Virtual Machine Priority Adaption
to Enforce Fairness Among Cloud Users

Patrick Poullie, Stephan Mannhart, Burkhard Stiller
Communication Systems Group (CSG), Department of Informatics (Ifl), University of Ziirich (UZH),
Binzmiihlestrasse 14, CH-8050 Ziirich, Switzerland
Email: poullie@ifi.uzh.ch, stephan.mannhart@uzh.ch, stiller@ifi.uzh.ch

Abstract—In recent years fairness problems in data centers
have been pointed out and job/Virtual Machine (VM) scheduling
has been chosen as a solution approach. Clouds are a special
case of data centers, where resources are deployed by VMs in a
highly dynamic manner during VM runtime. However, schedul-
ing only allows influencing resource allocations, when VMs are
instantiated, i.e., before runtime. Thus, runtime prioritization
bears a great potential to manage cloud resources and promote
fairness in clouds, especially, when VMs run over long periods.
Nevertheless, runtime prioritization is not leveraged accordingly.

This paper defines fairness as handicapping VMs of heavy
users during runtime to allocate more resources to VMs of
light users. Thereby, the need to make assumptions on user’s
utility functions is avoided, while different fairness notions can
be captured by adapting the definition of heaviness. Guidelines
for this definition are provided to ensure incentives to configure
and utilize VMs adequately. Finally, OpenStack is extended
in its implementation by a decentralized fairness service to
enforce fairness according to this definition. The fairness service’s
functionality is certified by experiments in terms of overhead and
fairness promotion.

[. INTRODUCTION

Cloud computing allows server farms to provide their com-
bined computing power on demand to numerous users. These
users start VMs that are hosted by the cloud’s nodes. Since
cloud nodes are shared by VMs of different users, Physical
Resources (PR), such as CPU time, RAM, disk I/O, and
network access, become subject to conflicting interests [1].
While in public/commercial clouds resource allocation to VMs
is prescribed by Service Level Agreements (SLA) [2], private
clouds, clusters, and grids are often a commodity. Thus, it
is important to ensure fairness, when allocating resources
of these commodity infrastructures, especially in those cloud
computing environments, where financial incentives for users
do not necessarily exist directly [3].

Cloud computing resource allocation consists of the fol-
lowing two steps, which are conducted continuously and in
parallel:

VM scheduling: During this step the cloud’s orchestration
layer decides which VM is started next and which node hosts
the VM. This step is conducted for every VM that is started
or live migrated.

Runtime Prioritization: During this step a node’s hypervi-
sor, i.e., the node’s operating system, allocates the node’s PRs,
to the VMs. This step is conducted permanently.

978-3-901882-85-2 (©) 2016 IFIP

Thus, the first step decides, which node hosts a VM, and
the second step decides how many PRs this node allocates
to this VM. In particular, because CPU time, disk I/O, and
network access are time-shared, the second step allows to
allocate efficiently these PRs by Proportional Priorities (PP).
Only for RAM, which is space-shared, the (re)allocation may
come with a certain overhead. However, this (re)allocation
still outperforms live-migrating of a VM, as live migration
implies transferring the entire node’s RAM content to another
node. Thus, the second step allows to flexibly manage cloud
resources by changing the priorities of running VMs. For
example, a VM scheduled to a weak node may perform better
than when scheduled to a powerful node, if the weak node
prioritizes this VM.

Accordingly, both allocation steps are important for the
cloud resource allocation process. Although runtime prioritiza-
tion bears great potential to manage the resource allocation in
clouds, VM scheduling is leveraged significantly more often.
This is problematic, since scheduling only allows changing
the order in which VMs are instantiated and is, therefore,
inefficient to manage resource allocation among users that run
VMs over long periods. Also when enforcing fairness, which is
particularly relevant in private clouds, this imbalance of lever-
aging the two steps applies. Two key reasons for this imbalance
are that (i) fair runtime prioritization is harder to define than
fair VM scheduling and (ii) leveraging runtime prioritization
to enforce fairness gives rise to several implementation details,
such as monitoring how many resources VMs utilize, aggre-
gating this information to users, and determining tools to set
VM priorities.

This paper addresses both problems in an integrated manner
as presented in all levels of details in [4]. To tackle (i),
fairness is defined as “handicapping VMs of heavy users
during runtime to allocate more PRs to VMs of light users.”
This definition avoids making assumptions on users’ utility
functions, as utility functions during VM runtime are highly
fluctuant and often unavailable due to technical or privacy
constraints. By adapting the definition of heaviness different
fairness notions can be captured and incentives provided to
users to configure and utilize their VMs appropriately. To
tackle (ii), OpenStack’s implementation is extended by a fair-
ness service that enforces fairness according to this definition.

Fairness is particularly important in private clouds. How-
ever, being able to prioritize VMs in a fair manner during

VM runtime also allows commercial clouds to introduce much
simpler charging schemes for cloud services, such as cloud flat
rates, where users pay a fixed price for a certain quota from
which they can instantiate VMs [3].

Clouds are a special case of data centers, which also com-
prise clusters and grids. Dominant Resource Fairness (DRF)
and Bottleneck-based Fairness (BBF) are the most prominent
approaches to multi-resource fairness in data centers. Both
make the simplifying assumption that resources are required in
static ratios and define how a fair allocation looks like under
this assumption. However, while even during VM schedul-
ing (DRF’s application case) ratios in which resources are
required may change, this is even more likely, during runtime
prioritization (BBF’s application case). Thus, this work here
distinguishes itself from DRF and BBF, as it (i) addresses
the problem of fair runtime prioritization in a manner that is
coordinated among nodes, (ii) is, therefore, complementary to
works on DRF and BBF, and (iii) does not make assumptions
about utility functions. Furthermore, fairness is not defined as
a concrete allocation but as the procedure of prioritizing light
users at the cost of heavy users. Lastly, while DRF and BBF
only consider one consumption vector per user, the approach
presented here also takes user quotas and how users have
configured their VMs (in order to give incentive to configure
VMs properly) into account.

The remainder of this paper is structured as follows: Section
I discusses related work and proves that the approach to
cloud fairness taken here is novel. Section III describes the
organization of cloud resources to conclude on an intuitive
definition of fairness being applicable during runtime, which
leads to the cloud user heaviness definition. While Section
IV describes the implementation of the OpenStack fairness
service to enforce the new fairness notion, the implementation
is evaluated in Section V. Finally, Section VI concludes the
paper and outlines future work.

II. RELATED WORK

Multi-resource Fairness issues in virtualization environ-
ments were first pointed out by [5]. As a solution, [5] defines
Bottleneck-based Fairness (BBF). [6], [7] provide theoretical
insights on this concept and [8] details how BBF can be
implemented between processes that share CPU time, network
access, and disk I/0O. The most prominent definition of data
center fairness is Dominant Resource Fairness (DRF) as intro-
duced in [9]. DRF has been extended in many directions, for
example by indivisibilities of resources and user hierarchies
[10], [11], [12], [13]. A third approach to data centers fairness
is the extension of Proportional Fairness [14] to multiple
resources [15], [16]. All three approaches (BBF, DRF, pro-
portional fairness) assume that resources are required in static
ratios. Thus, these approaches are not suited to be applied to
runtime prioritization of VMs, as here resource dependencies
are unpredictable. Only [8] describes how to theoretically
achieve BBF among running processes with varying demands.
However, it is also unsuited to be applied in clouds, as it solves
the problem by fine-granular resource scheduling.

Because resources during runtime have to be allocated
by assigning priorities to VMs, functions that map (multi-
resource) consumption vectors to (priority) scalars are better
suited. This also avoids the need for assuming utility functions.
[17], [18] present such priority functions and apply these
functions to scheduling. Although these functions are generally
applicable to runtime prioritization, they do not allow to take
the Virtual Resources (VR) of VMs into account, as they only
operate on consumption vectors but not VR vectors. However,
taking VRs into account is important to give incentive to users
to configure their VMs correctly and, thereby, allow for most
efficient resource utilizations.

[19], [20] allows a coalition of users to trade resources
and adapt their VM runtime priorities. The adopted fairness
notion is asset fairness. [19], [20] requires trading mechanisms
and VM demand prediction. When a VM does not utilize all
resources it is entitled to based on its configuration, those
resources may not always be fully utilized by other VMs.
Nonetheless all of these resources are counted, as if they were
contributed to other VMs, wherefore, user’s have no incentive
to configure their VMs correctly.

Thus, those approaches either (i) make assumptions on
utility functions that are unrealistic during runtime, (ii) prohibit
giving incentives to users to configure VMs correctly, or (iii)
require multiple complex mechanisms. These three aspects are
addressed in the novel theoretical approach proven applicable
by the evaluation of an OpenStack-based implementation.

III. PROBLEM AND APPROACH

A cloud consists of a set of users U = {uy,uz,...,us},
a set of nodes N = {nq,ng,...,n,}, and a set of VMs
V ={vy,v9,...,v,}. VMs are started by the users to process
varying workloads. Each VM is hosted by a node, whereat the
cloud scheduling policy (and not the user) decides which node
hosts a VM. Function o: V' — U maps a VM to its owner, i.e.,
the user that started the VM, and a:V — N maps a VM to
the node that accommodates/hosts the VM.

VMs share heterogenous PRs such as CPU time, RAM,
disk I/O, and network access. Let R = {ry,ro,...,rm} be
the set of PRs to be considered for a fair allocation. VMs are
defined by Virtual Resources (VRs), e.g., virtual CPU (VCPU)
and virtual RAM (VRAM), often chosen from a range of
different flavors, i.e., a VM flavor is a set of VRs that a VM
of that flavor has. Especially in private clouds, resources may
be managed by quotas, i.e., each user has a quota that defines
a maximum of VRs that the user’s VMs may have in total.
Function v: V U N UU — RZ, maps (i) VMs to their VRs,
(i) nodes to their PRs, and (iii) users to their quota. Function
w:V — RZ, maps VMs to the load they impose on the PRs
(at a distinct point in time). Arithmetic operations on vectors
are applied point-wise.

Figure 1 illustrates the definitions required. The upper three
circles represent the three sets U, V, and N, as explained
above. The lower three circles represent the VRs, PRs, and
R sets. Functions are represented by arrows between the sets,
e.g., v pointing from V to VRs depicts that function v maps

VRs

virtual scale

PRs R

actual scale

Fig. 1: Dependencies among the definitions of Section III

VMs to their VRs. The endowment function e (cf. Equation
1) determines a VM’s endowment to PRs based on the VM'’s
VRs. Therefore, ¢ connects the t-arrow to PRs. Note that,
although the e-arrow begins in the set VRs, function e actually
maps from V. Values in VRs (and PRs) are vectors. Function
s maps a VM’s endowment to a scalar, indicated by the arrow
from the end of the e-arrow to R. h, maps a VM to its
heaviness, which is the sum of the VM’s s and 0 values.
Function b, is represented by the arrow labeled b,, which
points from the set VMs to the plus between the ends of the
5 and 0 arrows.

A. Problem Statement

Cloud runtime fairness cannot be uniquely defined [3]. The
reason is that heterogenous PRs are shared, while users have
different demands. For example, some users may require more
CPU for their workloads while others require more RAM. A
third user may deploy the cloud for backups, which requires
mostly disk-space and bandwidth. Thus, resource shares are
not objectively comparable.

In economics, the problem of defining fairness is solved by
definitions based on consumer’s utility functions (a consumer’s
utility function maps each bundle to a number quantifying the
consumer’s valuation for the bundle). However, because cloud
user demands (and, therefore, utility functions) change fre-
quently, such definitions can neither be applied nor enforced.

Also, the utilization of PRs is a continuous process and
the allocation of most PRs is managed by weights/shares,
which are referred to as Proportional Priorities (PP) in this
paper. Therefore, the amount a VM receives of a PR cannot
be configured but instead PPs have to be assigned such that
the designated allocation is approximated.

B. Runtime Prioritization Approach

Given the above constraints, this paper defines cloud fair-
ness as the procedure of prioritizing cloud users inversely to
their heaviness, whereat this heaviness is determined by the
stress the user imposes on the cloud. As VMs and thereby
users utilize different heterogenous resources, this definition
requires a cloud user heaviness metric h,:U — R that
quantifies the stress the user imposes on the cloud by summing
up the heaviness of the user’s VMs. The heaviness of a VM
is quantified by VM heaviness metric h,:V — R. Metric b,
can be defined by a function 9: RY; — R that maps the VM’s
multi-resource load vector to a heaviness scalar, as for example
the functions presented in [18], [17] or functions that define
the value of a vector as asset fairness or DRF do (see [4]

for how to define b, such that DRF is captured). However,
such definitions are insufficient to (i) adequately represent the
stress the VM imposes on the cloud and (ii) provide incentive
to users to configure and utilize VMs appropriately.

1) Rewarding Correct VM Configuration: A VM’s VRs are
an indicator of which PRs the VM will utilize during runtime.
Accordingly, the cloud budgets a certain amount of PRs for
the VM based on the VM’s VRs. Therefore, a VM’s VRs de-
termine which node is selected as the VM’s host. For example,
placing “small” VMs on nodes with less remaining capacity
increases the utilization of these nodes and leaves nodes with
more remaining capacity free to accommodate “large” VMs
that cannot be hosted by nodes with less remaining capacity.

As VMs are scheduled based on their VRs to optimize
node utilization, a VM with a load that strongly deviates
from what is anticipated based on the VM’s VRs, leads to
either over-loaded or under-utilized PRs on the VM’s host,
i.e., higher stress for the cloud. Accordingly, b, must give
incentive to users to choose the VRs of their VMs properly,
i.e., the heaviness of a user must decrease the more the user’s
VMs’ VRs conform with the VMs’ load. This is referred to
as the configuration incentive subsequently.

2) Discouraging Idle VMs: Let two users u,, up € U utilize
the same amount of PRs, i.e., the sum of the load their VMs
produce is equal. User u, produces this load by one busy VM,
which utilizes 50 times the PR amount compared to when it is
idle (a VM is idle, when it is running but does not execute any
workload). u, has not instantiated any other VMs. In contrast,
uyp, has instantiated 50 VMs of the same flavor, which are idle.
In order to be able to provide for u;’s VMs if necessary, the
cloud budgets a large amount of PRs, wherefore wu; stresses
the cloud notably more than wu,.

This example can be viewed as a special case of the problem
outlined in Section III-B1 in the sense that v, has 50 VMs
that are poorly utilized compared their VRs. However, it
additionally reveals that, while h, must take the VRs into
account to calculate the “penalty” for the load a VM produces
(cf. Section III-B1), it must also statically account for the VRs
irrespective of the VM’s load. This gives incentive to users to
avoid operating idle VMs and is therefore referred to as the
utilization incentive subsequently.

C. Heaviness

To provide the incentives as discussed above, the heaviness
metric b, is defined as follows.

1) Required Resource Information: The most important
factor that determines the heaviness of users are the PRs users’
VMs utilize. Therefore, resources utilized by every VM during
runtime must be collected. This information (which is denoted
by the function u) is referred to as a VM’s Runtime Utilization
Information (RUI). To provide the configuration and utilization
incentive, all VMs’ VRs are required as input.

Resources are heterogenous and measurable in different
units. To make different resources comparable, a resource unit
must be divided by the cloud-wide supply of that resource.
The cloud-wide supply of every resources is contained in the

Cloud Resource Supply (CRS) := an en t(n;). To calculate
the CRS, the PRs of all nodes are required, which is referred
to as Node Resource Information (NRI).

In summary, the heaviness metric requires each node’s NRI
as well as each VM’s (i) RUI, (ii) VRs, (iii) host, and
(iv) owner as input.

2) Scales and Overcommitment: Overcommitting resources
allows clouds to achieve high utilization. Overcommit ratios
determine the factor by which the sum of VRs of a node’s VMs
can exceed the node’s PRs. For example, when the cloud’s
CPU overcommit ratio is 15, a node with 4 CPU cores can
host VMs with at most 60 VCPUs in total. Higher overcommit
ratios increase the degree of cloud utilization and the chance of
overload. Due to this utilization-overload-tradeoff, there is no
best overcommit ratio. Thus, overcommit ratios differ not only
from cloud to cloud but also from resource to resource. Due
to overcommitment, the sum of quotas is allowed to exceed
the CRS and the sum of VRs of VMs hosted by a node is
allowed to exceed the node’s PRs. In other words, quotas and
VRs are on the virtual scale and PRs are on the actual scale.

3) VM Endowments: The configuration incentive demands
that h, quantifies the heaviness of a user lower, when the
user configures VMs in conformance with the subsequent
workload. The rationale behind this is that based on a VM’s
VRs the cloud expects a certain load of the VM and schedules
the VM on a node that can most economically provide for
this anticipated load. In particular, depending on the cloud’s
overcommit ratios and a VM’s VRs, the cloud budgets a
certain amount of PRs for the VM. Therefore, the better a
VM’s load conforms with budgeted PRs, the less it must
increase the heaviness of its owner. Accordingly, a VM’s
endowment is defined as the amount of PRs that are budgeted
for this VM. This definition allows for multiple functions
e:V — RY, to calculate the endowment. [4] presents three
different functions to define ¢ and identifies

v(a(vi))
2u;€Via(oy)=a(vs) t(V3)

2(1)7‘,) — ’Y(Ui) (])
as the best choice. As the host of a VM is chosen based on how
many PRs are budgeted for this VM, this definition defines the
endowment of a VM as the share of the VM’s host’s PRs that
is proportional to the VM’s VRs. While VRs are on the virtual
scale, this endowment definition maps VRs to the actual scale.
4) VM Heaviness: The heaviness of a VM v; is defined by
by(v;) := s(e(v;)) + 0(v;). Function s: RY;, — R>(defines
the static heaviness to introduce a cost for instantiating a VM
irrespective of its load only based on its VRs. Function s
receives the VM’s endowment as input, which can be viewed
as VRs mapped to the actual scale (cf. Equation 1), and
provides the utilization incentive. To account for the size of a
VM, s must strictly increase with each input dimension.
Function 9: V' — R defines the dynamic heaviness of a VM
and represents the cost of providing for the VM’s load. Let
z,y € RY, and v;,v; € V with u(v;) = u(v;) = z + v,
e(v;) = z and, e(v;) =z +y, i.e, VMs v; and v; utilize the
same amount of PRs and v;’s endowment conforms perfectly

with that utilization, while v;’s endowment is too small. Due to
v;’s and v;’s endowments s(v;) > s(v;) holds true. It is crucial
to choose functions s and 9, such that b, (v;) > b, (v;), which
is referred to as the non-minimalistic condition. If the non-
minimalistic condition would not hold, the static heaviness
would outweigh the dynamic heaviness of a VM, wherefore
the heaviness of a VM could be minimized by minimizing the
VM’s VRs irrespective of the VM’s load. This would violate
the configuration incentive.

It is important that the heaviness of a VM wv; is not less
than zero, as it would give incentive to users to instantiate
more of these VMs. As the static heaviness is always greater
zero, it is feasible that the dynamic heaviness is less or equal
to zero as long as 9(v;) > —s(e(v;)). In particular, one may
wish to define the dynamic heaviness such that it is zero, when
u(v;) = e(v;), as this indicates the equilibrium between VM
utilization and what is budgeted for the VM. In this case,
it is important that the dynamic heaviness is less than zero,
when the VM utilizes less than its endowment. Otherwise,
users would have no incentive to reduce the utilization of their
VMs below the VMs’ endowment.

By choosing ? and s, such that 9(v;) > —s(e(v;)) and
the non-minimalistic condition hold, the configuration and
utilization incentive are provided (cf. [21] for an example).

5) User Heaviness: Data center users can be heterogenous.
In particular, depending on the payment of users or other
differentiation criteria, users can have different quotas. Let
two users uy,us € U instantiate an identical VM. Let u;
have a larger quota than uy. Then, the heaviness of uy must
be larger, since uo utilizes the same resources as wu; but has
a smaller entitlement to the cloud’s resources. Therefore, a
user’s heaviness must decrease with the user’s unused quota.

A user’s heaviness is largely determined by the heaviness
of the user’s VMs. The VMs’ heaviness is calculated from
input on the actual scale (cf. Section I1I-C4), while the user’s
quota is on the virtual scale. Thus, the quota has to be mapped
to the actual scale, before factoring it into the user heaviness.
This practical scaling is done by the user endowment of a user
u;, which is defined as the share of the cloud’s PRs that is
proportional to u;’s quota and calculated by function

Zn]- EN t(nj)
Dupeu tur)

The user endowment is a vector and the heaviness of a user
is a scalar. Thus, function s,,: RT; — R>q has to be defined
to map the user endowment to a scalar that is subtracted from
the user’s heaviness. The recommended choice is 5, = 6.
Finally, the heaviness of a user u; is defined as the sum of
u;’s VMs’ heaviness subtracted by u;’s unused quota, i.e.,

>

v; EV:io(vj)=u,

ey (u;) — (). 2

hu(ul) = hv(vj) *5u(eu(ui))~ 3)

Although BBF and DRF are complementary to the fairness
approach taken in this paper, both fairness notions include
a metric to quantify what users receive. [4] discusses how

these metrics can be reformulated to define b, and why it is
not an optimal choice. In contrast, [3] develops a well suited
definition of b, based on a survey among more than 600
individuals.

IV. IMPLEMENTATION

Out of the box, OpenStack does not leverage runtime prior-
itization to manage resource allocation. Thus, the extension of
OpenStack was performed to introduce the Fairness Service
(FS) being implemented to enforce fairness as discussed.

A. High-level Design and Steps

Two essential node types in the OpenStack architecture are
the controller node and the compute nodes. The controller
node coordinates the cloud, e.g., by scheduling VMs, and
stores essential information to be accessed by other nodes or
administrators. Compute nodes perform the actual processing
of workloads, i.e., hosting VMs. For this purpose, compute
nodes run the OpenStack service nova—-compute that is part
of the OpenStack compute project nova.

Compute nodes have direct access to VMs they host and,
therefore, can monitor the RUI of these VMs and adapt
VMs’ priorities. Thus, runtime prioritization is leveraged by an
additional nova service called nova-fairness. This Fair-
ness Service (FS) enforces fairness in the cloud as discussed
(accordingly, it collects all information discussed in Section
III-C1) and allows for the definition of functions 0,¢,s, and
s’ in oder to adapt the heaviness definition b, (cf. Equation
3). The message exchange between FS instances on different
nodes is decentralized.

Let N/ C N be the set of compute nodes that run the FS
and n; € N7. The pseudocode in Listing 1 describes how the
FS running on node n; calculates the heaviness of users and
adapts the priorities of hosted VMs.

1 while NRI of some node in N/ is missing:

2 send own NRI to nodes of which NRI is missing

3 use NRIs to calculate CRS and normalization vector

4 every p seconds:

5 collect RUI of all VMs hosted by n;

6 apply b, to collected RUI in order to calculate heaviness
of all VMs hosted by n;

7 send this heaviness set to all n € N/ — {n;}

8 wait to receive heaviness set from all n € N¥ — {n;}
9 apply b, to calculate the heaviness of all v € U

10 for every VM v hosted by n;:

11 set priorities of v according to b, (v) and b (a(v))

Listing 1: Steps of the FS running on node n;.

Lines 1 to 3 ensure that the CRS, which is essential to
calculate the heaviness, is available before the FS conducts
any further steps. In order to allow adding nova-fairness nodes
subsequently, the FS responds with its NRI upon receiving the
NRI of a new node (this is not reflected in the pseudo code).
1 in Line 4 defines the interval with which the heaviness
of users and PPs of VMs are updated and is referred to as
the update interval. Every 1 seconds the FS calculates the
heaviness of VMs hosted by n; (Line 5 and 6). This heaviness

set is announced to all nodes (Line 7). When heaviness
sets have been received from all other nodes (Line 8), the
node calculates the heaviness of users (Line 9) from this
information. Lastly, priorities of VMs on n, are set according
to the calculated heaviness (Line 10 and 11).

B. Resource Measurement

Currently the FS takes the following six resources into
account: (i) CPU time in seconds, (ii) memory used in
kilobytes, number of bytes (iii) read from disk and (iv) written
to disk, and number of bytes (v) received and (vi) transmitted
through the network interface.

1) CPU Time Normalization: CPU time, i.e., the amount
of time used for a specific CPU task to complete [22],
measures CPU usage. CPU time provided by different nodes
is not directly comparable. The reason is that cloud nodes are
rarely homogeneous [23] and, therefore, are equipped with
different CPUs. Accordingly, one second of CPU time on
a powerful node is more valuable than one second of CPU
time on a less powerful node. To compare CPU time across
nodes, the FS normalizes CPU time by the nodes’ BogoMIPS
[24]. BogoMIPS is a metric provided by the Linux operat-
ing system to capture the performance of different CPUs.
However, BogoMIPS do not define a scientifically reliable
measure to compare CPUs, wherefore other normalization
references, such as the SPEC value [25], are considered for
future improvements.

2) Resource Utilization Information: The RUI is collected
by deploying an OpenStack driver to access the libvirt
virtualization API. This API allows monitoring the detailed
VM RUI in a unified manner and supports most of the known
hypervisors [26]. Accordingly, the libvirt API provides access
to the RUI for each VM and ensures the FS’s compatibility
with numerous hypervisors. For time-shared resources (CPU
time, disk I/O, network access), the libvirt API provides the
accumulated resource utilization since boot time. Therefore,
the FS calculates the RUI for the current update interval by
subtracting the accumulated utilization at the beginning of the
interval from the accumulated utilization at the end of the
interval. For space-shared resources (RAM) the libvirt API
provides the current utilization, which the FS uses to represent
RAM utilization in the RUI vector.

C. Heaviness Metric

The generic heaviness metric h,, presented in Section III-C
contains wildcard functions ?,¢,s and s’. Accordingly, the
FS adopts this generic heaviness metric and allows defining
these functions. To this end, generic functions are inherited
and overwritten by designated definitions. The definitions to
be used are specified in the nova configuration by the class
path of these definitions. This class path is checked by the
FS for correctness, i.e., whether a correct class with required
definitions exists under that path.

Flavors in OpenStack do not contain a virtual counterpart
for every PR. For example, OpenStack flavors contain VCPU

and VRAM but not virtual disk I/O or virtual network ac-
cess. However, the definition for function ¢ in Section III-C3
assumes that every PR has a virtual counterpart. Therefore,
in case a PR has none, the FS divides its node’s supply of
that PR by the number of hosted VMs. In turn, this result
determines the amount of the virtual counterpart of this PR
every VM on that node owns. For example, when a node with
a bandwidth of 10 Gbit/s hosts four VMs, each VM’s virtual
network access is set to 2.5 Gbit/s.

D. Message Exchange

The FS’s information exchange between compute nodes (cf.
Lines 2, 7, and 8 of Listing 1) is implemented in a decen-
tralized and asynchronous manner. By default, the message
exchange among compute nodes is centralized, as RabbitMQ
[27] is used. The use of ZeroMQ [28] decentralizes the
information exchange with minimal configuration changes. In
both cases, the message volume is quadratic in the number of
compute nodes, as every node sends messages to every other
compute node. Therefore, a message scheme was designed,
that arranges the information flow among compute nodes as a
ring, i.e., every compute node sends messages to and receives
messages from exactly one other compute node. The size of
the messages send on this ring is linear in the number of users.
Therefore, this scheme, is scalable and puts minimal workload
on individual nodes.

E. Calculating and Applying Priorities

The FS allocates resources to VMs by PPs (cf. Lines 10 and
11 of Listing 1). The PP of a VM is a non-negative number for
each resource. These ratios of PPs of VMs sharing a resource
define the percentage that VMs are allocated of this resource.
For example, when two VMs v; and vs share a resource r and
have PPs 1 and 2, respectively, v; is allocated 1/3 of r and vy
is allocated 2/3. In case some VMs do not fully utilize their
share, the leftover is allocated in the same manner to VMs
that request more of this resource. Thus, PPs do not waste
resources, since a resource will always be fully allocated, if
at least one VM requests it.

The allocation paradigm of PPs is best known as weighted
Max-min fairness [29]. Operating systems allow to allocate
most time-shared resources by PPs. However, the name to refer
to PPs differs depending on the resource: In the context of
CPU PPs are termed shares, in the context of disk I/O weights,
and in the context of network access they are associated to
certain queuing disciplines or traffic classes.

All resources except network access are controlled by lib-
virt, wherefore the FS supports most of the known hypervisors
[26]. The ES calculates PPs of a VM wv; based on the number
hp(v;) == by(v;) + bhyu(o(v;)). Number b, (o(v;)) already
includes b, (v;) (cf. Equation 3). However, by adding h,(v;)
again, the individual heaviness of the VM is emphasized, when
setting the VM’s PPs (otherwise all VMs of a user would have
the same PPs). A basic mapping function translates h,(v;) to
PPs. It is future work to define more elaborated mappings.
Generally, the ranges of PPs differ among resources:

CPU time is controlled by setting PPs, alias CPU shares, in
the range [1,100].

RAM is space-shared and not time-shared. Thus, it cannot be
allocated by PPs. In turn, the FS uses soft limits, which are a
minimum guarantee. The FS assigns soft-limits from 10 MiB
to the VMs’ maximum amount of RAM.

Disk 1/0 is controlled by setting PPs, alias disk weights, in
the range [100,1000]. This is the maximal range allowed by
libvirt.

Network access is the only resource that is not controlled by
libvirt, as libvirt only allows setting hard limits for network
access, i.e., a maximum bandwidth that cannot be exceeded
even if no other VM produces traffic. To avoid the cor-
responding potential waste of bandwidth, the FS currently
deploys the more sophisticated HTB qdisc of t c by calling tc’s
corresponding Command Line Interfaces (CLI). This allows
setting PPs in the range [1, 98].

V. EVALUATION

The FS is evaluated in terms of CPU overhead and fairness
promotion among users. The evaluation environment was set
up according to the OpenStack installation guide for Ubuntu
14.04 [30]. All compute nodes are equipped with a 3 GHz
dual-core Intel Xeon E3113 CPU, 4 GB RAM, a 150 MiB/s
hard-drive, and a 1 Gbit/s network connection.

The efficiency/utilization of the FS is not evaluated, because
the FS deploys PPs to achieve the runtime prioritization. These
PPs ensure that no resource is idle, if desired by a consumer
(cf. Section IV-E), and, therefore, guarantee high utilization.
Furthermore, the FS either increases or decreases the PPs of
a VM on all resources. Thus, no adverse ratios of PPs on
different resources occur.

A. CPU Overhead

The CPU overhead is evaluated depending on (i) the number
of VMs, (ii) whether or not VMs are loaded, and (iii) the
length of the update interval. The evaluation was performed
for a single node, as the message exchange among nodes
can be implemented, such that the number of messages a
node receives and sends is a small constant independent of
the overall number of nodes (cf. Section IV-D). Therefore,
the number of nodes does not influence the CPU overhead.
Accordingly, a performance experiment is defined by the triple
(B, \ 1) € Ns1 x {T,F} x NU {co}. 8 defines the number
of VMs that are hosted by the node in the experiment. The
Boolean variable \ specifies whether these VMs are loaded,
whereat load is simulated by stress [31]. i determines the
length of the update interval. If ;1 = oo, the FS is deactivated.
Each performance experiment runs four minutes. The FS’s
CPU overhead is measured by the CPU time that is utilized
by OpenStack processes, when the FS is running (¢ < oo) or
not running (@ = oo). In particular, the OpenStack processes
to be monitored are the nova—-compute, nova-network,
nova—-api-metadata, and nova-fairness services.

2 3
‘ ‘¥4¥U¥ % ST
6 — g, 2
4 3) ‘ — 16 8 Update
Number of VMs (/) 1 Interval Lenght ()
@A=F

H
N
N
>N
o
NN
S

“ w
R o
w
w
gd'!;
G —_—
4 !3§‘m
th%-’
W —_
S
g g
o g
~ ~
TR
(o)}
-—
o
o w
CPU Time

1.79 7
“B 7 -0
—= <-|6 B %4 1
6 s e e 2
33 5 ‘ — 16 8 Update
Number of VMs (B) 1 o Interval Lenght (1)
MAX=T

Fig. 2: CPU time consumed by OpenStack services dependent on the number of VMs () and the update interval (u)

(a) One node n, hosts three
VMs 94,62, and v, whereat
i)i, i}ff belong to user ug and vy,

belongs to user u.

(b) Two nodes host four VMs
that belong to three users that
compete for CPU and disk I/O

Fig. 3: Illustration of the two fairness experiments

200 — 120

L v, Time

L v;; Shares

3 9d Time - 100

C <eeeees 94 Shares
2 50 ¢ Time
8 r ¢ Shares —80
g
= L
2100 —60%
ET >
‘5 r O
= B e e -~ 40
O - .

50 __ Ve AV aVAVANV/ N LOBNGINOALA PN
L . — 20
ol vl]y
3 6 9 12 15

Time in Minutes
Fig. 4: CPU shares and resulting CPU time allocated by the
FS in the fairness experiment as illustrated in Figure 3a

Controlling network access was identified to cause signifi-
cant CPU overhead. In particular, as outlined in Section IV-E,
the Unix application tc is used to apply network priorities,
which implies multiple CLI calls to set priorities. Therefore,
Figure 2 illustrates how much CPU time is utilized by Open-
Stack processes, when the FS does not control the network
access. [4] presents equivalent figures showing how much CPU
time is utilized, when the network access is controlled.

Figure 2 shows that the CPU overhead increases linearly
with the number of VMs and shorter update intervals. There-
fore, the FS’s CPU overhead can be reduced by selecting

longer update intervals. In particular, the CPU overhead caused
by higher numbers of VMs can be contained by increasing .

B. Fairness Promotion Among Users

The two fairness experiments following show if and how
the FS alters VMs’ PPs to promote fairness among users. In
these fairness experiments the update interval of the FS is
10 seconds and the heaviness metric used by the FS is the
greediness metric [3]. [32], [21] include exhaustive numerical
evaluations of using the greediness metric to prioritize VMs.
All evaluations have been conducted over a timespan of 15
minutes. Although the FS is able to monitor and control CPU
time, RAM, disk I/O, and network access, only CPU time
and disk I/O are considered in these fairness experiments to
simplify the discussion. All users in those experiments have
the same quota, wherefore the subtrahend in Equation 3 is
the same for all users. Thus, the size of this quota does not
influence results of the experiments.

When the FS is not running, allocations are determined by
the Completely Fair Scheduler (CFS) [33], which is the Linux
default scheduler and achieves virtually perfect CPU fairness
between (VM) processes sharing a node. However, the CFS is
oblivious to which cloud user owns a VM process. To the best
of the authors’ knowledge, the FS is the first implementation
that establishes cloud fairness solely by adapting the runtime
prioritization of VM processes. In particular, a comparison to
DRF or BBF is not possible, because DRF and BBF introduce
fairness by VM scheduling but not runtime prioritization.

1) Single node, single resource: The setup of the first
fairness experiment is illustrated in Figure 3a and investigates
how the FS promotes fairness on one node n,, when two users
uq and u, content for the same resource. User u, operates two
VMs 0¢ and ©¢ and user u, operates one VM v¢. All VMs
attempt to utilize a maximal amount of CPU time, while not
imposing significant load on any other resource.

Without the FS all VMs receives 1/3 of n,’s CPU time,
which is arguably not fair, as both users have the same quota
but u,4 receives twice the amount of CPU time as u.. Figure

200 200 -
r ’L‘g CPU Time - 1400 r Uq CPU Time —{ 1400
[---- v¢Disk /O [---- v Disk /O
- v? CPU Time —{ 1200 - v CPU Time = 1200
150 |- a 150 |- a
= [v Disk /O 2 [v$ Disk 1/0
S b) —10002 8 | — 1000 2
o) L a2 5 L a
- - =
E T 800 = £ [—{800 .=
2 1 < &'"™f i S
= = B [,'\‘ Ao 600
% A= ;o a
“ 50
0
Time in Minutes Time in Minutes
(a) On node n,, when the FS is (b) On node n,, when the FS is
inactive active

200 200

r — 1400 i - 1400

: 1200 L = 1200
150 150
5 [0002 5 [— 10002
S r m a -l m
- r = = r =
N 800 g & [} —800 =
g 100 v§ CPU Time < 100 :L’ v, CPU Time o
£ ---- U} Diskl/O —600 ¥ E ---- Uy Disk /0 —600 %
2 o] CPU Time) v! CPU Time &
© sof vl Disk/o =400 © 50 v Disk /o =400

0 — 200 =200

ol 1 11y ol 1 11
2 4 6 8 2 4 6 8

Time in Minutes Time in Minutes

(c) On node ny, when the FS is
inactive

(d) On node np, when the FS is
active

Fig. 5: CPU and disk allocation for the fairness experiment as illustrated in Figure 3b

4 shows, how the FS mitigates this unfairness by giving more
CPU shares and, thus, more CPU time to the only VM of ..

The first three minutes demonstrate the FS’s flexibility:
Within this timeframe only ©¢ attempts to utilizes the CPU,
which increases u4’s heaviness and accordingly decreases the
CPU shares of ug’s VMs. Nonetheless, 1’)ff is able to fully
utilize the CPU, because no other VM attempts to utilize
it. Only after three minutes, when the other VMs also start
utilizing the CPU, the shares take effect and uy’s VMs are
throttled in favor of u.’s VM.

2) Multiple Nodes, Multiple Resources: The second fair-
ness experiment investigates how the FS promotes fairness
across nodes, when users content for multiple PRs. Figure 3b
shows this setup, where three users g, u., and uy utilize PRs
on two nodes n, and n;. User uy heavily utilizes the CPU
and disk on n, by VM v¢. User u. attempts the same PR
utilization by VM v¢. However, u. additionally utilizes the
CPU of node n, by VM v;. VM wvf shares this node with
uys’s only VM v{; that heavily utilizes disk. Therefore, the
utilization of vy and v,{ on ny does not interfere, while v¢
and v¢ contend for CPU and disk I/O on n,.

Figure 5 compares CPU and disk allocations with and
without the FS on both nodes. The resources user u.’s VMs
receive are illustrated by blue lines in all figures. Resources
allocated to user ug and uy VMs are illustrated by green and
yellow lines, respectively.

Figure 5a and 5b compare the allocation on n,. Figure 5a
shows that without the FS both VMs on n, receive the same
amount of CPU and disk I/O. Figure 5b shows that the FS
decreases v_’s CPU and disk 1/O allocation in order to allocate
more of these PRs to v. The reason is that the owner of v¢
also consumes PRs on n;. The allocation on ny is compared
by Figure 5c and 5d (v; does not utilize the disk, wherefore
the according line is not visible in these figures) and shows
that the FS increases v{: ’s disk allocation by almost 40%. The
reason is that vg’s owner also utilizes PRs on n, and, therefore,
vl{ is prioritized. Interestingly, although the FS increases vl{ s
disk allocation by 40%, this does not hurt vj.

3) Findings: Without the FS, OpenStack does not leverage
runtime prioritization to promote fairness among cloud users.
The simple scenario where two users compete for one resource
on the same node, most clearly shows this shortcoming (cf.
Section V-B1). Notably, in this scenario fairness can be
established without global monitoring information or a multi-
resource fairness definition. The FS not only achieves fairness
in this scenario, but also in complex settings, where VMs
running on different nodes and utilizing different resources
have to be managed (cf. Section V-B2).

VI. CONCLUSIONS AND FUTURE WORK

This paper proposed a novel and intuitive definition of cloud
fairness and extended the OpenStack implementation by a
Fairness Service (FS) proving its practical applicability.

The FS complements mechanisms that achieve fairness by
VM scheduling, because it adapts VMs’ PPs during runtime.
VM scheduling only allows for managing a cloud’s resource
allocation, when VMs are started. Thus, it is ineffective, when
VMs run over longer periods of time. Accordingly, the FS is
particularly well suited to ensure fairness among users that run
VMs over longer periods. Since resource allocations in private
clouds are not guided by SLAs, as it is the case in commercial
clouds, fairness and, therefore, the FS is more important in
private clouds. The resources a cloud user effectively utilizes
depend on the load of the user’s VMs. Accordingly, even
when users have instantiated the same VMs, resources the
VMs effectively utilize can be different. Contrary to schedul-
ing schemes, this new FS allows for managing and, thus,
streamlining this amount of effectively utilized resources and,
therefore, can be deployed to define fair cloud flat rate payment
schemes, too [3].

Future work needs to implement a compact message scheme
to exchange information of the FS between compute nodes.
Another planned improvement is to account for additional
resources, such as GPUs, disk space, and software licenses.
Finally, the definition of conclusive functions for mapping the
heaviness of users to PPs will be undertaken.

(1]

(11]

[12]

[13]

(14]

REFERENCES

D. Clark, J. Wroclawski, K. Sollins, and R. Braden, “Tussle in
Cyberspace: Defining Tomorrow’s Internet,” IEEE/ACM Transactions
on Networking, vol. 13, no. 3, pp. 462-475, Jun. 2005. [Online].
Available: http://dx.doi.org/10.1109/TNET.2005.850224

D. Breitgand, Z. Dubitzky, A. Epstein, A. Glikson, and I. Shapira, “SLA-
aware Resource Over-commit in an TaaS Cloud,” in 8th International
Conference on Network and Service Management (CNSM) and 2012
Workshop on Systems Virtualization Management (SVM), Las Vegas,
NV, USA, October 2012, pp. 73-81.

P. Poullie and B. Stiller, “Cloud Flat Rates Enabled via Fair Multi-
resource Consumption,” in 10th International Conference on Au-
tonomous Infrastructure, Management and Security, AIMS’16, ser. Lec-
ture Notes in Computer Science, vol. 9701, June 2016.

P. Poullie, S. Mannhart, and B. Stiller, “Defining and Enforcing
Fairness Among Cloud Users by Adapting Virtual Machine Priori-
ties During Runtime,” Universitidt Ziirich, Zurich, Switzerland, Techni-
cal Report IFI-2016.04, https://files.ifi.uzh.ch/CSG/staft/poullie/extern/
publications/IFI-2016.04.pdf, March 2016.

Y. Etsion, T. Ben-Nun, and D. G. Feitelson, “A Global Scheduling
Framework for Virtualization Environments,” in 2009 IEEE Interna-
tional Symposium on Parallel Distributed Processing, ser. IPDPS’09,
May 2009, pp. 1-8.

D. Dolev, D. G. Feitelson, J. Y. Halpern, R. Kupferman, and N. Linial,
“No Justified Complaints: On Fair Sharing of Multiple Resources,”
in 3rd Innovations in Theoretical Computer Science Conference, ser.
ITCS’12, Cambridge, MA, USA, January 2012, pp. 68-75.

A. Gutman and N. Nisan, “Fair Allocation without Trade,” in 11th In-
ternational Conference on Autonomous Agents and Multiagent Systems,
ser. AAMAS’12, vol. 2, Valencia, Spain, June 2012, pp. 719-728.

Y. Zeldes and D. G. Feitelson, “On-line Fair Allocations Based on
Bottlenecks and Global Priorities,” in 4th ACM/SPEC International
Conference on Performance Engineering, ser. ICPE’13, New York,
NY, USA, April 2013, pp. 229-240. [Online]. Available: http:
//doi.acm.org/10.1145/2479871.2479904

A. Ghodsi, M. Zaharia, B. Hindman, A. Konwinski, S. Shenker,
and 1. Stoica, “Dominant Resource Fairness: Fair Allocation of
Heterogeneous Resources in Datacenters,” EECS Department, University
of California, Berkeley, CA, USA, Tech. Rep. UCB/EECS-2010-55,
May 2010. [Online]. Available: http://www.eecs.berkeley.edu/Pubs/
TechRpts/2010/EECS-2010-55.html

D. C. Parkes, A. D. Procaccia, and N. Shah, “Beyond Dominant
Resource Fairness: Extensions, Limitations, and Indivisibilities.” in /3th
ACM Conference on Electronic Commerce, ser. EC’12, June 2012, pp.
808-825.

E. Friedman, A. Ghodsi, and C.-A. Psomas, “Strategyproof Allocation
of Discrete Jobs on Multiple Machines,” in 15th ACM Conference
on Economics and Computation, ser. EC’14, New York, NY, USA,
June 2014, pp. 529-546. [Online]. Available: http://doi.acm.org/10.
1145/2600057.2602889

Q. Zhu and J. C. Oh, “An Approach to Dominant Resource Fairness in
Distributed Environment,” in Current Approaches in Applied Artificial
Intelligence, ser. Lecture Notes in Computer Science, M. Ali, Y. S.
Kwon, C.-H. Lee, J. Kim, and Y. Kim, Eds. Springer International
Publishing, 2015, vol. 9101, pp. 141-150.

A. A. Bhattacharya, D. Culler, E. Friedman, A. Ghodsi, S. Shenker, and
1. Stoica, “Hierarchical Scheduling for Diverse Datacenter Workloads,”
in 4th Annual Symposium on Cloud Computing, ser. SOCC’13,
New York, NY, USA, October 2013, pp. 1-15. [Online]. Available:
http://doi.acm.org/10.1145/2523616.2523637

F. P. Kelly, A. K. Maulloo, and D. K. Tan, “Rate Control
for Communication Networks: Shadow Prices, Proportional Fairness
and Stability,” The Journal of the Operational Research Society,
vol. 49, no. 3, pp. 237-252, March 1998. [Online]. Available:
http://www.jstor.org/stable/3010473

[15]

[18]

[19]

[20]

[21]

(33]

T. Bonald and J. Roberts, “Enhanced Cluster Computing
Performance through Proportional Fairness,” Performance Evaluation,
vol. 79, pp. 134-145, April 2014. [Online]. Available:
https://hal-institut-mines-telecom.archives-ouvertes.fr/hal-01112964

, “Multi-Resource ~ Fairness: ~ Objectives, Algorithms and
Performance,” in 2015 ACM SIGMETRICS International Conference
on Measurement and Modeling of Computer Systems, ser.
SIGMETRICS’15, New York, NY, USA, June 2015, pp. 31-42.
[Online]. Available: http://doi.acm.org/10.1145/2745844.2745869

D. Klusi¢ek, H. Rudovd, and M. Jaro$, “Multi Resource Fairness:
Problems and Challenges,” in Job Scheduling Strategies for Parallel
Processing, ser. Lecture Notes in Computer Science, N. Desai
and W. Cirne, Eds. Berlin/Heidelberg, Germany: Springer, 2014,
vol. 8429, pp. 81-95. [Online]. Available: http://dx.doi.org/10.1007/
978-3-662-43779-7_5

D. Klusatek and H. Rudovd, “Multi-resource Aware Fairsharing
for Heterogeneous Systems,” in I8th International Workshop on
Job Scheduling Strategies for Parallel Processing, Revised Selected
Papers, ser. JSSPP’14, W. Cirne and N. Desai, Eds. Springer
International Publishing, May 2015, pp. 53-69. [Online]. Available:
http://dx.doi.org/10.1007/978-3-319-15789-4_4

H. Liu and B. He, “Reciprocal Resource Fairness: Towards Cooper-
ative Multiple-Resource Fair Sharing in IaaS Clouds,” in 20/4 IEEE
International Conference for High Performance Computing, Networking,
Storage and Analysis, ser. SC’14, November 2014, pp. 970-981.

——, “F2C: Enabling Fair and Fine-grained Resource Sharing in Multi-
tenant IaaS Clouds,” IEEE Transactions on Parallel and Distributed
Systems, vol. PP, no. 99, pp. 1-1, November 2015.

P. Poullie and B. Stiller, “The Design and Evaluation of a Heaviness
Metric for Cloud Fairness and Correct Virtual Machine Configurations,”
in Proceedings of the 13th on Conference on the Economics of Grids,
Clouds, Systems, and Services, ser. GECON’16, September 2016.

C. Thimmannagari, CPU Design: Answers to Frequently Asked Ques-
tions. Berlin/Heidelberg Germany: Springer, 2005.

M. Guevara, B. Lubin, and B. C. Lee, “Navigating Heterogeneous
Processors with Market Mechanisms,” in IEEE 19th International Sym-
posium on High Performance Computer Architecture, ser. HPCA’13,
February 2013, pp. 95-106.

Wim van Dorst, “BogoMips mini-HowTo,” http://www.clifton.nl/index.
html?bogomips.html, 2006, online; accessed February 6th, 2016.
Standard Performance Evaluation Corporation, “Benchmarks,” http://
spec.org/benchmarks.html, 2015, online; accessed February 20th, 2016.
Red Hat, Inc., “Libvirt: Internal Drivers,” https://libvirt.org/drivers.html,
2016, online; accessed February 5th, 2016.

Citrix Systems, Inc., “AMQP and Nova,” http://docs.openstack.org/
developer/nova/rpc.html, 2010, online; accessed February Sth, 2016.
OpenStack Foundation, “OpenStack Wiki: ZeroMQ,” https://wiki.
openstack.org/wiki/ZeroMQ, 2014, online; accessed February 5th, 2016.
B. Radunovic and J.-Y. L. Boudec, “A Unified Framework for Max-Min
and Min-Max Fairness With Applications,” IEEE/ACM Transactions on
Networking, vol. 15, no. 5, pp. 1073—-1083, October 2007.

OpenStack Foundation, “OpenStack Installation Guide for Ubuntu
14.04,” http://docs.openstack.org/juno/install- guide/install/apt/content/
index.html, 2015, online; accessed February 4th, 2016.

Amos Waterland, “stress,” http://people.seas.harvard.edu/~apw/stress/,
2014, online; accessed February 10th, 2016.

P. Poullie and B. Stiller, “Cloud Flat Rates Enabled via Fair Multi-
resource Consumption,” Universitidt Ziirich, Zurich, Switzerland, Tech-
nical Report IFI-2015.03 https://files.ifi.uzh.ch/CSG/staff/poullie/extern/
publications/IFI-2015.03.pdf, October 2015.

M. Tim Jones, “Inside the Linux 2.6 Completely Fair Scheduler,” IBM
developerWorks, December 2009, http://www.ibm.com/developerworks/
linux/library/l-completely-fair-scheduler/; last accessed May 11, 2016.

