
Detecting and Diagnosing Performance Impact of
Smartphone Software Upgrades

Ajay Mahimkar

AT&T

Abstract—Smartphone manufacturers often release software
upgrades to their users for improving service performance,
patching security vulnerabilities, enhancing device stability, fixing
bugs, increasing battery life, or even enriching the graphical user
interface. It is crucial to monitor the smartphones after software
upgrades to either confirm their expected impacts, or quickly
identify any undesirable behaviors. In this paper, we focus on
automatically detecting the software upgrades on smartphones
and analyzing their service performance impacts. The complex
interactions between the software on the smartphones and the
cellular networks make it hard to differentiate if the impacts
are smartphone-centric, or network-centric. We propose a new
approach, SSM (Smartphone Specific Monitoring) for conducting
pre/post impact analysis of multiple service performance metrics
across smartphones aggregated by their type, make, model and
network locations. Using one-year worth of operational network
data, we demonstrate the effectiveness of SSM in accurately
detecting and diagnosing the performance impact of smartphone
software upgrades.

I. INTRODUCTION

In recent years, we have witnessed a phenomenal rise in
smartphone popularity and usage with people from all parts

of the society glued to their smartphones for communication,
entertainment, social network activity, and business needs.

There is a wide variety of smartphones and applications

running on top of them that introduce several challenges for
the service providers as they continue to offer excellent quality

of experience to hundreds of millions of smartphone users.

These challenges will continue to surmount with introduction
of new types of smartphones, Internet of Things (for example,

connected cars, digital homes, connected cities, connected

health), and machine-to-machine (M2M) communications.

The software that runs on these smartphones and supports a

diverse set of applications, plays an important role in providing
a nice graphical user interface, managing the battery life, and

offering excellent service quality of experience to its users. It

also interacts with the underlying cellular networks in creating
a seamless mode of experience and handling user mobility,

changing traffic demands, and application requirements. The

cellular networks are changing at an extremely rapid pace -
technology evolution from GSM to UMTS to LTE, support for

multiple services such as voice, video and data, and network

virtualization. The dynamic nature of both the smartphones
and the cellular networks and their complex interactions make

the service quality management extremely challenging.

The smartphone manufacturers release new hardware mod-

els and software versions to their subscribers for an improved

quality of experience. We will use the terms smartphone
user and smartphone subscriber interchangeably. The cellular

service providers and the smartphone manufacturers have to

carefully monitor these releases and their service performance

impacts. If there is an unexpected degradation, then either the
smartphone manufacturer has to fix it through a subsequent

software release, or the cellular service provider has to up-

date its network configuration. Pinpointing the root-cause is
important for the accurate resolution of the issue.

In this paper1, we focus on the software upgrades2 imple-
mented by the smartphone subscribers and their service perfor-

mance impacts. The smartphone manufacturers expect the ser-

vice performance to improve (or, at-least not degrade) after the
software upgrade because the intention is to either patch secu-

rity vulnerabilities, resolve software bugs on the smartphones,

enhance their stability, improve battery life, or even enrich the
graphical user interface. Besides extensive laboratory testing,

it is important to capture the service performance impacts in

the field because a controlled laboratory environment will not
be able to emulate realistic network conditions and interactions

with the new software on the smartphone. Hence, a small-scale

testing is conducted in the field before the software is made
available to all the smartphone subscribers. The large scale

and heterogeneity of the cellular network makes it extremely
hard to enumerate all possible configuration interactions. Thus,

the cellular service providers and smartphone manufacturers

monitor the performance impacts as the software is rolled out
across all smartphone subscribers.

Our goal is to start with smartphone software upgrades and

conduct a pre/post impact analysis of service performance to
capture their impacts. There are several technical challenges

to be addressed in order to design an effective solution. We

make the following observations based on data collected from
the cellular network: (i) Scale: There are on the order of

hundreds of millions of smartphone subscribers and tracking

software upgrades and their service performance impact at
such a large scale is non trivial. (ii) Heterogeneity: There is a

wide variety of smartphone classes and their software versions.
We use the type, make (or, manufacturer) and model to group

smartphone subscribers into classes. An example type, make

and model is a smartphone that is LTE-capable (type), Apple
(make) iPhone 6S (model). In the rest of the paper, we will

use the terms make and manufacturer interchangeably. The

unique number of smartphone type, make, model and software
version is on the order of thousands. (iii) Staggered software

1No personally identifiable information (PII) was gathered or used in
conducting this study. To the extent any data was analyzed, it was anonymous
and/or aggregated data.

2Software upgrade includes both application upgrade and firmware upgrade.
In the context of this paper, the software upgrade denotes the firmware
upgrade.978-3-901882-85-2 c© 2016 IFIP



roll-out: Once the smartphone manufacturer releases the new

software, not all subscribers would download and install the
software at the same time. This creates a staggered view of the

software roll-out or deployment across subscribers and makes
the impact analysis hard. (iv) Subscriber penetration: Some

smartphone type, make and model are inherently more popular

than others. We define subscriber penetration as the number of
subscribers within the type, make and model compared to the

global subscriber population. We observe a different degree of

subscriber penetration across different type, make and model
that makes performance comparisons hard.

Our approach and contributions. We propose a new
approach SSM (Smartphone Specific Monitoring) to automat-

ically detect software upgrades on the smartphones and their

performance impacts. We use call detail records to capture
attributes of smartphone subscribers (type, make, model and

software version), and call statistics (such as normal termina-
tion status or failure, time spent on network technologies). To

handle the extremely large number of subscribers, we aggre-

gate the call detail records grouped by smartphone hierarchy
of type, make and model and determine the upgrade time

as the time when we have sufficient subscriber penetration

on the new software version. Given the upgrade time, SSM

would compare the service performance before and after at

the aggregation of type, make and model to detect if there

is an improvement, degradation or no impact due to the
upgrade. Note here, we aggregate to the smartphone type,

make and model and do not conduct pre/post performance

comparison across individual subscribers or software version.
This is because the performance metrics at the subscriber-

level could be highly variable for any meaningful analysis and

comparing pre/post at the software version-level has the issue
of different subscriber penetration leading to different perfor-

mance profiles. By operating at the right aggregation level in
the smartphone hierarchy, SSM addresses the staggered roll-

out of the smartphone software upgrades.

We propose to use a recursive cumulative sum approach in

SSM to statistically compare the performance before and after

the smartphone software upgrade to detect the impact, and
use measures such as mean, median, or standard deviation to

label the performance impact as an improvement or a degrada-

tion. To handle the heterogeneity of smartphone and network
configuration, and their complex interactions, we design an

impact diagnosis approach in SSM to categorize the impacts
as network-centric, smartphone-and-network interactions, and

smartphone-centric. An impact is labeled as network-centric

if both the upgraded and the non-upgraded smartphones have
similar performance impacts around the software upgrade

time. An impact is labeled as having smartphone-and-network

interactions if only specific locations in the network have the
performance impact on the upgraded smartphones. An impact

is smartphone-centric if it is network-wide and observed only

for the upgraded smartphones. Our goal in this paper is
to identify smartphone-centric impacts of software upgrades.

The diagnosis approach filters out the network-centric and

smartphone-and-network interactions and accurately identifies
the impact of smartphone software upgrades.

We present a thorough evaluation of SSM using one year

worth of operational data collected from a large cellular

service provider (Section V). Our results demonstrate the
effectiveness of SSM in the accurate classification of network-

centric impacts, smartphone-and-network interactions, and
smartphone-centric impacts. Encouraged by the successful

application of SSM, we are working on deploying it in

production environments.

Remarks. The SSM solution perspective is from a cellu-

lar service provider. The smartphone manufacturers do not
have visibility into performance experienced by the users

with smartphones belonging to other manufactures and hence
cannot accurately capture if the impact is primarily due to

the smartphone software, or due to events in the cellular

network. Impacts due to events in the network are false
associations from the smartphone manufacturer perspective

because the resolution of the issue should come from the

network and apply to all smartphones. The cellular service
provider is in a better position to differentiate the impacts

due to network versus smartphone software and can notify

the smartphone manufacturer of the smartphone-centric im-
pacts. Depending on the root-cause analysis, the smartphone

manufacturer can decide to resolve in a subsequent software

release. Our approach benefits (a) the cellular service provider
by not requiring them to invest resources in resolution of the

impacts caused primarily by the smartphone software, and (b)

the smartphone manufacturers by not requiring them to invest
resources in resolution of the impacts caused by the network.

II. CAPTURING SMARTPHONE SOFTWARE UPGRADES

Our goal is to capture the software upgrades on the smart-
phone subscribers along with the time of the upgrade. The

cellular service provider maintains a database of subscriber

information such as smartphone type, make, model, and oper-
ating system version, date of activation, and voice/data service

plan details. We use call detail records (CDRs) collected by

the cellular service provider to detect software upgrades on
the smartphones. CDRs contain a record of each voice call

and data session that the smartphone subscriber places on the
cellular network. They are collected in real-time at the core

switches in the network (Mobile Switching Center for voice

CDRs and Session Gateway for data CDRs).
The voice and data CDRs provide a variety of informa-

tion including connection times, duration, originating and

terminating IMSI (International Mobile Subscriber Identity),
termination status (a call can be terminated normally by the

subscriber, or abnormally terminated by the network resulting

in a blocked or a dropped call), originating number IMEI
(International Mobile Station Equipment Identity), and a list of

cells (base stations) utilized by the call. The IMEI information

is used to map the subscriber to smartphone type, make, model
and operating system version. The IMEI consists of 16 digits

- the first 8 digits represent the Type Allocation Code (TAC).

TAC is used to identify the type, make, and model of the smart-
phone. The last 2 digits represent the operating system version

installed on the smartphone. A change in the last 2 digits of
the IMEI between CDRs for a subscriber indicates a software

version upgrade. This approach of tracking software version

upgrades has tremendous scalability challenges because the
number of CDRs in a 5-minute time-window can easily exceed



Fig. 1. Overview of SSM workflow. SSM uses CDRs as the input to detect
smartphone software upgrades and service performance metrics derived from
CDR to output their impacts.

hundreds of millions of records. Section IV-A will describe our

scalable approach to detect smartphone software upgrades.

III. CAPTURING SERVICE PERFORMANCE

For a given software upgrade on a smartphone, we would
like to identify the list of service performance metrics that need

to monitored. We again use call detail records that provide the

status of termination (either subscriber-triggered or network-
induced), and list of cells it traverses (the voice call or data

session can either be on LTE, UMTS or GSM network). We

define a blocked call as a failed connection attempt, and a
dropped call as an abnormal termination by the network. Both

blocked and dropped calls can either be due to issues in the

radio access network (referred to as RIF issues), or due to
issues in the core network. We use the list of cells to identify

the terminating cell and the technology type (LTE, UMTS or

GSM). The call then gets labeled as successful termination,
blocked/dropped RIF (at radio access network) or non-RIF (at

core) and at specific technology. For example, VoLTE RIF
captures the dropped voice calls in the LTE network.
Ideally, we require all LTE capable smartphones to use the

LTE network. But sometimes, they might fall-back to either

UMTS or GSM network because of lack of coverage, over-
load condition, software bug, or hard failure. Such scenarios

however, should be rare. Hence, we measure the number of

calls not on LTE (CNOV) and time not on LTE (TNOL) for
LTE capable smartphones.

IV. DESIGN AND IMPLEMENTATION

In this section, we present the design and implementation of

SSM. Figure 1 gives an overview of the SSM workflow. SSM

continuously monitors the call detail records and identifies
the software upgrades on smartphones (Section IV-A). These

upgrades serve as trigger for the pre/post performance impact
detection (Section IV-B). By comparing the service perfor-

mance before and after the time of the software upgrade, SSM

classifies the impact as either improvement, degradation, or no
change (Section IV-C). Finally, SSM compares these impacts

across network locations and non-upgraded smartphone to

accurately diagnose the impact of upgrades (Section IV-D).

A. Upgrade Detection

As described in Section II, we use the subscriber IMEI
information in each call detail record to infer the smartphone

make, model, type and software version. Detecting software

upgrades on smartphones requires us to track changes in
the software version for each subscriber. This operation can

be computationally expensive and require a huge amount of
storage to handle hundreds of millions of subscribers. We

propose a simple yet effective approach for scalable detection

of software upgrades on smartphones. Recall that our high
level goal is to identify the performance impact of a soft-

ware upgrade across smartphone make and model, and not

for individual subscribers. We can thus aggregate the CDR
information and conduct the impact analysis for a group of

subscribers belonging to a smartphone make and model.
We use the mapping TAC → {make, model, type} to map

the subscribers to the make, model and type of smartphones.

By combining the TAC with software version, we compute
the number of subscribers on a particular software version

for a given smartphone make, model and type. We store the

number of subscribers on a periodic basis within the aggrega-
tion hierarchy. Figure 2 shows the aggregation hierarchy for

mapping from IMEI to software version, model, make and

type. We thus have a time-series of the number of subscribers
on a software version. Dividing it by the total number of

subscribers within the smartphone make, model and type, we
compute the subscriber penetration for a smartphone make,

model, type, and software version. The computation of the

number of subscribers for each smartphone make, model, type,
and software version aggregation is light-weight as compared

to tracking the changes for each subscriber. The storage is

also considerably lower because we now have to store the
time-series only at the aggregated levels.
For detecting upgrades, we mine the subscriber penetration

time-series and look for increasing trends starting from zero or

a very low penetration value and ramping up. The maximum

value for subscriber penetration is 100% indicating that all
subscribers for the aggregation are on the software version.

We constrain the ramp-up to begin from zero. Else, we might

inaccurately discover the intermediate time of the software
roll-out as the start of the upgrade. Typically, the subscribers

would catch up to the new software versions within a few days
(given the push notifications from smartphone manufacturers).

For impact analysis, we would need to identify the date of

upgrade around which one can compare performance before
and after. If we pick the upgrade date too soon, then we have

a smaller subscriber penetration making it hard to conduct

meaningful statistical analysis. A date too far has the issue
of contaminated baseline for the before interval. Thus, it is

crucial to accurately identify the date of software upgrade.
We use a threshold-based approach to identify the date for

the software upgrade corresponding to a smartphone make,

model, type and software version. Once the subscriber penetra-
tion reaches the threshold, the date would serve as the trigger

for pre/post impact analysis. We select a moderately low value

of 10% as the threshold d so that the pre upgrade interval can
capture the performance behaviors with majority of subscribers

on the older software version and the post upgrade interval can
capture the performance behaviors with majority of subscribers

on the newer software version. For smartphone make, model,

type and software version with high subscriber penetration,
we have a sufficient number of samples (or, subscribers) for



Fig. 2. Aggregation hierarchy used in SSM. The IMEIs can be on the order
of hundreds of millions.

statistical analysis. For very low subscriber penetration, the

ramp up should be fast (within a few days) because of low

number of total subscribers. However, if the ramp up is slow,
we will adopt the impact detection approach to adjust for

accurate impact analysis.

Note that SSM primarily uses the software version infor-

mation from IMEI to track smartphone software upgrades. In

some cases, the users can modify their smartphone software
by updating with a customized ROM. The customized ROM

does not follow the numbering convention in terms of IMEI,

which makes it difficult to determine the right software version
using our approach. In the future, we will explore alternative

methods to determine the smartphone software version without

relying on IMEI.

B. Impact Detection

Given the trigger time of the smartphone software upgrade,

our goal is to detect if there is a statistical change in be-
havior in its service performance. If the service performance

behavior changes around the smartphone software upgrade in

an unexpected fashion, then it is important to the cellular
service provider and the smartphone manufacturer for further

investigation. We again use the call detail records for each
smartphone to compute the service performance metrics ag-

gregated by the smartphone make, model and type. We use

the same aggregation hierarchy as shown in Figure 2. This
approach is scalable across a large number of subscribers

(hundreds of millions) and an extremely large number of

call detail records (hundreds of millions of termination status
of calls within 5 minutes). Also, note that our approach is

a one-pass parsing of the call detail records to construct

subscriber penetration and service performance aggregates
across smartphone make, model and type. There is a subtle

difference between the aggregates - subscriber penetration is

stored at {make, model, type, software version} and service
performance is stored at {make, model, type}. This is to enable
creation of the baseline performance time-series data.

In order to deal with variability in the service performance

time-series, we use a recursive cumulative sum (CUSUM)

algorithm to identify multiple change-points. Recursive cu-
mulative sum is good at detecting level shifts and ramp up or

down behaviors [15]. We use a sufficiently long duration for
creating the pre and post interval performance time-series. This

eliminates any transient unrelated change-points (for example,

point anomalies and spikes). For each change-point ct, we note
features such as time of behavior change, time of previous

change-point ct−1 and subsequent one ct+1, statistical mea-

sures such as mean, median, and deviation for before interval
(t − 1 to t), and after interval (t to t + 1). We now iterate

through all change-points to identify the nearest co-occurring
smartphone upgrade time. If the time difference between the

performance change-point and smartphone upgrade is less

than a threshold T , then we label it as having a statistical
performance impact of software upgrade.

We adjust the threshold T based on the subscriber pen-

etration of the smartphone make, model, type and software
version. We propose an adaptive mechanism to control the

correlation time-window between the smartphone software

upgrade captured across the make, model and type, and the
performance impact observed across all smartphones for that

make, model and type. For high subscriber penetration, we

expect the performance impact to be visible immediately after
the upgrade time detected using our approach described in

Section IV-A and hence we set a lower threshold value for
T . We use T = +/ − 3 days in our evaluation. For very

low subscriber penetration, if the ramp up on upgrade is fast,

then we can use the same threshold above. But, we adapt it
to a higher value for very slow ramp ups for low subscriber

penetration (we use T = +/ − 9 days).

C. Impact Classification

Once our impact detector identifies a statistical change
in performance behavior around the smartphone software

upgrade, the next step is to identify if the behavior change cor-

responds to an improvement, degradation, or no impact. This
classification is important and useful to capture the expected

or unexpected behaviors of smartphone software upgrades.

For example, if the smartphone manufacturer resolves any
issues in previous software versions, then our expectation is a

performance improvement in the new version compared to the

old. For the co-occurring change-point around the smartphone
software upgrade, we use the statistical measures before and

after the upgrade interval to label the service performance as

an increase (high value in the after interval as compared to
the before), decrease or no impact. Depending on the type of

service performance metric, we then label it as improvement,
degradation, or no impact. For example, increase in VoLTE

RIF percentage indicates a performance degradation because

it corresponds to an increase in the number of VoLTE dropped
calls by the network. On the other hand, increase in data

throughput indicates a performance improvement.

At this point, we know the performance impact labeled with
the software upgrade on the smartphones. One has to use

caution because the co-occurrence can merely be coincidental.

False co-occurrences can occur due to (a) the performance
impact for smartphone software upgrade can overlap with a

network-wide impact induced by a network upgrade, (b) the

performance impact can be different across different network
locations and cancel out when aggregating at the smartphone

make, model and type - this can happen due to conflicting in-
teractions between network software and smartphone software,

or (c) external factors such as holiday season, foliage changes,

traffic pattern changes can impact service performance across
multiple smartphones and not just the ones that had the



Fig. 3. Upgrade and service performance impact summary.

software upgrade. We tackle false co-occurrences using our

impact diagnosis approach described in the next sub-section.

D. Impact Diagnosis

We devise an impact diagnosis approach to eliminate im-

pacts due to network-centric behaviors and interactions be-

tween software on the smartphone and the network. We call
the true co-occurrences as smartphone-centric performance

impacts of smartphone software upgrades. We append the

aggregation hierarchy in Figure 2 by incorporating network
location information. We run our impact detection and clas-

sification approaches not only for the upgraded smartphones

but also for the non-upgraded ones at these network locations.
We use the following rules to eliminate false co-occurrences:

1. If similar performance impacts (for example, improve-

ment) are observed across both upgraded as well as non-
upgraded smartphones, then we label it as network-centric.

This tackles the network-wide impacts and external fac-

tors. We then eliminate network locations in the network
aggregation that have similar performance impacts across

upgraded and non-upgraded smartphones.
2. For the remaining locations, we label them with the

performance impact for the upgraded smartphones in that

location. We count the number of network locations with
performance improvement versus degradation and compare

their difference to a threshold K . If the two numbers

are close to each other (less than K), then we label
the performance impact as induced by smartphone-and-

network interactions. K can be determined using a learn-

ing approach based on historical data that captures the
impacts observed across multiple network locations for the

upgraded smartphones. We observed that the difference be-

tween the number of network locations with improvement
and those with degradation is less than 2 for scenarios

where the smartphone-and-network interactions at specific
locations led to a contrasting impact across locations. We

thus set K = 2 in our setup.

The final impact of the smartphone software upgrade is
determined by the majority of the network locations with

similar labels of performance impact. These rules though

simple, are powerful enough to accurately identify the true
performance impact of smartphone software upgrades.

Upgrade Impact Impact Impact
detection detection classification diagnosis

43 seconds 4 hours 164 seconds 51 seconds

TABLE I
EXECUTION SPEED OF SSM TO ANALYZE ONE YEAR WORTH OF DATA.

V. EVALUATION

We use one-year worth of data collected from operational

cellular network to thoroughly evaluate SSM.

A. Results

Figure 3 provides a summary of the smartphone software
upgrades and their service performance impacts captured using

SSM. Out of 2358 software upgrades across different smart-

phone make, model and type, we observe that 629 result in a
statistical impact across at-least one of the service performance

metrics. From a monitoring perspective, the impact detection

in SSM achieves a 73.32% reduction in the number of
software upgrades that the operations teams would have to

look at. After conducting impact classification and diagnosis,

SSM eliminates 424 false co-occurrences. This results in
91.31% reduction - a significant one from the operations

team perspective and efficient utilization of their scarce time

resources in zooming into the 205 smartphone-centric ones.
Table I shows the execution speed of SSM in analyzing

one year worth of data. The daily summary of the CDR data

is computed using a separate process and with a daily cron job.

Given the daily CDR data, SSM took around 43 seconds to
detect the smartphone software upgrades. The impact detection

took the maximum (around 4 hours) because of the application
of the recursive CUSUM across smartphone type, make, model

and the network locations. The correlation of the impact

with upgrade time and the impact classification took around
164 seconds. Finally, the impact diagnosis took around 51

seconds. In summary, SSM took around 4 hours to capture

the smartphone software upgrade impact after analyzing one
year worth of data.

B. Operational Case Studies

In this section, we present two operational case studies
that we validate using SSM. All of the case studies were

historically analyzed by the operations teams of the cellular
service provider and incurred a significant time overhead (on

the order of days) in collating the smartphone aggregated data

and analyzing the impacts of the software upgrades. SSM

however is able to scalably and quickly mine the large-scale

data and accurately identify the performance impacts.

Case study I: In our first case study, we used SSM to
identify a minor performance degradation in VoLTE RIF as

the software version was upgraded by the smartphones from

version X to version Y . At the time of the degradation, the
service operations teams had notified the smartphone software

manufacturer and it was confirmed as a software bug in version

Y . The smartphone manufacturer fixed the issue in software
version Z . We used SSM to confirm that the VoLTE RIF

improved as the software upgraded from Y to Z . As can be
seen in figure 4, VoLTE RIF first increases after first software

upgrade (X → Y). The increase in VoLTE RIF indicates a

higher number of voice over LTE call failures in the post
upgrade interval as compared to the pre interval. With software



Fig. 4. Case Study I: Performance impact of smartphone software upgrades
on Voice over LTE (VoLTE) call failures due to RIF (radio access network).
The first software upgrade (X → Y) led to minor performance degradation
which was resolved in the next software release (Y → Z).

Fig. 5. Case Study II: TNOL (Time Not on LTE) data performance improve-
ment observed across both upgraded as well as non-upgraded smartphones.
This indicates a false co-occurrence that is accurately captured by SSM.

version upgrade from Y to Z , we notice an expected improve-

ment (decrease) in VoLTE RIF that matches the expectation of
the cellular service provider and the smartphone manufacturer.

Case study II: Our second case study is an interesting
validation example using SSM. Figure 5 shows performance

improvement in TNOL (Time not on LTE) data not only for the

smartphones that had the software upgrade, but also for the
non-upgraded smartphones. A decrease in TNOL data after

the software upgrade indicates that more time is spent on

LTE which is desirable, and hence considered as a perfor-
mance improvement. If someone had looked at these impact

agnostic of the performance behaviors of the non-upgraded

smartphones, then they would have inaccurately concluded
the improvements. By looking across the spectrum, SSM

accurately captures no performance impact of the upgrade.

VI. RELATED WORK

Software upgrade impact analysis. Mercury [15] uses

time-alignment and aggregate change detection to provide

a holistic view of the performance impact after network
upgrades. PRISM [13] is a real-time detection tool and uses

robust singular value decomposition to detect performance
anomalies immediately after planned maintenance activities.

FUNNEL [25] conducts rapid and robust impact assessment

of software changes deployed in large Internet-based services.
It uses Difference-in-Difference (DiD) approach to conduct

a relative comparison of performance between upgraded and

non-upgraded servers. Spectroscope [19] and X-ray [2] com-
pare two executions of program before and after the change

to diagnose performance changes. Litmus [14] uses robust
regression tests to compare performance between study group

(network elements with upgrade) and control group (network

elements without the upgrade) and quantify the performance
impact on the study group. A/B testing [8], [9] are used in

the web domains for assessing the impact of new feature

releases. None of the above approaches were aimed at the
problem scope of identifying the impact of smartphone soft-

ware upgrades. SSM tackles the large scale of the number of

smartphone subscribers (on the order of hundreds of millions)
by analyzing the impacts at the right aggregation hierarchy.

Service diagnosis. Argus [24] uses Holt-Winters based

forecasting to detect and localize end-to-end service anomalies
in large ISP networks. ASTUTE [21] is a traffic anomaly

detector that leverages equilibrium across flows and correla-

tion across anomalies. PCA [6], [10], [11], [18] is used to
detect network-wide anomalies for origin-destination traffic

matrices. [26] uses spatio-temporal compressive sensing to

detect anomalies in traffic matrices. Sherlock [3] proposes
a multi-level graph inference to discover the service-level

dependencies in enterprise networks and Orion [5] uses delay
timing analysis to discover traffic dependencies. [1] uses IP

flow data to diagnose end-to-end performance of the mobile

Internet. NICE [16], WISE [22], Giza [12], NetMedic [7],
GRCA [23], and URCA [20] use statistical data mining to

identify dependencies between network and service perfor-

mance metrics. QProbe [4] uses active and controlled network
measurement to localize the performance bottleneck in cellular

networks. ABSENCE [17] uses aggregated customer usage

data to detect service disruptions in cellular networks. Its
focus is on customer usage whereas, SSM focuses on multiple

service performance metrics on the smartphones (such as

dropped calls due to issues in the radio access networks, time
not spent on LTE for LTE capable smartphones), and impacts

only induced by the smartphone software upgrades.

VII. CONCLUSIONS

In this paper, we presented the design and implemen-

tation of SSM, for detection and diagnosis of impacts of

smartphone software upgrades. SSM uses call detail records
to automatically detect changes in software versions on the

smartphones. It then conducts a pre/post impact analysis on
the service performance metrics and identifies if there is an

improvement, degradation, or no impact around the software

upgrade. By correlating impacts across network locations and
non-upgraded smartphones, SSM accurately diagnoses the

performance impacts. We used one-year worth of operational

network data to demonstrate the effectiveness of SSM.

Acknowledgement

We thank Aman Shaikh, Zihui Ge, Jennifer Yates, Rizwan

Muzaffar, our shepherd Michele Nogueira and the CNSM
anonymous reviewers for their insightful feedback on the

paper. We acknowledge the support from the Mobility Network

Operations and Engineering teams in validation of SSM and
case study analysis.



REFERENCES

[1] C. Amrutkar, M. Hiltunen, T. Jim, K. Joshi, O. Spatscheck, P. Traynor,
and S. Venkataraman. Why is my smartphone slow? on the fly diagnosis
of underperformance on the mobile internet. In DSN, 2013.

[2] M. Attariyan, M. Chow, and J. Flinn. X-ray: Automating root-cause
diagnosis of performance anomalies in production software. In USENIX
OSDI, 2012.

[3] P. Bahl, R. Chandra, A. Greenberg, S. Kandula, D. A. Maltz, and
M. Zhang. Towards highly reliable enterprise network services via
inference of multi-level dependencies. In ACM SIGCOMM, 2007.

[4] N. Baranasuriya, V. Navda, V. N. Padmanabhan, and S. Gilbert. QProbe:
Locating the bottleneck in cellular communication. In ACM CONEXT,
2015.

[5] X. Chen, M. Zhang, Z. M. Mao, and P. Bahl. Automating network
application dependency discovery: Experiences, limitations, and new
solutions. In USENIX OSDI, 2008.

[6] Y. Huang, N. Feamster, A. Lakhina, and J. J. Xu. Diagnosing network
disruptions with network-wide analysis. In ACM SIGMETRICS, 2007.

[7] S. Kandula, R. Mahajan, P. Verkaik, S. Agarwal, J. Padhye, and P. Bahl.
Detailed diagnosis in enterprise networks. In ACM SIGCOMM, 2009.

[8] R. Kohavi, A. Deng, B. Frasca, R. Longbotham, T. Walker, and Y. Xu.
Trustworthy online controlled experiments: five puzzling outcomes ex-
plained. In ACM KDD, 2012.

[9] R. Kohavi, R. M. Henne, and D. Sommerfield. Practical guide to
controlled experiments on the web: listen to your customers not to the
hippo. In ACM KDD, 2007.

[10] A. Lakhina, M. Crovella, and C. Diot. Diagnosing network-wide traffic
anomalies. In ACM SIGCOMM, 2004.

[11] A. Lakhina, M. Crovella, and C. Diot. Mining anomalies using traffic
feature distributions. In ACM SIGCOMM, 2005.

[12] A. Mahimkar, Z. Ge, A. Shaikh, J. Wang, J. Yates, Y. Zhang, and
Q. Zhao. Towards automated performance diagnosis in a large IPTV
network. In ACM SIGCOMM, 2009.

[13] A. Mahimkar, Z. Ge, J. Wang, J. Yates, Y. Zhang, J. Emmons, B. Hunt-
ley, and M. Stockert. Rapid detection of maintenance induced changes
in service performance. In ACM CoNEXT, 2011.

[14] A. Mahimkar, Z. Ge, J. Yates, C. Hristov, V. Cordaro, S. Smith, J. Xu,
and M. Stockert. Robust assessment of changes in cellular networks. In
ACM CoNEXT, 2013.

[15] A. Mahimkar, H. H. Song, Z. Ge, A. Shaikh, J. Wang, J. Yates, Y. Zhang,
and J. Emmons. Detecting the performance impact of upgrades in large
operational networks. In ACM SIGCOMM, 2010.

[16] A. Mahimkar, J. Yates, Y. Zhang, A. Shaikh, J. Wang, Z. Ge, and C. T.
Ee. Troubleshooting chronic conditions in large IP networks. In ACM
CoNEXT, 2008.

[17] B. Nguyen, Z. Ge, J. V. der Merwe, H. Yan, and J. Yates. ABSENCE:
Usage-based failure detection in mobile networks. In ACM MOBICOM,
2015.

[18] H. Ringberg, A. Soule, J. Rexford, and C. Diot. Sensitivity of PCA for
traffic anomaly detection. In ACM SIGMETRICS, 2007.

[19] R. R. Sambasivan, A. X. Zheng, M. D. Rosa, E. Krevat, S. Whitman,
M. Stroucken, W. Wang, L. Xu, and G. R. Ganger. Diagnosing
performance changes by comparing request flows. In USENIX NSDI,
2011.

[20] F. Silveira and C. Diot. URCA: Pulling out anomalies by their root
causes. In IEEE INFOCOM, 2010.

[21] F. Silveira, C. Diot, N. Taft, and R. Govindan. ASTUTE: Detecting a
different class of traffic anomalies. In SIGCOMM, 2010.

[22] M. Tariq, A. Zeitoun, V. Valancius, N. Feamster, and M. Ammar.
Answering what-if deployment and configuration questions with WISE.
In ACM SIGCOMM, 2008.

[23] H. Yan, L. Breslau, Z. Ge, D. Massey, D. Pei, and J. Yates. G-RCA: a
generic root cause analysis platform for service quality management in
large ip networks. In ACM CoNEXT, 2010.

[24] H. Yan, A. Flavel, Z. Ge, A. Gerber, D. Massey, C. Papadopoulos,
H. Shah, and J. Yates. Argus: End-to-end service anomaly detection
and localization from an ISP’s point of view. In IEEE INFOCOM,
2012.

[25] S. Zhang, Y. Liu, D. Pei, Y. Chen, X. Qu, S. Tao, and Z. Zang. Rapid
and robust impact assessment of software changes in large internet-based
services. In ACM CoNEXT, 2015.

[26] Y. Zhang, M. Roughan, W. Willinger, and L. Qiu. Spatio-temporal
compressive sensing and internet traffic matrices. In ACM SIGCOMM,
2009.


