
A Flexible and Open DRM Framework

Kristof Verslype and Bart De Decker

Department of Computer Science, K.U.Leuven,
Celestijnenlaan 200A, B-3001 Leuven, Belgium

{kristof.verslype,bart.dedecker}@cs.kuleuven.be

Abstract. Current DRM implementations rely on obfuscating the inner
working of the DRM client. Moreover, the rights to consume content are
rather device bound than person bound. We present a first step towards
an open DRM framework which is based on the security of its building
blocks. The presented framework binds the right to consume content to
persons instead of to devices. An extension of the current TPM specifi-
cation is proposed to enhance the security of DRM clients.

Keywords: DRM, Digital Rights Management, TPM, smart card, e-
commerce

1 Introduction

DRM (Digital Rights Managent) is a technique to allow owners of digital content
to control access to and distribution of this content and to restrict its usage in
various ways which can be specified by the owner or his/her delegates.

Current implementations are closed source and most details are hidden, be-
cause, currently, the security of the DRM technologies relies on the secrecy of
algorithms in the DRM client. Due to this approach, even the DRM technologies
that are considered as the most mature and most secure are broken (see [7]).

On the other hand, current technologies lack flexibility in many ways. This
paper is intended to be a next step towards more flexible DRM. Firstly, the
ability to consume content is bound to the consumers themselves, where cur-
rently, this is bound to one or more devices. Secondly, the presented framework
is flexible in the sense that it is based on building blocks that can be replaced if
they are no longer considered appropriate. The required building blocks are not
all equally mature, but we can expect that this will impove in the near future.

The basis of the person binding solution is to have two types of licenses: a
content license and a root license. A content license gives a specific consumer
the right to perform some actions on DRM protected content. A root license is
device bound and enables the consumer to use all his content licenses on that
device. A reasonable extension of the current TPM specification is proposed in
order to obtain a DRM framework that is hard to break.

In the next section, the general DRM concepts are introduced. In section 3,
some building blocks are briefly explained. Section 4 presents the DRM frame-



work. Section 5 analyses the security properties. Section 6 compares the con-
struction with existing implementations. The paper ends with the conclusions
and future work in section 7.

2 General DRM Concepts

This section introduces the main concepts of DRM. An introduction to the
technical aspects of DRM can be found in [6].

Content refers to the data to protect. This can be multimedia, text, applica-
tions or other data constructs. Performing an action on content is called content
consumption. The producer is the entity that owns the rights to distribute and
sell content. The consumer obtains and consumes content and the publisher owns
and manages the DRM system used to distribute content. The online DRM sys-
tem is the (set of) server(s) offering DRM services to consumers and producers.
The DRM client is the entity at the consumer side that is responsible for se-
curely performing the DRM-specific operations such as the enforcement of the
usage rules (the rights).

Usually, a prevention mechanism (encryption) is combined with a detection
mechanism, which allows for identifying the source of misuse when illegally dis-
tributed content is found. Usage rules are associated with the corresponding
DRM protected content. Licenses introduce a separation of DRM protected
content and the usage rules associated with it. The latter describe the actions
allowed on the content. Before consumers are able to use protected content, they
first have to obtain a corresponding license that enables them to use the content
according to the usage rules described therein.

A contract can be agreed between publisher and producer stating the terms
of the agreement (e.g. royalties and usage rules of the licenses).

3 Cryptographic Primitives and Techniques

Besides the classical cryptographic primitives such as hash functions, digital sig-
natures, certificates, public and private encryption, some less commonly known
techniques will be needed to develop the DRM framework.

Watermarking (see [2]) embeds some information into content without no-
ticeably changing the content. The watermark has to be undetectable by human
perception. Strong watermarks survive manipulations such as D/A A/D conver-
sions. It is one of the least mature technologies used in DRM.

White-box cryptography (see [3], [4]) assumes that the adversary can
fully analyse the software implementation and the run-time instances, including
the execution of cryptographic functions. White-box cryptography embeds a key
in code such that it remains hidden from adversaries.

Code guarding (see [5], [1]) is a collection of techniques used to prevent
tampering with the code during execution. Code guarding is useful when appli-
cations run on untrusted hosts.

TPM (Trusted Platform Module, see [12]) was specified by the Trusted Com-
puting Group. The TPM guards the system security status during startup and



runtime. This status can also be interrogated later on. The TPM has some pri-
vate keys embedded that cannot be read by anyone. These all have their corre-
sponding public keys and certificates. The TPM offers the possibility to protect
key material for outsiders, to authenticate the system to third parties, to prove
the system’s security status to third parties, to generate random numbers, to
seal content and to detect configuration changes. On top of the TPM, a Trusted
environment is built and an API is offered to the applications.

The TPM has its own cryptographic co-processor which cannot be addressed
directly from outside the TPM. The TPM has volatile and non-volatile memory
which can be used to store information in the TPM. Authentication to the TPM
is based on knowledge of a shared secret. Other entities can get authorized by
the TPM owner to access the TPM. It is possible to establish a confidentiality
protecting transport session between (remote or local) processes and the TPM
with the consent of the TPM owner. The TPM v1.2 has its own mechanism to
do access control of software processes to the TPM. The TPM has a symmetric
encryption engine to protect the confidentiality in transport sessions, to encrypt
data that is stored outside the TPM, ... The TPM can store data such as keys in
an encrypted form on the hard disk, such that it can only be decrypted by that
TPM. The data is also integrity protected. The TPM v1.2 specifications offers
monotonic counters. A process can get exclusive access to a monotonic counter
such that it can be read out and incremented by that process. The TPM’s Tick
Counter can, with some external support enable secure time stamping. The TPM
specification describes more functionality, but these are the most crucial ones
for the DRM framework.

4 Framework

In this section, the framework is elaborated. We first divide the online DRM
system into components. We then give a high level overview of our approach,
followed by the assumptions made. Finally, the framework itself is described.

4.1 Components

In [8] different components in a generic DRM architecture were identified. We
slightly adapt these to our specific needs. The result is shown in figure 1. In
the center, we have the online DRM System, which consists of multiple services
that are available to the consumer (via the DRM client) or the producer (via
a producer tool). The Import Service (IS) is used to add new content to the
online DRM system. The Content Service (CS) and License Service (LS) pro-
vide content and corresponding licenses. The Registration Service (RS) enables
or disables a device to consume the consumer’s content. The Identification Ser-
vice (IdS) identifies the source in case illegally distributed content is found. The
Client Setup Service is contacted to install or update a DRM client. The black
arrows indicate communication initiated by (and with the consent of) the con-
sumer or producer. The grey arrows indicate communication between the online
services.



Fig. 1. Relevant DRM services

4.2 Content License and Root License

We distinguish between content licenses and root licenses as shown in figure 2.
Content licenses are enablers for a consumer to consume specific content

according to some predefined set of rights. Content Licenses are not bound to
and thus independent of any device. A content license can be written formally as
(”content”, Idlicense, Idcontent, IdC , IdLS ,KE

content, rights, dateexpiry)sigLS . ”content”
determines the license category, Idlicense uniquely identifies the license, Idcontent

the content to which the rights apply, IdC the license owner (the consumer) and
IdLS the issuing License Service; rights specify the associated rights. The en-
crypted content key KE

content can only be decrypted at the consumer’s side with
the help of a root license. A content license expires at dateexpiry. The content
license is signed by the issuing LS. We will often drop the word ”content” as
prefix when talking about content licenses.

Root licenses are enablers for a consumer to use content licenses on a specific
device. Without a root license, a consumer cannot consume content on that
device. Each user needs a separate root license for each device he/she wants
to use. A root license is issued by a Registration Service and can be formally
written as (”root”, IdC , IdRS , Idlroot, SKE

lroot, dateexpiry)sigRS which is analog
to the content license. Each (registered) consumer has been assigned (but not
given) one secret root key SKlroot. It is encrypted in the root license of the
consumer for that device such that only the TPM can get hold of it (even not
the consumer himself). This key is required to decrypt the encrypted content
key in content licenses.

We distinguish between public computers, semi-public computers and private
devices. Public computers are used by a lot of (often occasional) users. These are
for instance computers in a cybercafe or public library. Semi-public computers
are used by a limited set af users. A typical example is the home computer used
by all the family members. Private devices are typically used by a single person
(its owner) examples are mobile phones and MP3 players. On public (and semi-
public) computers, we must avoid that anyone using that computer can consume
the rights of another consumer. Therefore, the consumer need to authenticate
to the DRM client. A simple login/password is not sufficient, because this can
be shared by multiple persons. We thus need an authentication mechanism such



that the DRM client is sure that the authenticating person is indeed the owner
of the root license. Therefore, smartcards could be used: e.g. electronic identity
cards, which are being issued by the governments of several countries. These
electronic identity cards have the advantage that the owner is not keen to give
or lend it to others and that each civilian has one. On the other hand, on private
devices this smartcard authentication is not really necessary and would even be
highly impractical. Smart card authentication is indicated with a dashed line in
figure 2.

Fig. 2. A root license is required to consume DRM protected content on a specific
device. A smartcard is required to consume content on (semi) public computers.

4.3 Assumptions

The different entities involved need certificates for authentication purposes, in-
cluding the output devices such as display devices, which have to prove their
trustworthiness. We assume that the output devices have decryption capabili-
ties, and that the decrypted content in the output devices cannot be captured,
such that the signal only travels the expected way.

The (new) methods described below must be added to the current TPM
interface. The entity calling this functions must be authenticated to the TPM.

– A method true/false ← storeKey(Kname, name, policy), which stores the
key Kname into the non-volatile memory of the TPM. A policy policy is as-
sociated with it, determining what the caller of the function or other entities
are able to do with the key. The caller of this function becomes the owner
of the TPM stored key Kname. The TPM also stores the name of the key
and the identity of the key owner. The latter can be an application, but still,
the TPM owner must give his/her consent before this method is executed to
prevent abuse.

– A method IdKname ← loadKey(name), which loads a TPM stored key with
a given name in the volatile memory of the TPM. The TPM checks the
policy associated with the key before the function is executed. i.e. the caller



of this function is authorized first. A pointer to the loaded key is returned.
Only the caller of this function is authorized to use this pointer.

– A method IdK ← decrypt(KE , IdKdec
), which decrypts the encrypted key

KE with the key referred to by IdKdec
. The key Kdec must be loaded in

the TPM’s volatile memory beforehand with the loadKey() method. Only
a pointer to the key K is returned. The key thus never leaves the TPM.
The TPM authorizes the caller of the decrypt() function to execute this
function only after having verified the policy corresponding to KE (see the
storeKey() method) and after having verified that the caller of this function
is also the owner of the pointer IdKdec

.
– A method decryptAndSend(IdK , contentEi , Idoutput) decrypts the content

block contentEi using the key in the TPM’s volatile memory referred to by
IdK and confidentially sends it to the output device with id Idoutput (after
output device authentication). Again, Authorization is given to the caller
after having checked the policy file and the ownership of the pointer.

– The method true/false ← deleteKey(name) removes the key Kname, to-
gether with the associated data such as its policy, out of the TPM’s non-
volatile memory. Only the TPM owner or owner of the key (i.e. the one who
executed the storeKey(∗, name, ∗) method) can get authorized by the TPM
to do this.

An authentication mechanism is required such that the application can au-
thenticate towards the TPM by proving ownership of an embedded key using
white box cryptography, but without knowing the key value itself.

We think that these extensions are feasable. Firstly, TCG is planning to ex-
tent the TPM specifications with policy support (see [10] section 2.4). Secondly,
if we omit the decryptAndSend() method, all the proposed methods are theo-
retically possible in the most recent TPM specification (V1.2). In fact, besides
the policy support, only the API and some access control must be added to the
TPM. Thirdly, the most difficult extension seems to be the decryptAndSend()
method, because current TPMs do not support mass symmetric encryption.
However, hardware implementation of symmetric algorithms such as AES are
easy and cheap.

4.4 Protocols

In this section, the different protocols required in the DRM framework are de-
scribed at a high level. The functionality of the less relevant protocols is only
briefly explained. We refer to the full report (see [13]) for all details.

The properties of the communication links are indicated with the letters ”I”
(integrity), ”C” (confidentiality) and ”A” (authentication) above the commu-
nication arrows. An indirect connection is indicated with an ”*”. For example,
B

AI↔ A means that both A and B need to be authenticated, and that the
messages, which are sent in both directions, have to be integrity protected. Ab-
straction is made of the user authentication.



Content submission. The producer negotiates a contract with the Import
Service IS before the producer submits the content. IS sends the content to the
Content Service CS and the usage rules to the License Service LS.

DRM client installation. To install a DRM client, the Client Setup Service
CSS is contacted. CSS embeds a key in the new DRM client using white-box
cryptography, applies code guarding and sends the DRM client to the consumer.
This key is also imported in the TPM by CSS (hidden for, but with the consent
of the consumer) and will be used to authenticate the DRM client to the TPM
and to DRM services. The public key of the top level CA (Certification Author-
ity) for DRM services is also imported in the TPM by CSS using the storeKey
method. The policy states that the key can only be changed by the CSS, but
other entities can view it. The DRM client will use it to verify the validity of
licenses. The security properties (e.g. code guarding type) of the DRM client can
be sent to the Registration Service RS by the CSS.

Device Registration. Devices must be registered before they can consume
content. If the DRM system is convinced of the thrustworthiness of the device
(in fact the TPM guarding it) and the installed DRM client, the consumer will
obtain a per user root license, while the key KTPM−C necessary to extract the
root key from the root license is imported in the TPM. The DRM client is only
given permission to use this key for cryptographic operations performed inside
the TPM. The per user root license key Klroot is encrypted with this key. Only
the TPM can thus get hold of the Klroot. RS knows the id of the DRM client
and the consumer because these need to be authenticated. By simply registering
a device, i.e. by requesting a root license for it, C is thus able to use all his
content licenses and content on that device. When a consumer registers his first
device, Klroot is first generated (and stored at RS by retrieveRootKey.

1 C
AI→ RS registrationRequest(certTPM )

2 TPM
A∗↔ RS proofSystemSecurityStatus()

3 TPM
A↔ client

A↔ RS checkDRMClientSecurityStatus()
4 RS KTPM−C ← genKey()

Klroot ← retrieveRootKey(IdC)
KE

lroot ← encKT P M−C (Klroot)
5 C ← RS licenseroot ← send((...,KE

lroot, ...)sigRS)
6 TPM

ACI∗← RS storeKey(KTPM−C , TPM − C, {Idclient : crypto use = yes})
7 RS store(IdC , IdTPM , datecurrrent)
8 LS ← RS send(IdC ,Klroot)
The proofSystemSecurityStatus() starts a protocol already available in current
TPMs. While executing checkDRMClientSecurityStatus(), the DRM client
proves his identity by proving ownership of the embedded key (using white-box
crypto). This is enough for RS to look up the security properties of the DRM
client. Optionally, the TPM could be used to further enhance the protocol.

Content request. The consumer C retrieves DRM protected content contentWE .
The protected content is watermarked with the transaction id to enable consumer



identification in case of abuse detection. A proof of the transaction details is
agreed and stored by CS. Because the proof contains all relevant data, includ-
ing the transaction id, which are signed by the consumer, this can indeed be
considered as a proof. The key to decrypt the content is sent to the License
Service LS for inclusion in a license.

1 C
AI→ CS request(IdC , Idcontent)

2 C
A↔ CS proof ← (Idcontent, IdC , Idtransaction, timestamp)sigSKC

3 CS content← retrieveContent(Idcontent)
Kcontent ← genKey()
contentW ← watermarkPKIdS

(content, Idtransaction)
contentWE ← encKcontent

(contentW )
4 CS

IA→ C send(Idcontent, contentWE)
5 CS

IAC→ LS send(IdC , Idcontent, Kcontent)

License request. Once the consumer has retrieved protected content, he/she
can request a corresponding license. After receiving a request, the License Ser-
vice LS retrieves the rights, encrypts the corresponding content key Kcontent

with the per user root license key Klroot. LS indeed has knowledge of both keys.
This encrypted key is included in the license. Klroot is generated and sent to RS
if it wasn’t generated beforehand.

1 C
IA→ LS send(IdC , Idcontent, IdlicenseType)

2 LS Kcontent ← retrieveContentKey(Idcontent, IdC)
Klroot ← retrieveRootKey(IdC)
KE

content ← encKlroot
(Kcontent)

rights← retrieveRights(IdlicenseType)
3 C ← LS license← (IdC , ...,KE

content, rights, ...)sigLS

Content Consumption. After having obtained a root licence on the de-
vice, DRM protected content and a corresponding device license, the consumer
will be able to consume the content. The DRM client verifies whether the action
is allowed or not. This also includes checking the validity of the licenses. The
DRM client retrieves a pointer to KTPM−C , which is used to let the TPM de-
crypt KE

lroot. Klroot is loaded in the internal volatile memory of the TPM. Only
a reference is returned, such that it can be used to decrypt KE

content in a similar
way. Once the content key is known by the TPM, client sends the content to
the TPM which decrypts it and confidentially sends it to the output device.

1 C → client consume(contentWE , license, licenseroot, action, Idoutput)
2 client actionAllowed(license, licenseroot, action, Idoutput)
3 client

AC→ TPM IdKT P M−C ← loadKey(TPM − C)
IdKlroot

← decrypt(IdKT P M−C
, licenseroot.K

E
lroot)

IdKcontent ← decrypt(IdKlroot
, license.KE

content)
decryptAndSend(IdKcontent , contentWE , Idoutput)



Identification. The identification Service IdS is the only entity that is able
to identify the source of abuse when unencrypted but watermarked content is
found by extracting the watermark. The embedded transactioon id can be used
to retrieve the transaction details signed by the consumer.

Device Deregistration. Old devices can be unregistered to prevent further
consumption of DRM content on that device. The DRM client sends a request
to the Registration Service RS. RS establishes a confidential connection with the
TPM and removes KTPM−C (and associated data such as the policy) stored by
the TPM by executing the deleteKey(TPM − C) method on the TPM. Once
this is done, RS locally removes the registration tuple.

Rights often are time related. The DRM client thus needs a tamper resistant
clock. The DRM client is able to detect tampering with the system clock by
using a tick counter and a monotonic counter, complemented with an online
timing service (see the report [13] for details).

5 Analysis

Leaking secret key data. If no extra protection mechanism is present, which is
the case in current computers, the content of the internal memory can be leaked
by doing memory dumps, or by reading swap data. At the consumer’s side, the
sensitive key information is only in clear text in the shielded volatile memory of
the TPM. Only the DRM client is authorized to request decryptions with the
key, without ever having access to the key itself. The online DRM system also
knows secret key information (e.g. Klroot). Classical protection mechanisms are
required here. The confidentiality of the symmetric key used by the DRM client
to authenticate, depends on the robustness of the applied white-box cryptogra-
phy algorithm. Keys are always transferred confidentally. It must not be possible
to extract DRM keys out of the TPM.

Leaking unencrypted content. Measures must be taken by the publisher
and producer to keep the content secret using classical cryptography. The only
place at the consumer side where content (or the decrypted keys) resides unen-
crypted is in the TPM and in the output device. We assumed that the latter is
sufficiently protected. Thus, even if the DRM client is broken, the consumer or
an attacker cannot get hold of the content.

Spreading of recorded content. It is impossible to avoid recording of
content once it leaves the output device (e.g. recording audio). This is called
the analog gap, which is bridged by inserting a watermark that contains the
transaction identifier. The spreading of content relies on the robustness of the
watermarking scheme that is used.

Rights extension or theft. We rely on existing code guarding techniques to
detect tampering with the functionality of the DRM client. If the code guarding
is broken, the rights can no longer be enforced. This may allow the consumer
to extend his ’rights’ in an illegal way. Still, the consumer can not get hold of
the content or sensitive key information. If a set of DRM clients is considered
insecure, the consumers can be forced to update their DRM client when a new
root license is required. Typically, the lifetime a root license will be rather short.



This is not necessarly an extra burden to the consumer, because it can be made
invisible for him/her.

During the client installation, the TPM is requested to store the public key
of the DRM public key of the top level CA. The certification chain verification of
a root license or content license does not succeed without this public key. Thus,
the consumer cannot take the encrypted keys out of valid licenses and put them
into e.g. self signed licenses with more rights.

Only C can obtain a root license for his/her devices. If no consumer authen-
tication is required before content can be consumed, C can simply give another
consumer C ′ illegal access to content by placing a root license on C ′’s device.
Therefore, it is important that the number of root licenses that C can have at
the same time is limited and that C has to authenticate to the DRM client on
(semi) public computers before he/she can consume content.

The clock tampering detection mechanism avoids that consumers consume
content after expiry of the content license or root license. When a root license
is found expired, the Registration Service RS will request the TPM to remove
the associated symmetric key. The registration record stored by the Registration
Service will also be deleted after expiry.

If a DRM client is found compromised or insecure, RS will try to establish a
connection with the TPM in order to remove KTPM−C the next time the device
connects to the internet. A new root license will only be issued after having
updated the DRM client. However, this cannot always be enforced and consent
of the TPM owner will be required.

With the current technologies, the services can be convinced of the trust-
worthiness of the system and the DRM client. The DRM keys can be stored by
the TPM. However, cryptographic functions are performed by software. Keys
and output of these cryptographic functions are stored in the internal mem-
ory, which can be obtained by the consumer. The DRM extensions presented
in this paper thus offer a considerable increase towards secure DRM. In current
solutions, the security is often based on code obfuscation. Knowing the hidden
algorithms enables consumers to extract the content if a valid license is present.
This framework does not rely on secrecy of algorithms, but only on secrecy of
keys.

If a trustworthy DRM client is replaced by a non trustworthy one, the latter
will not succeed in getting authorization by the TPM when trying to consume
content, because it lacks the white-box crypto embodiment of the key needed to
authenticate..

6 Comparison with Existing Technologies

More and more, DRM is apprearing in new products such as Compact Disks
and MP3 players. All companies owning the technologies try to hide as much
details about the inner working as possible. Recently, we have seen Sony’s DRM
technology on CDs being critisized for creating hidden files on the consumer’s
system and for running secretly processes that can compromise the system’s



stability. These files are hard to remove without losing access to your CD-drive.
If we look at Microsoft’s Windows Media DRM and Apple’s Fairplay (used in
iTunes and iPod), we see the same: they do not offer much information about
the inner working and trust on the secret keeping of algorithms that are used by
their DRM clients. E.g. Windows Media DRM uses code obfuscation to hide the
algorithm that derives the DRM client key. Fairplay has similar problems. Sooner
or later, these algorithms will be discovered, resulting in the DRM technologies
being broken.

One important aspect in this paper is that we provide an open DRM system;
anyone may know the inner working. We can compare the evolution in DRM
with the evolution of cryptography in general where we saw a change from hid-
ing algorithms to hiding keys. Our framework uses several building blocks that
can be replaced if necessary. At the moment, only Windows Media DRM offers
limited updates for its DRM clients, however if the algorithms are revealed, more
than a simple update is required. Another important aspect of this framework
is the binding of rights to users instead of to devices.

The presented framework needs more hardware support, which is indispens-
able to have secure DRM. The key information must not be exposed, which is
only possible with hardware or operating system support. Microsoft is working
on NGSCB (see [9]), which should offer operating system support similar as the
operating system based solution presented in [11]. In the case of DRM, the con-
sumer must be seen as a potential adversary. Therefore, we think that it is hard
to combine open source and DRM support in operating systems. The presented
solutions indeed requires extra hardware support, but can still be used on open
source operating systems such as Linux.

7 Conclusion and Future Work

In this paper, we presented a flexible DRM framework that is more secure than
existing technologies. To have a secure DRM technology that cannot be bro-
ken by consumers or other attackers, we need protection against memory space
snooping. This can be done by hardware or operating system support. This pa-
per presented a hardware based solutions, whereof we think that these allow a
greater degree of openess and simplicity than the operating system approach.
The hardware based solution needs some extensions to the current TPM (v1.2).
We argued that the current TPM offers a good basis such that minimal exten-
sions satisfy to allow secure DRM systems. This paper can be seen as a proposal
towards TCG to extend the TPM for DRM purposes. Of course, appropriate
watermarking, code guarding and white box cryptography is required. These
technologies can only be seen as blocks in a complete DRM system. Only the
most essential key information is hidden while at the same time the function-
ality of the DRM client is protected. This paper tried to identify the crucial
protocols. Extra services and protocols can be added. The paper is high level,
but hopefully, it will help in developping mature DRM.

As part of future work, stateful licenses will be taken into account. These
limit the number of times certain actions on the content can be performed by



the owner of the license. Conditional anonymity will be added, such that the
identity of both producer and consumer is not revealed in the case of normal
usage. This will be applied in the domain of e-health. Delegation of rights and
DRM client revocation will also be tackled. This should allow the owner of rights
to lend, give or sell part of these rights to others.

References

1. M. J. Atallah, E. D. Bryant, M. R. Stytz. A survey of Anti-Tamper Technologies.
2004.

2. Mauro Barni and Ingemar J. Cox and Ton Kalker and Hyoung Joong Kim. Digital
Watermarking, 4th International Workshop, IWDW 2005, Siena, Italy, September
15-17, 2005, Proceedings.

3. S. Chow, P. Eisen, H. Johnson and P.C. van Oorschot. A White-Box DES Imple-
mentation for DRM applications. In Proceedings of ACM CCS-9 Workshop DRM
2002, volume 2595 of Lecture Notes in Computer Science, pages 1-15. Springer-
Verlag, 2003.

4. S. Chow, P. Eisen, H. Johnson and P.C. van Oorschot. White-Box Cryptography
and an AES implementation. SAC 2002 - 9th Annual Workshop on Selected Ar-
eas in Cryptography, Aug.15-16 2002, St. John’s, Canada. Proceedings (revised
papers): pp.250-270, Springer LNCS 2595, 2003.

5. Bill Horne, Lesley Matheson, Casey Sheehan, and Robert E. Tarjan. Dynamic
Self Checking Techniques for Improved Tamper Resistance. ACM Workshop on
Security and Privacy in Digital Rights Management, pages: 141 - 159, 2001.

6. William Ku and Chi-Hung Chi. Survey on the Technological aspects of Digital
Rights Management. ISC 2004: 391-403, 2004.

7. Windows Media DRM 10 cracked?. http://www.engadget.com/2005/02/01/windows-
media-drm-10-cracked/, 2005.

8. S. Michiels, K. Verslype, W. Joosen, B. De Decker. Towards a software architecture
for DRM. DRM ’05: Proceedings of the 5th ACM workshop on Digital rights
management, 2005.

9. Microsoft Next Generation Secure Computing Base
http://www.microsoft.com/resources/ngscb/default.mspx.

10. G.J. Proudler. Concepts of Trusted Computing. IEE Professional Applications of
Computing Series 6, 2005.

11. J. F. Reid, W. J. Caelli. DRM, Trusted Computing and Operating System Archi-
tecture. 2005.

12. Trusted Computing Group. TCG TPM Specification Version 1.2 Revision 94,
https://www.trustedcomputinggroup.org/specs/TPM, 2006.

13. K. Verslype, B. De Decker. A Flexible and Open DRM construction. KULeuven
dept. computer science, technical report, 2006.


