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Abstract—Diagnosis functionality as a key component for
automated Network Management (NM) systems allows rapid,
machine-level interpretation of acquired data. In existing work,
network diagnosis has focused on building “point solutions”
using configuration and performance management, alarm, and
topology information from one network. While the use of auto-
mated anomaly detection and diagnosis techniques within a single
network improves operational efficiency, the knowledge learned
by running these techniques across different networks that are
managed by the same operator can be further maximized when
that knowledge is shared. This paper presents a novel diagnosis
cloud framework that enables the extraction and transfer of
knowledge from one network to another. It also presents use
cases and requirements. We present the implementation details
of the diagnosis cloud framework for two specific types of
models: topic models and Markov Logic Networks (MLNs). For
each, we describe methods for assessing the quality of the local
model, ranking models, adapting models to a new network, and
performing detection and diagnosis. We performed experiments
for the diagnosis cloud framework using real cellular network
datasets. Our experiments demonstrate the feasibility of sharing
topic models and MLNs.

I. INTRODUCTION

To maintain good customer experience in mobile network
environments, operators need to configure a multitude of pa-
rameters to optimize various network elements. These efforts
result in an increased network management complexity that
requires automated procedures for operations. Automation can
not only improve network-monitoring capabilities by applying
machine-level network performance data analysis, but also
provide ‘“close-the-loop” procedures, in which network man-
agement systems autonomously handle certain types of events.

While automated network management and operation tech-
niques within a single network can improve operational ef-
ficiency, sharing the knowledge learned by these techniques
across different networks could further maximize their use-
fulness. Learning from data is an expensive process due to
the complexity and growing network size. The derivation
of models and operational information from several hundred
different variables and events that are monitored and recorded
for analysis requires a range of actions and processes.

So far, network diagnosis has focused on building “point
solutions” using Configuration Management (CM), Perfor-
mance Management (PM), alarm and topology information
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Fig. 1: A conceptual representation of the diagnosis cloud. The
framework provides the ability to transfer diagnosis information from
a local network to the cloud and vice-versa.

from one network. The capability to collect and share expert
knowledge among different networks does not exist today.
Therefore, the scope of this paper is the design of a diagnosis
cloud framework that enables the extraction and transfer of
knowledge across networks managed by the same operator.
Contributions. This paper addresses the need for sharing
networks’ operational models across different networks. This
is particularly important when new networks are deployed and
they can already take advantage of existing knowledge from
other networks, or when they encounter new behavior that
other networks have already encountered and addressed. Main
contributions include a framework and methods to:

e share the local operational knowledge with the knowledge
cloud in a network-agnostic representation;

e derive new knowledge from the input of all networks;

e re-apply cloud knowledge to individual networks as needed.

II. DIAGNOSIS CLOUD OVERVIEW

An operator has to wait to accumulate experience each time
a new network is deployed or a new issue is encountered.
Problem resolution time is significant, and the user experience
is potentially degraded until the network is sufficiently mature
to provide information which an operator can use to automat-
ically resolve problems and avoid upcoming issues. However,
an NM system can benefit from diagnosis information from the



operator’s other networks. Networks witness similar internal
(e.g., new network equipment, new software) or external (e.g.,
changing deployment environment, operator policy) factors
that can lead to similar diagnosis processes and preventive
mechanisms. While these similarities can be leveraged, cellular
networks also have known technical differences that must be
considered to make knowledge sharing a feasible task. For
instance, an operator may deploy different radio access tech-
nologies (e.g., GSM, LTE) that have different key performance
indicators (KPIs), CM, PM, and alarm information that may
not be comparable to each other. Different vendor equipment
(for the same technology) may use different syntax for network
parameters with the same semantics. Cellular networks can
also have different deployment configurations (rural vs. urban)
to accommodate various needs such as QoS, coverage, voice
and/or data usage patterns, etc.

To address these differences, a diagnosis cloud must be
able to extract knowledge learned by the local diagnosis
process of individual networks, generalize this knowledge
to a network-agnostic representation, fuse and derive new
diagnosis knowledge from all networks, and re-apply and
parameterize knowledge relevant to the target network. Hence,
the diagnosis cloud must address the need for sharing detection
models and diagnosis information across different networks
for the fully automated, joint operation of a set of networks.
Figure 1 presents the overall diagnosis cloud concept.

The Local Diagnostic Agent (LDA) initiates a diagnosis
request to the cloud when it encounters a new unknown
problem. As newly deployed networks mature, they can con-
tribute diagnostic models as the local diagnosis processes
reach acceptable accuracy. LDA function blocks include:

e Local diagnosis models: capture anomalous behavior for
multiple events models are generated by the local network
using a variety of approaches, e.g., machine learning, rule-
based methods, or human-driven.

e Model Assessment: assess the quality of a (local or cloud)
model based on a local criteria.

e Local Database: contains locally used models that were
retrieved from the cloud or derived locally.

The Gateway Diagnostic Agent (GDA) provides the data
translation as knowledge is transferred to/from the cloud. The
main function block of the GDA is:

o Data Translation/Data Generalization: maps local parame-
ters to a network-agnostic form. When transferring knowledge
from the cloud to a local network, this process maps the
network-agnostic general representation into network-specific
parameters. To the extent possible, these mapping operations
should be lossless and privacy-preserving (so that operators
can share data without revealing sensitive information). To
accommodate multiple genres of networks, multiple general
representations are needed to account for the distinctions
between networks, such as different technologies (e.g., 3G,
LTE), vendors, or usage characteristics (e.g., urban vs. rural).

The Central Diagnostic Agent (CDA) manages the global
knowledge base to which all networks contribute reports and

models. The CDA receives requests for model retrieval, ranks
models in the cloud, and forwards relevant cloud models to
the target LDA via the GDA. CDA function blocks include:

e Model Ranking: ranks models in the cloud based on a global
(cloud) criteria or a local criteria (specified by a local network).
e Model Similarity Check: checks the similarity of models
based on a global (cloud) criteria or a local criteria (specified
by a local network).

e Model DB update: updates the model database when new
models are available.

e Model Database: contains the cloud models.

e Global knowledge: contains the global knowledge.

e Global Knowledge Extraction/Analytics: operate on the
model database and analyze its performance, such as extracting
statistics on model usage, determining the accuracy of models
and the best model, determining the best feature set for models,
or combining models into one unifying model, when possible.

III. EXPERIMENTAL EVALUATION

To evaluate our framework, we consider the case where new
cells are added to an operator’s existing network deployment.
However, existing local models lack the proper diagnosis
information to identify the network state of the new cells
and determine if the anomalous behavior was caused by
weather events. Our exemplary framework implementation
uses a topic modeling approach for capturing the network
state and Markov Logic Networks (MLNs) to provide the most
likely explanation for the observed network condition.

Topic modeling [1] is a statistical modeling approach that
uses the maximum likelihood of parameters occurring in a
specific pattern to discover groupings (topics). We apply topic
modeling to KPIs measured at the cell level to identify normal
and abnormal states (topics) of a cellular network. Each topic
is characterized by its distribution of KPI values. A topic is
labeled abnormal if its distributions exceed operator-defined
thresholds.

MLNs [13] are graphical models that allow first order
probabilistic inference over a domain. MLNs allow us to
specify rules (without training data) to express relationships
between observations, such as KPIs, and performance of
the network at different levels of abstraction. We approach
diagnosis by expressing multiple hypotheses within the MLN
rule set, running the inference engine, and querying it for the
most likely explanations for the observed conditions.

A. Network State using Topic Modeling

We applied the topic modeling approach to two real 3G
datasets, called Netl and Net2. For both, we used 5 KPIs
related to cell availability and session setup/success rates. To
emulate the use case scenario described above, we divided our
datasets to represent: 1) an existing network of cells (Net!-
SliceB*); 2) an addition of new cells to the existing network
(Netl1-SliceB); and 3) a set of networks (Netl-SliceA, Netl-
SliceC, Net2-Slicel, and Net2-Slice2) that had submitted their
models to the cloud. Finally, we use all 1032 cells (existing
plus new cells) in Netl-SliceB All as “ground truth” to generate



Role Network No. of No. of | No. of No. of
segment timestamps cells normal | abnormal
topics topics
New Cells Netl-Slice B 1000 853 -
Initial Local Model Netl-Slice B* 1000 179 2 1
Cloud Model Netl-Slice A 785 894 6 12
Cloud Model Netl1-Slice C 1000 986 12 20
Cloud Model Net2-Slice 1 1000 2169 2 8
Cloud Model Net2-Slice 2 1000 2167 4 7
Baseline Model Netl-Slice B All 1000 1032 10 25

TABLE I: Summary of network slices and their role in the diagnosis
cloud analysis.
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Fig. 2: Left: Detection outcome of Netl-SliceB using the
existing local model compared with the baseline model. Right:
Detection outcome of Netl-SliceB using the cloud model
compared with the baseline model.

a Baseline model for which all analysis is compared to assess
performance. Table I summarizes the different network slices
and their role in the diagnosis cloud analysis. While Netl and
Net2 are both 3G networks, they were deployed in different
countries and thus are contextually different (e.g., configu-
ration settings, user requirements, etc). The use of different
slices of Netl is analogous to using different segments of a
larger network with similar context and use of Net2 slices
is analogous to using models from a completely different
network with different context. The diversity of the models
can be gleaned from the variability in the number of normal
and abnormal topics across the different slices (Table I).
Performance Before Applying Diagnosis Cloud. We eval-
uated the abnormal state of new cells using the initial local
model (Netl-SliceB*). We also evaluated the new cells using
the baseline (Netl-SliceB All) model for comparison to help
illustrate the improvements of applying the cloud approach.
Figure 2 Left shows the portion of the new segment in
abnormal state using the initial local model versus the baseline
model. Clearly, we observe that the initial local model assesses
a network state that is much different and erroneously more
anomalous than that measured by the baseline model.
Performance using Diagnosis Cloud. When new cells
are added, the LDA must determine the quality of its local
topic model. For a given test sample of KPI measurements
observed from the new cells, the local model computes the
log-likelihood values using its respective topics. We measure
the mean of these values over a sliding window and extract
the distance of each value from the mean of its window.
When the distance exceeds an operator-defined threshold, the

LDA initiates a model retrieval request to the CDA. The
CDA sends all available models in the cloud to the LDA
via the GDA. For a larger library of cloud models it may
be more advantageous to rank the models and only forward
the most relevant models to the LDA. In our evaluation,
network-specific KPIs represented in the topic models were
the same across different candidate networks. As a result, the
data translation procedure performed by the GDA was a one-
to-one mapping. When network-specific parameters are not the
same (different vendor or Radio Access Technology), a more
elaborated scheme is needed for mapping parameters.

The LDA locally assesses the detection capability of the
cloud models it received from the CDA. Given a sliding
window of KPI data samples from the local network segment,
each topic model computes the log-likelihood of the sample
using its respective topics. Next, we compute the moving
average of the log-likelihood values for each respective model.
Finally, we measure the distance d,,,(x) = ||[LLLy,(z) —
mean(LLLy,,)||, where z is the current data sample from the
new network segment, LLL is the log-likelihood of current
sample, the mean is measured over previous window of
samples, and m; is the ¢-th model from the cloud. For each
sliding window, we select the diagnosis of model m; with
the minimum distance d,,,. Models are ranked based on how
often they are selected. We illustrate the overall results for all
models in the cloud in Table II, as the percentage of times a
model is selected in the ranking process. The higher the value,
the better it is: the Netl-SliceC model had the highest rank.

Figure 2 Right presents the detection outcome for the best-
ranked cloud model Netl-SliceC compared with the baseline
model, when tested on the network segment with the newly
added cells. We note that the cloud model followed much
closer to the baseline detection outcome than the local model
(Figure 2 Left). These results illustrate the benefit of the
diagnosis cloud and its ability to select the best available cloud
model.

B. Network Diagnosis using MLNs

Building on prior work for KPI-based analysis of network
performance [2], we developed MLN models, which determine
whether anomalies detected by topic modeling are caused
by weather-related events. Our MLN generator operates by
accessing KPI measurements, cell metadata, topic model pos-
terior probabilities, along with weather event information. The
MLN reasons over groups of cells, rather than individual cells.
We rely on topic modeling to perform this grouping in an
automated way. Reasoning is performed at the group level,
but weather conditions within the group are weighted by the

Model Window | Window | Window

size 10 size 50 size 100
Netl-Slice C | 38.89% 44.00% 45.56%
Netl-Slice A | 37.88% 31.79% 30.89%
Net2-Slice 1 12.12% 11.89% 11.11%
Net2-Slice 2 11.11% 12.32% 12.44%

TABLE II: The percentage of data samples a model is selected in
the ranking process. The higher the value, the better it is (Netl Slice
C is the favorite model).
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Fig. 3: (a) Net2 local MLN probabilities; (b) Net3 local MLN probabilities; (c) Net2 cloud MLN probabilities.

add [G] (precip(G, FREEZING-RAIN) and anomaly(G)) implies weather_event(G) 5.0;
add [G] (precip(G, LIGHT-SNOW) and anomaly(G)) implies weather_event(G) 2.0;
add [G] (precip(G, SNOW) and anomaly(G)) implies weather_event(G) 12.0;

add [G] (precip(G, HEAVY-SNOW) and anomaly(G)) implies weather_event(G) 15.0;
add [g] ~weather_event(g) 0.1;

add [G] (precip(G, FREEZING-RAIN) and anomaly(G)) implies weather_event(G) 5.0;
add [G] (precip(G, LIGHT-SNOW) and anomaly(G)) implies weather_event(G) 2.0;
add [G] (precip(G, SNOW) and anomaly(G)) implies weather_event(G) 12.0;

add [G] (precip(G, HEAVY-SNOW) and anomaly(G)) implies weather_event(G) 15.0;
add [g] ~weather_event(g) 1.0;

add [g] ~anomaly(g) 1.0;

add [g,y] ~precip(g,y) 0.5;

TABLE III: Excerpts from local (top) and cloud (bottom) MLN
rules. Differences are in bold; the cloud MLN has defaulting rules
and improved weight settings.

number of cells whose geographic location is nearest to a
corresponding weather station.

The MLNs were constructed and evaluated on an hourly
basis for Net2 and Net3 (another network containing infor-
mation for 9242 cells) networks, for which we had access to
weather information. A local MLN was used initially for Net2.
This MLN represents a simple, default set of rules that might
be applied generically to any given network (Table III). The
results of this rule set are shown in Figure 3 (a). Cell groups
that exhibit relatively high weather event probabilities are in
fact anomaly groups as determined by topic modeling, but
the lack of proper defaulting rules in the local MLN causes
those groups to attain an elevated weather event probability
uniformly across the time period. In contrast, Figure 3 (b)
shows weather event probabilities for the Net3 dataset, using
an MLN that has been modified to provide good resolution
for those events. This is a case where the core MLN for
Net3 becomes available in the cloud, and can be evaluated on
other networks to determine whether the local MLN should be
replaced. Figure 3 (c) shows the results of applying the Net3
MLN directly to the Net2 network. Using the mean entropy
measure of MLN quality (lower entropy means higher quality),
the local MLN for Net2 resulted in a mean entropy of 0.666.
When the cloud MLN was applied to the same time series, it
resulted in a mean entropy value of 0.5, which would mean
that the cloud MLN serves as a better choice.

IV. RELATED WORK
To the best of our knowledge, the concept of “diagnosis

cloud,” where network models for cellular network automation
are shared, has not been addressed before. The concept of

model sharing was applied previously, for example, in a cyber
security context [4], [3], where models are shared for the
purpose of detecting attacks across multiple cyber networks.
Wang et al. [15] propose a knowledge transfer scheme for
femtocell networks that takes historical network measurements
from remote cells to address the challenges of data scarcity at
an individual local cell. Based on the environment’s similarity,
the local cell leverages remote measurements to derive the
local diagnostic model. A knowledge transfer scheme has been
proposed for cognitive radio networks [17] to optimize radio
channel selection for improving spectrum efficiency among
densely populated, multi-hop base stations. The target base
station combines its local channel selection table with tables
from neighboring base stations. The location of a neighboring
base station is used to decide if its table contributes to the
local decision-making process to achieve optimal frequency
reuse in a certain area.

V. CONCLUSIONS

This paper proposed a novel framework for sharing diagno-
sis knowledge across cellular networks. Our exemplary imple-
mentation that used topic modeling and MLNs on real datasets
illustrated the benefits of sharing models across networks.
While the proposed scheme is applicable to single network op-
erators and across different operators, sharing can present risk
in disclosing sensitive info. We operate on sensitive info (KPIs,
cell metadata) locally, while the shared topic models consist
of labeled topics associated with KPIs. The shared MLN
models have rules associating weather events with anomalous
behavior. To protect the KPIs and type of event, one could
anonymize this info before or after processing. Secondarily,
we support sharing of context (e.g., location). To preserve
privacy, a user could forego context sharing. A consequence
may be additional processing time spent considering a model
that would have been eliminated, had context been considered.
Even still, an operator may not want to divulge that an
anomalous event occurred, a desire that would require stronger
privacy preserving techniques that are beyond the scope of
this work. Next steps include extensions to the framework to
accommodate more models to increase diagnosis capabilities
and preserve privacy when sharing across different operators.



REFERENCES

[1] D. Blei, L. Carin, and D. Dunson, “Probabilistic topic models,” IEEE
Signal Processing Magazine, 2010.

[2] G. E Ciocarlie, C. Connolly, C. Cheng, U. Lindqvist, S. Novaczi, H.
Sanneck and M. Naseer-ul-Islam, ”Anomaly detection and diagnosis for
automatic radio network verification,” 6th International Conference on
Mobile Networks and Management (MONAMI), September 2014.

[3] G.F. Cretu, A. Stavrou, M. E. Locasto, S. J. Stolfo, and A. D. Keromytis,
”Casting out demons: sanitizing training data for anomaly sensors,” IEEE
Symposium on Security & Privacy, 2008.

[4] G. E Cretu, J. J. Parekh, K. Wang, S. J. Stolfo, “Intrusion and anomaly
detection model exchange for mobile ad-hoc networks,” IEEE Consumer
Communications and Networking Conference, 2005.

[5] F. Forbes, G. Fort, ”Combining Monte Carlo and mean-field-like methods
for inference in hidden Markov random fields,” IEEE Transactions on
Image Processing,vol. 16, no.3, pp.824-837, March 2007

[6] N. Friedman, D Geiger, M Goldszmidt, "Bayesian network classifiers,”
Machine Learning, vol. 29, no. 2, pp.. 131-163, 1997.

[7] D. Heckerman, "A tutorial on learning with Bayesian networks,” In
Learning in Graphical Models, Ed. M. Jordan, Cambridge, MA: MIT
Press, 1999.

[8] D. Hsu, “Algorithms for active learning”, doctoral dissertation, 2010,
retrieved from http://www.cs.columbia.edu/ djhsu/papers/dissertation.pdf.

[9] M. Jacomy, T. Venturini, S. Heymann, and M. Bastian, “ForceAtlas2,
a continuous graph layout algorithm for handy network visualization
designed for the Gephi Software,” PloS ONE, 2014.

[10] 1. Katzela and M. Schwartz, ”Schemes for fault identification in com-
munication networks,” IEEE/ACM Trans. Netw. vol. 3, no. 6, December
1995, pp. 753-764.

[11] Q. Pleple, “Perplexity to evaluate topic models”, retrieved from
http://qpleple.com/perplexity-to-evaluate-topic-models/

[12] T. Papai, S. Ghosh, and H. Kautz, "Combining subjective probabilities
and data in training Markov logic networks,” In Proceedings of Euro-
pean Conference on Machine Learning and Principles and Practice of
Knowledge Discovery in Databases (ECML-PKDD), 2012.

[13] M. Richardson and P. Domingos, “"Markov logic networks,” in Machine
Learning, vol. 62, no. 1-2, 2006, pp. 107-136.

[14] E. Riloff, R. Jones, "Learning dictionaries for information extraction
by multi-level bootstrapping,” In Proceedings of Sixteenth National
Conference on Artificial Intelligence and eleventh Innovative Applications
of Artificial Intelligence Conference (AAAI/IAAI), 1999.

[15] W. Wang, J. Zhang, and Q. Zhang, "Transfer learning based diagnosis
for configuration troubleshooting in self-organizing femtocell networks,”
IEEE Global Telecommunications Conference (GLOBECOM), Dec 2011,
pp. 1-5.

[16] C.-H. Wu and P.C. Doerschuk, ”Cluster expansions for the deterministic
computation of Bayesian estimators based on Markov random fields,”
IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 17, no. 3,
pp. 275-293, Mar 1995.

[17] Q. Zhao, D. Grace, “Agent transfer learning for cognitive resource
management on multi-hop backhaul networks,” Future Network and
Mobile Summit (FutureNetworkSummit), 2013 , pp.1-10, 3-5 July 2013.



