f)

6: end function B

7: function refine(f)

8: CIDR_Mask + get_CIDR_mask(f)

9: I Pvd_address +— get I Pvi_address(f)

10: f1 + ereateFlowset{I Pvd_address, CIDR_mask + 1)

: I — create Flowset (I Pvd_address =]
']C"f I)!E_rrm.vk”1”0327-:('.-'”) R_mask+1) L CTDR_mask + 1)

12: return { fi, fa}

12: end function

14: function fold(G)

15: assert(all lowsets in & have a common IPv4 prefix)
16: CIDR_mask +— mingec{get CIDR_mask(g)} — 1
17: I Pvd_address + get_common_pre fiz{G)&

1CI DR mask |O‘.$'2—(Z'I DR_mask

18: return createl lowset(I Pvd_address, C1 DR_mask)

19: end function

20: function siblings(l)

21: CIDR_Mask + get_CIDR_mask(f)

22: 1 Pvd_address +— get I Pvd_address(f)

23: return createFlowsel(I Pvd_address =]
Q¢ DRmask—1 “-l (032—CIlDR-mask CIDR_HHISK‘)

24: end function

Fig. 2. Definitions of the operations fineThreshold, foldThreshold, refine,
fold, siblings for the general case of IPv4 prefixing
process the set I' at epoch ¢ contains a flowset, g; such that
fi € flows(g1). We note that get_CIDR_mask(g1) > 0.
At every epoch starting from ¢ till £ + 31, any flowset
that contains f; will get refined, since the refinement thresh-
old is the minimal limit of all flows in the flowset and
the aggregated usage of that flowset is higher than I,
since u; > [l; in these epochs. Thus, there is a series of
91,92, ...,g32 such that Vj, f; € flows(g;) and g;11 €
refine(g;). Since get_CIDR_mask(g1) > 0 and at each
refinement the CIDR mask is bigger by one, there is £ < 32
such that get_CIDR_mask(gr) = 32, which means that
| flows(gx)| = 1 and therefore flows(gr) = {f;} and f; will
be reported in k£ < 32 epochs. |

Theorem 2. Algorithm “IPv4 prefixing” with the “IPv4 pre-
fixing operations” is accurate monitoring algorithm.

Proof. Assume by contradiction that the algorithm reports a
false positive, that is, it reports a flow f; that does not have
over usage condition. A flow is reported only if a flowset of
size 1 containing it passed its fining threshold, however the
fining threshold of a flowset of size 1, is the limit of the flow
contained in it. Thus, in the epoch f; was reported u; > I;
holds, in contradiction to the assumption of false positive. W

One of the most interesting aspects of the “IPv4 prefixing”
algorithm, is the number of counters it uses to detect the
anomalies. In order to estimate the number of counters, we
model the monitoring process as a search problem in a graph,
and show that each node in the search frontier requires using a
counter by the algorithm. We also discuss how different factors
affects the number of counters used. We show that this num-
ber depends heavily on the outcome of the fineThreshold
operation and the number of flows that exceed their limits.

For the sake of simplicity we first introduce the modeling
of “IPv4 prefixing” algorithm with the “IPv4 prefixing oper-
ations” with a single root, i.e. roots = {“0.0.0.0/0”}. We
model the search graph as a directed tree, where each node

represents a flowset and an edge connecting node representing
flowset f to node representing flowset g, if and only if
g € refine(f). This modeling yields a binary tree with one
root that represents the flowset {“0.0.0.0/0”}, and leafs that
represents all flowsets of size one, i.e. single flows.

In this modeling the process of detecting a “violating flow”,
a flow that exceeds its threshold, is equivalent to searching
down a path from the tree’s root to the leaf representing that
flow. The iterative nature of algorithm, requires maintaining
a set of flowsets currently monitored, where each refine or
fold operation changes the set of the next epoch. Since the
algorithm assigns a counter to monitor each flowset in the
current set, it is easy to see that the number of currently used
counters is the size of the search frontier in the tree.

The generalization of this modeling to the case where roots
set size is larger than one is straightforward. The main concept
of searching down a path to the leaf representing the violating
flow remains the same, however the search graph in this case is
a forest graph of r binary trees rather than a single binary tree.
The observation that the number of currently used counters
by the algorithm is the size of the search frontier is still valid
in this generalization, where the frontier spreads through the
whole forest.

The algorithm “IPv4 prefixing” refines the monitoring of a
flowset, if the current usage value is bigger than the minimal
limit of all flows contained in it, this is crucial to guarantee
accuracy as shown in Theorem 2. Thus, the outcome of the
fineThreshold effects the number of counters used in the
next epoch directly.

In order to analyze the effect of the given limits, and thus the
fineT hreshold operation effect, on the number of counters
used by the algorithm, one should consider the characteristic
usage values of the flows.

If the given limits are bigger than the characteristic usage
values, then the algorithm will search only down the path to
the leaf of the violating flow. On the other hand, when the
given limits are close to the characteristic usage values, the
algorithm will search down all possible paths even if there are
no violating flows. This is true, since the aggregated usage of
any sub-tree will exceed its limit while no leaf will do.

Fig. 3 describes the algorithm’s frontier with roots set of size
two. White circled nodes are nodes currently in the frontier
(i.e., being monitored in current epoch), black circled nodes
are nodes which were at previous epochs in the frontier and
rectangled nodes are nodes not yet searched by the algorithm.
Fig. 3a illustrates the frontier, when the limits are bigger than
the characteristic usage values. While Fig. 3b illustrates the
frontier, when the limits are close to the characteristic usage
values.

In order to estimate the actual number of counters used, one
should take into consideration also the existence of multiple
violating flows. Since the number of paths the algorithm will
search is effected by the number violating flows, and thus more
counters are needed.

Let x be the maximal number of needed refinements opera-
tions to reach a single-flow flowset, e.g., x = 32 in the “IPv4

ro: 39.128.128.128/30
fo: 39.128.128.128/31
F1: 39.128.128.130/31
f2: 39.128.128.128/32

71: 200.14.7.240/30
go: 200.14.7.240/31
g1: 200.14.7.242/31
g2: 200.14.7.240/32

Sf3: 39.128.128.129/32 g3: 200.14.7.241/32
Sa: 39.128.128.130/32 ga: 200.14.7.242/32
fs: 39.128.128.131/32 gs: 200.14.7.243/32

(b) limits close to characteristic value

Fig. 3. The algorithm’s frontier with the roots

39.128.128.128/30, 200.14.7.240/30
prefixing” algorithm with roots = {“0.0.0.0/0”}. Let ¢ be
the number of violating flows and r = |roots|.

When there is single violating flow (¢ = 1) and the given
limits are higher than the characteristic usage values, the
frontier of the search is of size exactly (r — 1) + x + 1, thus
the number of needed counters is (r — 1) + = + 1. This value
consists of + 1 nodes in the forming path frontier and r — 1
nodes of the roots flowsets that does not contain the violating
flow as seen in Fig. 3a with r =2, c =1 and x = 2.

If there are multiple violating flows (¢ > 1) and the
given limits are higher than the characteristic usage values,
without knowing the distribution of the violating flows we
can only give an upper bound on the frontier’s size. If we
assume disjoint violating flows, then the upper bound is
(r—c)+ (z+ e

The case where the given limits are close to the charac-
teristic usage values, the algorithm will search down all paths
and the forming frontier will contain all 727 leafs in the forest
as seen in Fig. 3b. This loose estimate can be tightened with
min((z + 1)c,n); the minimal of either the number of nodes
on paths from the roots to the violating flows or the total
number of the flows monitored.

Note that in realistic scenarios the value of the counters
keeps on changing throughout the process. This adds more
noise into the systems and may create situation where more
paths are searched.

It is worthy to note, that scaling the algorithm “IPv4
prefixing” to IPv6 networks is straightforward. It is clear the
algorithm will become 64-correct while its accuracy guarantee
and counters’ estimates still hold.

I'V. SDN MONITORING SCHEMES

In this section we study the actual implementation of
the monitoring algorithm in an SDN setting. The theoretical
model only assumes that the network nodes are capable of
preforming the aggregated measurements but does not specify
the management entity or whether the logic is executed locally
at the network node or at a centralized management entity.

In SDN networks, a natural choice is to run the monitoring
algorithm as an application on top of the SDN controller. In
such a setup, the monitoring application should, at the end
of each epoch: (1) poll the counters from the switches, (2)
evaluate the received measurements and decide on counters’
new assignment for the new epoch, (3) update the switches’
counters with the new assignment and (4) report over usage
conditions, if they exist, to a dedicated mitigation application
also running on top of the SDN controller.

Note that this type of deployment imposes additional over-
head in terms of network utilization by the control plan,
i.e., the polling and update messages exchanged between the
switches and the controller at every epoch. Another option is
to embed the monitoring logic within the switch itself; this
is possible since all decisions are based only on the switch’s
local data and the predefined monitoring algorithm. Thus, we
consider two schemes: the Polling Scheme where the logic is
implemented in the controller, and the Pushing Scheme where
the monitoring algorithm is implemented as middleware on
top of the switch itself.

In the Polling Scheme the monitoring application at the
controller kicks in and installs in the SDN enabled network
node counters’ assignment that suits the roots input set. For
each flowset in the roots set, the monitoring application sends
a command to the node to assign a counter to measure all flows
in this flowset.

At the end of each epoch, the monitoring application polls
the value of each counter and based on the received value, the
history and the algorithm state, decides on the classification
of the flowset. If the flowset is classified as interesting, the
monitoring application is responsible to send a command to the
node to assign the counters for the new flowsets and free the
counter used for the refined flowset. If a flowset is classified
as uninteresting, the application sends commands to the node
asking to free the counters of the flowset and all of its siblings
and to assign a new counter for their ancestor. If a flowset is
classified as keep, the application stores a local state for that
flowset so that in the next epoch it will be able to subtract the
saved value from the received value.

It is possible to implement the application without the
need of saving a state per every currently monitored flowset.
However, this requires to clear the counter of the flowset and
then the received value at the end of the next epoch will be
the exact usage value of the next epoch.

In the Pushing Scheme, the controller is still responsible for
the control plane configurations and the network-wide install-
ment of the forwarding rules. However, instead of deploying
an active monitoring application at the controller, a passive
application is deployed, responsible to configure the relevant
nodes with the needed monitoring strategy in the switches. The
strategy is determined by the exact monitoring algorithm and
by the roots set to be monitored in each node. The actual
implementation of these configuration commands is done
using the “Experimenter” message in OpenFlow (see [8]).

The network’s nodes are modified to host an application
in the form of a middleware, responsible for receiving the

monitoring configuration from the controller and installing
the initial set of the counters at the node. The middleware
then executes the monitoring algorithm locally on top of the
network’s node and configures the new set of counters at the
end of each epoch accordingly.

When the middleware detects an over usage condition by
one of the flows, it reports the flow to the controller. The
controller is still responsible to handle the detected anomaly
and to take network-wide actions, which depends on the
application and might vary from changing the control plane
to reconfiguring the monitoring goals of any of the network
nodes.

V. MONITORING IMPLEMENTATION
INSIDE AN SDN NODE

We implemented both schemes on top of OpenFlow enabled
software defined network, where we have one controller that
uses OpenFlow Protocol [3] to communicate to a number of
SDN enable switches.

OpenFlow provides an open protocol to set the flow-table
in different switches by exploiting a common set of functions
that vendors specific flow tables share. In OpenFlow enabled
switch all packets are processed by the OpenFlow pipeline.
Each flow table in the pipeline contains multiple flow entries,
the protocol defines the structure of the entries and how
incoming packets are matched against these entries.

Each flow entry consists of several components, the ones of
interest are: (1) Match Fields - fields that indicate which data
from the packet headers and its metadata should be matched
against this entry. (2) Priority - a field indicating the matching
precedence of the flow entry; packets will be matched against
higher priority entries first till a match is found. (3) Counters
- the following set of counters: Received Packets, Received
Bytes, Duration in seconds, Duration in nanoseconds. (4)
Instructions - a set of instructions that are executed when a
packet matches the entry.

We exploit the fact that matching of packet is done first
against higher priority flow entries. This allows the algorithm
to install entries of refined monitored flowsets with strictly
higher priority than entries of the original flowset, causing a
matching at the refined entry only.

Our implementation keeps routing entries and monitoring
entries separated. While routing entries could be installed on
several tables, all of the monitoring entires resides at the same
table. Furthermore, the routing entries forward matched pack-
ets to the monitoring table using the Goto-table instruction.

The refinement process of a flowset should yield a partition.
Also, it should consider the number of entries needed to
measure a single flowset, before simply incrementing the
priority value. For example, in the case of detecting SYN flood
attacks, the increment in the priority value should be two to
allow installing two entries for each new flowset. More details
are in [9].

VI. EVALUATION

We tested our algorithm for detecting two kind of anomalies.
The first is a bandwidth heavy hitter, a host sending high
bandwidth traffic through the switch, and the second is a SYN

flood attack. We use Mininet [10], [11] to emulate the software
defined network and Open vSwitch [2], [12] as the OpenFlow
enabled switch (a modified version was used to enable the
pushing scheme). We also use the Ryu SDN framework [13]
to build the monitoring application in Python.

The setup of the experiments is a single switch connected
to the hosts via two different ports, and the routing entries
were a simple forwarding traffic from one port to the other.
Tcpreplay [14] was used to replay CAIDA traffic trace [4] into
the network. Considering the prefixing nature of the algorithm,
in order to keep the original characteristic of the real traffic and
the privacy of the users, one should be careful to use real traffic
traces that went through “prefix-preserving anonymization”
such as the CAIDA traces.

At some randomly chosen point, after the start of replaying
the traces, a host introduces a flow anomaly of the requested
kind. In each of the experiments we measured, using wire-
shark [15], the number of epochs from the one in which the
anomaly starts until its detection, the number of counters used
and the number of OpenFlow packets exchanged between the
controller and the switch. In the heavy hitter flow experiment,
the host sent traffic at the rate of 20 Mbps while the per flow
limits were set to 15 Mbps. In the SYN flood attack, a SYN
packet was sent to the target through the switch for every four
trace packets and the per flow limit was set to 0.03%.

We would like to detect anomalies as soon as they occur;
however the theoretical framework only deals with the number
of epochs and not with the actual total time which depends on
the setting of the epoch length. Fig. 4 compares the average
numbers of epochs needed to detect a SYN flood attack in
both polling and pushing schemes. The figure shows that when
the epoch is longer than 0.1 seconds, both schemes are able
to detect the attack in 32 epochs. This is expected since the
“IPv4 prefixing” algorithm is 32 — correct, so refinement of
the offending flowset will occur in every epoch. The figure also
shows that the shorter the epoch, more epochs are needed to
detect the attack. Such behavior is expected since the shorter
the epoch the harder it is to detect the current trend and
the measurements values are inaccurate due to the normal
traffic variability and accuracy of the time measurement. This
behavior starts to appear in epochs of length 0.25 and 0.5
seconds, where the average number of epochs is still about 32,
but with non-zero variance. In epoch of length 0.1 seconds, this
behavior is more significant with average number of epochs
of 47.5 and 53.4 in pulling and pushing schemes, respectively.

Clearly the polling scheme is much more sensitive to time
precision, since the decisions are not taken locally and the
actual measurement times are affected by the latency of the
network. This is validated by the fact that the algorithm was
not able to detect the attack at all in the polling scheme with
epochs shorter than 0.1 seconds, while in the pushing scheme
it did. The actual detection time is the multiplication of the
epoch length by the number of epochs, and the shortest one

4Note that the measured SAR in the CAIDA traffic is about 0.014 and the
SAR during a typical attack as reported in [5] is around 0.6.

was achieved in the pushing scheme with total time of 3.24
seconds. Although the detection took 64.8 epochs on average,
due to the very short epoch of 0.05 seconds, the total time was
still shorter than the time in the experiments with less epochs.

To better examine the detection time we compare in Fig. 5,
the average time until detection for each anomaly type. The
results show that for both types of the anomalies, pushing
based setups were able to detect the anomaly with shorter
epochs than polling based setups and that there is no significant
difference when considering epochs longer than 0.5 second.
There is a clear minimum value where the epoch length is the
shorter one that still allows reducing the noise and making
the measurements accurate enough. The maximal number of
counters used was as expected; 33 for the heavy hitter case
and 66 for the SYN attack case.

To stress the algorithm we contacted an experiment in
which we concurrently launched four heavy hitters on top
of the replayed network traffic. The source IP addresses of
the anomaly flows, were chosen randomly from a subset of
source addresses found in the replayed traces. Fig. 6 depicts
the number of counters (monitoring rules in the switch tables)
throughout the experiment. The number varies until addresses
stop sharing a common prefix, and each host gets located fully.

The upper bound formula we provided on the number of
counters was (r —c) + (x + 1)c¢, which yields an upper bound
of 129 counters, with the appropriate parameters. Indeed, the
maximal number of counters used at any epoch was 125 in
the detection epoch, smaller than the predicted upper bound.

Next we examine the traffic overhead due to control
messages. Fig. 7 shows the number of OpenFlow packets
exchanged between the controller and the switch in both
schemes. In the polling scheme, one can see that the shorter the
epoch, the more OpenFlow packets are exchanged since more
epochs are needed till the detection, and each epoch the con-
troller sends commands to update flow entries in the switch.
In the pushing scheme, the number of packets exchanged is
stable for the short epochs. This is expected since there is no
need to receive commands from the controller at every epoch.
However, we note that the longer the epoch the more packets
are exchanged, this is due to the OpenFlow protocol which
requires an exchange of “echo packets” between a switch and
its controller every 5 seconds. For instance, with epoch length
of 20 seconds 95.77% of the exchanged packets were echo
packets.

VII. RELATED WORK

Several recent works have been focusing on efficient re-
source constrained flow monitoring, realizing that measure-
ment is crucial for network management and control and even
more so in the SDN domain [1], [6], [7], [16], [17].

Yuan et al. [6] presented the flowset concept to represent
aggregated, which is an arbitrary set of flows defined according
to the application requirements and/or traffic conditions. They
also defined the Flowset Composition Language (FCL) to
enable manipulation of flowsets in a formal manner. These
definitions enabled the Multi-Resolution Tiling (MRT) al-
gorithm they presented, which dynamically reprograms the

ol [0 Polling Scheme ||
B0 Pushing Scheme
z 60
Q
=S
& 40
20
0

0.050.10.250.50.750.90.95 1
Epoch length [s]

Fig. 4. I\Ilu(l)%ber of epochs needed to detect SYN flood attack

polhng HH T T T T T T H—&E
—a— pushing - HH 1
—— polling - SYN 1
= 102 | —¢— pushing - SYN .
© F i
g |
= | |
10t ©]
;HH‘ R T A T H:
1073 1072 107! 10° 10!
Epoch length [s]
Fig. 5. Average time till detection
T T T
100 |- N
5
=
=1
S 50| :
3+
0 B | | | T
0 100 200 300
epoch

Fig. 6. The number of counters used by the algorithm at each epoch when

detecting4concurrer}t he‘avy‘ hit‘ters‘ o

104 1 [0 Polling scheme ||
. o BB Pushing scheme ||
2 i . 1
g T 0 n A
E i]
ERLE 1
& r 1
3 B i
& B |
8 i |
- i |
5| |
1ty o o

T T T T T T T T T T T T
0.10.250.50.750.90951 2 3 4 5 10

Epoch length [s]

Fig. 7. Communication overhead

measurements to zoom in on “heavy hitters” by reallocating
the associated counters.

One aspect of these works deals with the distributed nature
of the network in which the same flow can be measured at dif-
ferent network nodes. The authors of [1] and more recently [7]
proposed a network wise dynamic monitoring systems where
a centralize management station (or the controller in the SDN
case) dynamically configure monitoring rules in the different
network elements. Such a centralized management entity can
thus make use of global information in order to utilize the
distributed monitoring resources (typically TCAM rules) in
an efficient way, that is, getting as much precision as possible
for the given monitoring resources.

In [16], Gangam et al. focus on combining information
gathered from different nodes to generate a global picture; in
their case they want to detect in real time what they call global
distributed icebergs, a set of flows with a common property
contributing little traffic at local nodes and a significant amount
of traffic across the entire network. The main technical issue
is how to define the local information to be collected in each
node and how to decide which flows are globally interesting.
Dilman and Raz [18] considered a similar setting but focused
on communication overhead where the problem is to detect all
global events while minimizing the amount of communication
between the centralized station and the measurement nodes.

The field of Streaming algorithms is a theoretical framework
dealing with online data analysis, which can be perceived
as the flow measurement task in each node. Most of the
papers in this field deal with theoretical or data based issues;
a notifiable exception is the paper [19], where the authors
consider maintaining statistics of a stream of data over time.
They study the trade-off between the number of counters and
the ability to collect and maintain this information.

Several recent papers mention the connection between the
duration of the time data is stable and the ability to detect
it [1], [17]. The authors of [1] also concentrated on a trade-
off between the amount of available resource and the accuracy
of the measurement, which is somewhat complementary to
our study. Note, that like many of the works in this area, the
authors of [1] do not present any analytical framework to study
the trade-off and rather concentrate on system related issues.

VIII. CONCLUSIONS

The main contribution of this paper is the introduction of
resource efficient flow anomaly detection algorithm that trade-
offs the instantaneous detection requirement for the sake of
full accuracy. Our results indicate that by allowing a small
flexibility of 3-4 seconds in the instantaneous requirement,
one can provide very accurate measurement with a very little
monitoring resources. Furthermore, the results also imply that
the execution of complex monitoring strategies on top of the
switch itself are superior to the classic approach of SDN where
the logic is executed at the controller. This is true when the
logic requires only data from a single network element and
when the relevant criteria are communication overhead and
time to detect.

[1]

[2]
[3]

[4]
[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

[13]
[14]
[15]

[16]

[17]

[18]

REFERENCES

M. Moshref, M. Yu, and R. Govindan, “Resource/accuracy tradeoffs
in software-defined measurement,” in Proceedings of the Second ACM
SIGCOMM Workshop on Hot Topics in Software Defined Networking,
ser. HotSDN ’13. New York, NY, USA: ACM, 2013, pp. 73-78.
[Online]. Available: http://doi.acm.org/10.1145/2491185.2491196
“Open vswitch - production quality, multilayer open virtual switch,”
http://www.openvswitch.org, accessed: 07-11-2015.

N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Peterson,
J. Rexford, S. Shenker, and J. Turner, “Openflow: Enabling
innovation in campus networks,” SIGCOMM Computer Communication
Review, vol. 38, no. 2, pp. 69-74, Mar. 2008. [Online]. Available:
http://doi.acm.org/10.1145/1355734.1355746

“CAIDA anonymized internet traces 2014 dataset,” http://www.caida.
org/data/passive/passive_2014_dataset.xml, accessed: 07-11-2015.

S. Nemade, M. K. Gurjar, Z. Jamaluddin, and N. N., “Early detection
of syn flooding attack by adaptive thresholding (EDSAT): A novel
method for detecting syn flooding based dos attack in mobile ad hoc
network,” International Journal of Advanced Research in Engineering
& Technology (IJARET), vol. 5, pp. 79-86, 2014. [Online]. Available:
http://www.academia.edu/7324329/EARLY_DETECTION_OF_SYN_
FLOODING_ATTACK_BY_ADAPTIVE_THRESHOLDING_EDSAT _
A_NOVEL_METHOD_FOR_DETECTING_SYN_FLOODING_
BASED_DOS_ATTACK_IN_MOBILE_AD_HOC_NETWORK

L. Yuan, C.-N. Chuah, and P. Mohapatra, “ProgME: Towards
programmable network measurement,” in Proceedings of the 2007
Conference on Applications, Technologies, Architectures, and Protocols
for Computer Communications, ser. SIGCOMM °07. New York,
NY, USA: ACM, 2007, pp. 97-108. [Online]. Available: http:
//doi.acm.org/10.1145/1282380.1282392

M. Moshref, M. Yu, R. Govindan, and A. Vahdat, “Dream: Dynamic
resource allocation for software-defined measurement,” in Proceedings
of the 2014 ACM Conference on SIGCOMM, ser. SIGCOMM ’14.
New York, NY, USA: ACM, 2014, pp. 419-430. [Online]. Available:
http://doi.acm.org/10.1145/2619239.2626291

“The openflow specefication v1.5,” http://www.opennetworking.org/
images/stories/downloads/sdn-resources/onf-specifications/openflow/
openflow-switch-v1.5.0.noipr.pdf, accessed: 07-11-2015.

J. Moraney, “Efficient Detection of Flow Anomalies with Limited
Monitoring Resources,” Master’s thesis, Technion - Israel Institute of
Technology, 2015.

B. Lantz, B. Heller, and N. McKeown, “A network in a laptop: Rapid
prototyping for software-defined networks,” in Proceedings of the 9th
ACM SIGCOMM Workshop on Hot Topics in Networks, ser. Hotnets-IX.
New York, NY, USA: ACM, 2010, pp. 19:1-19:6. [Online]. Available:
http://doi.acm.org/10.1145/1868447.1868466

“Mininet an instant virtual network on your laptop,” http://www.mininet.
org, accessed: 07-11-2015.

B. Pfaff, J. Pettit, K. Amidon, M. Casado, T. Koponen, and S. Shenker,
“Extending networking into the virtualization layer,” in Eight ACM
Workshop on Hot Topics in Networks (HotNets-VIII), HOTNETS 09,
New York City, NY, USA, October 22-23, 2009. ACM SIGCOMM,
2009. [Online]. Available: http://conferences.sigcomm.org/hotnets/2009/
papers/hotnets2009-final143.pdf

“Ryu SDN framework,” http://www.osrg.github.io/ryu, accessed: 07-11-
2015.

Tcpreplay - pcap editing and replaying utilities. [Online]. Available:
tcpreplay.appneta.com

Wireshark - network protocol analyzer. [Online]. Available: wireshark.
org

S. Gangam, P. Sharma, and S. Fahmy, “Pegasus: Precision hunting for
icebergs and anomalies in network flows,” in Proceedings of the IEEE
Conference on Computer Communications (INFOCOM) 2013, Turin,
Italy, April 14-19, 2013, 2013, pp. 1420-1428. [Online]. Available:
http://dx.doi.org/10.1109/INFCOM.2013.6566936

S. Meng, L. Liu, and T. Wang, “State monitoring in cloud
datacenters,” IEEE Transactions on Knowledge and Data Engineering,
vol. 23, no. 9, pp. 1328-1344, Sep. 2011. [Online]. Available:
http://dx.doi.org/10.1109/TKDE.2011.70

M. Dilman and D. Raz, “Efficient reactive monitoring,” IEEE Journal on
Selected Areas in Communications, vol. 20, no. 4, pp. 668-676, 2002.
[Online]. Available: http://dx.doi.org/10.1109/JSAC.2002.1003034

[19] M. Datar, A. Gionis, P. Indyk, and R. Motwani, “Maintaining stream

statistics over sliding windows: (extended abstract),” in Proceedings of
the Thirteenth Annual ACM-SIAM Symposium on Discrete Algorithms,
ser. SODA °02. Philadelphia, PA, USA: Society for Industrial
and Applied Mathematics, 2002, pp. 635-644. [Online]. Available:
http://dl.acm.org/citation.cfm?id=545381.545466

