
Timed Release Cryptography from Bilinear Pairings
using Hash Chains

Konstantinos Chalkias1 and George Stephanides2

Department of Applied Informatics, University of Macedonia, Thessaloniki, Greece
1 chalkias@java.uom.gr

 2 steph@uom.gr

Abstract. We propose a new Timed Release Cryptography (TRC) scheme
which is based on bilinear pairings together with an S/Key-like procedure used
for private key generation. Existing schemes for this task, such as time-lock
puzzle approach, provide an approximate release time, dependent on the
recipients’ CPU speed and the beginning time of the decryption process.
Additionally, some other server-based schemes do not provide scalability and
anonymity because the server is actively involved in the encryption or the
decryption. However, there are already protocols based on bilinear pairings that
solve most of the problems referred. Our goal is to extend and combine the
existing protocols with desirable properties in order to create a secure, fast and
scalable TRC scheme applied to dependent or sequential events. For this
purpose we used continuous hashed time-instant private keys (hash chain) in
the same way the S/Key system works. Our approach decreases dramatically
the number of past time-instant private keys the server stores and only two keys
are needed, the last one to construct the previous keys and the first one to
recursively verify the authenticity of the next keys.

Keywords: Timed-Release Cryptography, bilinear pairings, S/Key, hash
chains, sealed-bid auctions

1 Introduction

The essence of timed release cryptography (TRC) is to encrypt a message so that it
cannot be decrypted by anyone, including the designated recipients, until a specific
time-instance. This problem of “sending information into the future” was first
mentioned by May [23] in 1993 and then discussed in detail by Rivest et al. [29].
Since its introduction, the solution to the TRC problem has been found useful in a
number of real world applications. Some of the best examples are the e-voting which
requires delayed opening of votes, the sealed-bid auctions in which the bids must stay
sealed so that they cannot be opened before the bidding period and the Internet
programming contest where participating teams cannot access the challenge problem
before the contest starts. Moreover, TRC can be used for delayed verification of a
signed document, such as lottery and check cashing [32] and it can also be applied to
online games, especially card games, where players would be able to verify the
authenticity of the result when the game ends.

1.1 Current TRC Schemes

The existing schemes that solve the TRC problem are divided into two ways – time-
lock puzzles [1, 6, 13, 15, 21, 29] and trusted servers [4, 22, 23, 29]. However, none
of them are fully satisfactory. Time-lock puzzle approach is based on the required
time the receiver needs to perform non-parallelizable computation without stopping.
The main advantage of this approach is that no trusted server is needed, but there are
also a lot of disadvantages that makes it impractical for real-life scenarios. Some of
the drawbacks are that it puts immense computational overhead on the receiver, it
depends on the receiver’s CPU speed and it does not guarantee that the receiver will
retrieve the message immediately after the sender’s desired released time have passed.
Still, this approach is widely used for specific applications [1, 2, 6, 13, 14, 15, 32].

On the other hand, using trusted servers relieves the receiver from performing non-
stop computation and sets the time of the decryption precisely. The cost of this
approach is that it requires interaction between the server and the sender or the
receiver of the message, or even both. Additionally, some of the existing protocols
sacrifice the anonymity of users and sometimes the server is considerably involved in
the encryption or decryption process which makes these schemes less scalable. For
example there are schemes where the server encrypts messages on request using
symmetric encryption and then it publishes the secret key on the designated time. A
different scheme was proposed by Di Crescenzo et. al [10], in which non-malleable
encryption is used, the server knows nothing about the release time or the identity of
the sender, while the receiver engages in a conditional oblivious transfer protocol with
the server to get the clear message. Recently, there have been attempts to use bilinear
map based IBE schemes for timed release cryptography [3, 4, 9, 22, 28]. Although
most of them provide sufficient functionalities, there is still a need of decreasing the
amount of data transferred between the users and the server. This is because in a real
world application, where a time-server supports thousands or millions of users
(including software-agents), there would be ‘important’ time instances where the
majority of receivers will simultaneously try to retrieve the server’s private
information to read their messages. In this case, a DoS attack may occurred and it is
possible that some users will gain advantage through this information.

The main contribution of this paper is to combine the schemes with desirable
properties in order to decrease at the minimum the length of the private information
that the server reveals and broadcasts at the specific time instance. Our aim is to avoid
fairness issues arising from uncontrollable network congestion or delivery delay.
Unlike other schemes [3], our approach eliminates the amount of data that the server
broadcasts at the designated time and the private information is nothing more than an
integer value that is recursively authenticated. Furthermore, we use a continuous
hashing procedure to construct the time-instant private keys in the same way the
S/Key password authentication system works. Thus, only the current private key is
needed to construct the previous keys. The last property is very useful as a user can
decrypt messages of previous time-instances by just getting the current private key
from the server.

1.2 Properties of a TRC Scheme

To analyze the desirable properties of a TRC scheme, we have to describe some of the
applications that require ‘future decryption’. As it is referred above, one of these
applications is the sealed-bid auction where bidders submit their bids in closed form
to the auction board [7, 11, 17, 18, 26, 28]. Once the bidding is closed the bids are
opened and the best offer wins the auction. The main problem in the auction is
cheating by the auction board or by a competitor. To avoid opening the bids before
the desired time, an independent and trusted time-server is needed. To lower the risk
that the auction board or a competitor colludes with the time-server, the bidder can
use multiple time-servers so that the ‘enemy’ will need to collude with all the servers
to cheat. Some other basic requirements in sealed-bid auctions are that only the
auction board will be able to decrypt and verify the bid after the bidding close, the
auction board should not be able to disavow bid submission and the bidder should not
be able to repudiate his bid.

TRC schemes can also be used to verify the authenticity of the results to the
players in an online card game. In this kind of games a user plays against other
players or against the gambling company itself. To avoid cheating (from the
company) a TRC scheme can be applied together with an independent random
generator. In this case a random generator will firstly send the encrypted sequence of
cards, so that the players will have the encrypted result before the game starts. When
the game ends the time-server will publish the private key for the decryption. Now the
players are sure that the company hasn’t changed the card sequence during the game.
Our approach seems to work very well in this example as a player needs to connect to
the time-server only when he stops playing. Then, he gets the private key for the last
game and, using continuous hashing, he recursively constructs the private keys for the
previous games.

The basic properties of our proposed TRC scheme are:
• The time-server does not interact with either the sender or the receiver.
• The time-instant private key is an integer value (not an Elliptic Curve point

[3]) and is also identical for all receivers.
• The public and private key updates published by the time-server inherently

authenticate themselves. There is no need of a server signature.
• A Certificate Authority could be used to verify the authenticity of the users.
• The last time-instant private key can be used to construct all the previous

time-instant keys.

2 Preliminaries

In the description of our proposed scheme, we will use the following notations and
definitions. To better understand the protocol and its security, we review the S/Key
system, the bilinear maps and the related mathematical problems we have to face.

2.1 S/Key System

The S/Key one-time password system was proposed by Neil M. Haller [16] in 1995. It
is an authentication system which applies a secure hash function multiple times to
construct the one-time passwords. The first one-time password is produced by
hashing the client’s processed password for some specified number of times, say N.
The next one-time password is generated by hashing the user’s password for only N -
1 times. Generally, If f is the hash function, s is the original client’s password and
p(i) is the one-time password at the i-th login attempt then :

p(i)= f N - i(s) (1)

This system is secure against eavesdropping attacks as the login – passwords are
always different. The eavesdropper cannot produce the next one-time password as the
hash function is a one-way function. However, the last property is very useful for the
verification of the next password. When the user attempts to login again using the
new one-time password, the server checks that the hash product of the new password
is equal to the previous password. As there are functions that their hash product is 256
or 512 bits, we can use this procedure in our scheme to construct Elliptic Curve
Cryptography private keys of sufficient key-size [20].

2.2 Bilinear Pairings

Suppose G1 is an additive cyclic group generated by P, whose order is a prime q, and
G2 is a multiplicative cyclic group of the same order. A map ê: G1×G1→G2 is called a
bilinear mapping if it satisfies the following properties:

• Bilinear: ê(aP, bQ) = ê(abP, Q)= ê(P, abQ)= ê(P, Q)ab for all P, Q ∈ G1 and
a,b∈ *

qΖ

• Non-degenerate: there exist P, Q ∈ G1 such that ê(P, Q)≠ 1
• Efficient: there exists an efficient algorithm to compute the bilinear map.

We note that G1 is the group of points on an elliptic curve and G2 is a multiplicative
subgroup of a finite field. Typically, the Weil, and Tate pairings can be used to
construct an admissible bilinear pairing. For a detailed description of pairings and the
conditions on elliptic curves one can see [8]. An implementation of the Weil and Tate
pairing can be found at [30, 31].

2.3 Mathematical Problems

Definition 1. Discrete Logarithm Problem (DLP)

Given Q, R ∈ G1 find an integer a ∈ *
qΖ such that R = aQ.

Menezes et al. [25] show a reduction from the DLP in G1 to the DLP in G2 and they
prove that DLP in G1 is no harder than the DLP in G2.

Definition 2. Decisional Diffie-Hellman Problem (DDHP)

Given Q ∈ G1 , aQ, bQ and cQ for some unknowns a, b, c ∈ *
qΖ tell whether c≡ ab

(mod q).
While DDHP is hard in G2, Joux and Nguyen [19] show that DDHP is easy in G1.
Hardness of DDHP in G2 implies that, ∀Q∈ G1, inverting the isomorphism that takes
P∈ G1 and computes ê(P, Q) is hard [4].

Definition 3. Computational Diffie-Hellman Problem (CDHP)
Given Q ∈ G1 , aQ, bQ for some unknowns a, b ∈ *

qΖ , compute abQ.

The advantage of any randomized polynomial-time algorithm A in solving CDHP in
G1, is defined by the following equation:

CDH
GAAdv

1, =Prob [A(P, aP, bP,abP)=1: a,b∈ *
qΖ] (2)

For every probabilistic algorithm A, CDH
GAAdv

1, is negligible.

Definition 4. Bilinear Diffie-Hellman Problem (BDHP)
Given Q ∈ G1 , aQ, bQ and cQ for some unknowns a, b, c ∈ *

qΖ , compute ê(Q, Q)abc
If a bilinear pairing exists in the underlying group, the DDHP problem over it can be
solved by checking if ê(aQ, bQ) = ê(Q, cQ). This lead to the Gap Diffie-Hellman
(GDH) assumption according to which, the DDHP on an additive group G1 can be
solved in polynomial time, but there is no polynomial time algorithm to solve the
CDHP with non-negligible probability. G1 is called a GDH group which can be found
in supersingular elliptic curves or hyperelliptic curves over finite field. The BDHP
over a GDH group is assumed to be difficult and the security of our proposed scheme
is based on that assumption.

3 The Proposed TRC Scheme

In this section, we describe the proposed TRC scheme, which is a combination of the
scheme proposed by Blake and Chan [3] and the S/Key password authentication
system. There is an analysis of its security and an improvement/extension of the way
the keys are constructed in order to be better protected against birthday attacks that
can be applied in hash functions. [27, 33]. Our encryption scheme is (Gen, TGen,
Enc, Dec) for four algorithms such that Gen generates the public and private keys,
TGen generates the time-instant keys, Enc encrypts using the receiver’s and server’s
public key, the time-instant public key and the sender’s private key and Dec decrypts
using the receiver’s private key and the time-instant private key.

3.1 General Setup and Key Generation

Let G1 and G2 be an additive and multiplicative cyclic group of order q (a prime
number) respectively and that ê: G1×G1→G2 is an admissible bilinear map. The
following cryptographic hash functions are chosen: 1) H1: {0, 1}*→ G1, 2) H2: {0, 1}*
→ {0, 1}n for some n. The notation)(2 xH n stands for the continuous hashing of x for
n times, for example)(3

2 xH =)))(((222 xHHH . If n = 0 then)(0
2 xH = x.

There are three entities in the proposed scheme, namely the server (time-server),
the sender and the recipient. The server chooses a random private key s ∈ *

qΖ and a
generator of G1, say G. The server’s public key consists of two elements: G, sG. As
for the sender, he chooses a secret private key a∈ *

qΖ and he publishes the public key

which is: aG, asG. Similarly, the receiver chooses a secret key b∈ *
qΖ and he

computes the public key: bG, bsG. It is easily understood that this is not an ID-based
encryption scheme and a CA type of certification is needed to verify the authenticity
of the public keys.

3.2 Time-Instant Key Generation

In our scheme, the construction of the time-instant private keys (the keys needed to
decrypt a message at a specified time instance) is based on an S/Key-like procedure.
Suppose that the server needs to publish the public keys of a single day and that every
key represents a different time instance of that day. To better understand the
procedure let us assume that the server needs to publish 24 different public keys and
that each one represents a unique hour on that day (eg. 11:00:00 PM Feb 10, 2006
GMT”). For this purpose, the time-server selects a random secret integer value t
∈ *

qΖ . To compute the private key of the first hour of the day T1 (01:00:00 AM Feb

10, 2006 GMT), the time-server computes the)(23
2 tH (this is the private key). The

public key for that time instance is:)(23
2 tH ·)(11 TH . Similarly, the public key for the

next time-instance T2 (02:00:00 AM Feb 10, 2006 GMT) is)(22
2 tH ·)(21 TH and the

same goes for the next time-instances, until the last time instance where the value t is
the private key and the point t·)(21 TH is the public key. To authenticate a time-instant
public key, the server has to publish (together with the public key) the point value

)(2 tH n ·sG, where)(2 tH n is the private key for the n-th time instance. To accept a
public key, the sender checks if the following equality exists:

ê))(),((24
21 sGtHTH n

n ⋅− = ê)),()((1
24
2 sGTHtH n

n ⋅− (3)

The trusted time-server publishes the private time-instant key at the specified time.

3.3 Encryption Process

As the public keys consist of two elements we will use the notation Pub1X to express
the first element of the key that belongs to user X and Pub2X to express the second
element e.g for the recipient B : Pub1B = bG and Pub2B = bsG
Given a message M, a sender’s private key (a), a recipient’s public key (Pub1B = bG,
Pub2B = bsG), a server’s public key (Pub1S = G, Pub2S = sG), a release time
T∈ {0,1}*, and a time-instant public key for the time T: (Pub1T = nH1(T), Pub2T =
nsG)

1. Verify that ê(H1(T),Pub2T) = ê(Pub1T, Pub2S) => ê(H1(T), nsG) = ê(nH1(T),

sG) => ê(H1(T), G)ns = ê(H1(T), G)ns ; if true → accept the time-instant
public key.

2. Verify that ê(Pub1B, Pub2S) = ê(Pub1S, Pub2B) => ê(bG, sG) = ê(G, bsG)
=> ê(G,G)bs = ê(G, G)bs ; if true → accept the recipients public
key.

3. Choose a random integer r ∈ *
qΖ .

4. Calculate K = ê(Pub1T, Pub1B)ar = ê(nH1(T), bG)ar = ê(H1(T), G)abnr. 1
5. Send ciphertext C = < rH1(T), M ⊕K >.

3.4 Decryption Process

Given a ciphertext C = < rH1(T), M ⊕K >, a sender’s public key (Pub1A, Pub2A), a
recipients private key (a) and a time-instant private key n,

1. Compute the pairing K* = ê(rH1(T), Pub1A)bn = ê(rH1(T), aG)bn = ê(H1(T),

G)abnr ; if K* = K then the recipient is sure that the message is not
corrupted and he can also verify the sender’s identity and validity of the
time-instant key n (receiver uses the key n and the sender’s public key to
compute the pairing K* = K)

2. Recover M by computing (M ⊕K) ⊕K* = M

3.5 A Sketch of Security

To provide a security proof, we work in the same way as Blake and Chan do in [3].
The server’s private key s is safe because it is difficult to find s from G, sG (DLP). In
the same way, it is difficult to find a user’s private key a from G , aG , sG , asG. The
argument is as follows: Suppose there exists a polynomial time algorithm A(G, aG,
sG, asG) that finds a. This means that A can be used to solve the DLP in the following
way: Given G, aG, we choose a random integer b∈ *

qΖ to compute bG and baG =

1 The sender’s private key is used in the encryption algorithm in order for the receiver to

authenticate the sender’s identity during the first step of the decryption process.

abG; using A, we can find a = A(G, aG, bG, baG). This problem is as difficult as the
DLP.

A message cannot be decrypted since the specified time as the receiver needs to
compute ê(H1(T),G)abnr from sG, aG, asG, b, rH1(T), nH1(T) and nsG. As it can been
seen, the mapping ê(H1(T),G)abnr does not contain the server’s private key, so the sG,
asG and nsG are useless. Suppose that the receiver rewrites G as wH1(T) for some
unknown w, then the problem becomes to find ê(H1(T), H1(T))abnrw from wH1(T),
bH1(T), rH1(T), nH1(T) and awH1(T). This problem is equivalent to the BDHP.

As it can be seen, the easiest way for a receiver to recover a message before the
designated time is to solve the Bilinear Diffie-Hellman Problem (BDHP). Hence, as
the BDHP problem holds, the recipient cannot gain any information of the encrypted
message before its specified release time (excluding the case he colludes with the
time-server).

3.6 Extended Private Key Construction

One of the problems that our scheme has to face is that the time-instant private keys
are fully dependent. Even though it is very difficult for someone to extract a private
key from the public key, we can assume that an attacker finally finds a private key
that represents a time instance Ti. Then, by hashing that key, he can produce all the
previous private keys (Ti-1, Ti-2, …, Ti-n). This means that he will be able to decrypt all
the messages sent to him (encrypted with the public keys of these time-instances). To
be better protected against this threat, we chose a different procedure for the key
construction. Unlike the initial approach, the time-server selects two random secret
integer values t1,t2 ∈ *

qΖ . The private key for the time-instance Tn is t1⊕ t2. The

private key for Tn-1 is H2(t1) ⊕ H2(t2), for Tn-2 is 2
2H (t1)⊕ 2

2H (t2) etc. Using this
method of key construction, the knowledge of the private key (of a time instance)
does not reveal the private keys that represent previous time-instances.

Although this approach is much safer, it comes with a cost. When the server
publishes the private key for a specific time instance he needs also to publish extra
information, in order for the users to construct the previous keys. As it is already
referred, the main advantage of our protocol is that only the last private key is needed
to construct the previous time-instant private keys. For this purpose, if for example
the current private key is H2(t1)⊕H2(t2), then the server also publishes H2(t2). Now a
user can compute H2(t1)=(H2(t1)⊕H2(t2))⊕H2(t2). Then, he can construct the previous
private key 2

2H (t1))⊕ 2
2H (t2)).

4 Discussions

To better understand the way our protocol works, we will describe a possible scenario
that it can be applied to. Through this scenario, we will discuss a number of desirable
properties of the TRC scheme and we will make a comparison with other related
schemes.

4.1 Scenario: ‘Timed Release Clues’

Suppose a scenario where a user (Bob) wants to send some information (three clues)
to a recipient Alice. According to Bob, Alice should not learn all the clues
simultaneously, but she can read the clues in a sequential order; each clue at a
different time-instance (e.g. after an hour). For this purpose, Bob connects to a time-
server that provides public time-instant keys for every single hour of the day and gets
the public keys for the time instances T1<T2<T3 .2 As it was referred in the description
of our scheme, the public keys are of the form (nH1(T), nsG). Bob runs the encryption
process of our scheme (the clue1 will be decrypted at T1, the clue2 at T2 and the clue3
at T3) and sends the ciphertexts to Alice. Now, Bob can go offline.

As for the server’s side, his first job is to select two random integers t1,t2 that will
be used for the extended private key construction. For security reasons, the server
encrypts and stores these numbers using his public key. The next step is to publish the
time-instant public keys. For this purpose, he first creates the private keys and then
constructs the public ones.

• for T3 private: t1⊕ t2, public: (t1⊕ t2)H1(T2), (t1⊕ t2)sG
• for T2 private: H2(t1)⊕H2(t2), public: (H2(t1)⊕H2(t2))H1(T2),

(H2(t1)⊕H2(t2))sG
• for T1 private: 2

2H (t1) ⊕ 2
2H (t2), public: (2

2H (t1) ⊕ 2
2H (t2))H1(T2), (2

2H (t1)
⊕ 2

2H (t2))sG
When the desirable time comes, the server publishes the private keys together with
the needed extra information.

• for T1 private: 2
2H (t1) ⊕ 2

2H (t2) extra info: 2
2H (t2)

• for T2 private: H2(t1)⊕H2(t2) extra info: H2(t2)
• for T3 private: t1⊕ t2 extra info: t2

The extra information is important to construct the previous time-instant private keys.
For example, if the private key for the time instance T3 has been published, one can
also compute the time-instant private key for the time instance T2 by executing the
following operations: get t1= (t1⊕ t2)⊕ t2, compute H(t1) and H(t2), compute the T2
private key → H(t1)⊕H(t2). Moreover, as the previous private keys can be
constructed by the latest published key, the server can delete them from his database.
If a user needs to decrypt a message that could have been decrypted on a previous
time instance, he just has to get the current key and apply the operation discussed
above.

Alice has to wait until the server reveals the private keys. In case where Alice is
offline until the time instance T3, where all the private keys have been revealed, she
will get the latest published key (T3) with its extra information to construct the keys
for T2 and T1 respectively. This is the main advantage of our protocol. This scheme is
very useful for cases where users receive a big number of messages of different time
instances. Furthermore, the server does not have to keep lists of previous private keys
and at each time the current private key is enough to construct all the previous ones.
The communication cost at the decryption process is minimal and the server can

2 Black and Chan [3] propose another approach where there is no need for a connection to the

server to get the public keys.

support a bigger number of users who simultaneously request the time-instant private
keys.

5 Conclusion

In this paper, we described a Timed Release Cryptography scheme that minimizes the
connection cost during the receiving process. This scheme can achieve timed release
decryption with a precisely specified absolute release time and is scalable enough
since the public and private keys are identical for every user. We also provide a
solution to missing time-instant private keys by constructing them from the latest
published key. Furthermore, all the keys are recursively authenticated without the
need of a server’s signature.

5.1 Future work

Currently, we are working on an efficient implementation of the proposed IBE
Timed-Release Cryptography scheme. Our aim is to measure the functionality and
possible defects of the proposed protocol. We focus on the time-server’s resistance to
Denial of Service (DoS) attacks and the problems that occur when a big number of
users simultaneously request the current private time-instant key. Additionally, we are
looking for a stable and safe model that will help us to select an appropriate number
for the continuous hashed keys (the length of the hash-chain). As it can be seen, we
cannot have a big number of dependent keys, because the scheme will be more
vulnerable to birthday attacks. A simple approximation is that if the time-quantum
between two release times is very small, we can increase the length of the hash chain;
otherwise we decrease it.

Another future research is to use multiple time-servers to lower the risk that a
receiver colludes with a time-server. In case where the servers use the same generator
G and the clients use the same private key, the problem can be solved as follows:
Suppose there are three servers with private keys s1, s2 and s3 respectively. The
sender’s public keys on each server are (aG , as1G) , (aG , as2G) , (aG, as3G) and the
receiver’s public keys are (bG , bs1G) , (bG , bs2G) , (bG, bs3G). The sender verifies
all of the receiver’s public keys by checking the equality ê(bG, sxG)= ê(G, bsxG) for
each server sx. Then, the sender picks a random integer r and calculates the Ki=
ê(rniH1(T), abG) for each niH1(T) (the public time-instant keys for each server). The
ciphertext is: C = < rH1(T), M ⊕K1⊕…⊕Kx >. When the private keys are published,
the receiver computes every Ki and then, he is able to decrypt the message.

References

 1. M.Bellare and S. Goldwaaser. Encapsulated key escrow. MIT LCS Tech. Report
MIT/LCS/TR-688, April 1996.

 2. M.Bellare and C. Namprempre. Authenticated encryption: Relations among notions and
analysis of the generic composition paradigm. In Proc. Of Asiacrypt ’00, Lecture Notes
in Computer Science, Vol. 1976, 2000.

 3. I. F. Blake and A. C-F. Chan. Scalable, server-passive, user-anonymous timed release
public key encryption from bilinear pairing. http://eprint.iacr.org/2004/211/, 2004.

 4. D. Boneh and M. Franklin. Identity based encryption from the Weil pairing. In Advances in
Cryptology – Crypto ’01, Springer-Verlag LNCS vol. 2139, pages 213-229, 2001.

 5. D. Boneh, B. Lynn, and H. Shacham. Short signatures from the weil pairing. In Proc. Of
Asiacrypt ’01, 2001.

 6. D. Boneh and M. Naor. Timed commitments (extended abstract). In Advances in
Cryptology – Crypto 2000, Springer -Verlag LNCS vol. 1880, pages 236-254, 2000.

 7. Brandt. Fully private auctions in a constant number of rounds. In Proceedings of the 7th
Annual Conference on Financial Cryptography (FC), 2003.

 8. J. Cha and J. Cheon. An id-based signature from gap-diffie-hellman groups. In Public Key
Cryptography – PKC 2003, 2003.

 9. L. Chen, K. Harrison, D. Soldera, and N. Smart. Applications of multiple trust authorities in
pairing based cryptosystems. In Proceedings InfraSec 2002, Springer LNCS 2437, pp 260-
275, 2002.

10. G. Di Crescenzo, R. Ostrovsky, and S. Rajagopalan. Conditional oblivious transfer and
timed-release encryption. In Advances in Cryptology –- Eurocrypt ’99, Springer-
Verlag LNCS vol. 1592, pages 74-89, 1999.

11. M. K. Franklin and M. K. Reiter. The design and implementation of a secure auction
service. In Proceedings of 1995 IEEE Symposium on Security and Privacy, pp. 2-14,
Oakland, California, 1995.

12. E. Fujisaki and T. Okamoto. Secure integration of asymmetric and symmetric encryption
schemes. In Proceedings CRYPTO 1999, Springer LNCS 1666, pp 537 - 554, 1999.

13. J. Garay and M. Jakobsson. Timed release of standard digital signatures. In Financial
Crypto ’02, 2002.

14. J. Garay and C. Pomerance. Timed fair exchange of arbitrary signatures. In Financial
Crypto ’03, 2003.

15. J. A. Garay and C. Pomerance. Timed fair exchange of standard signatures. In Financial
Cryptography ’02, 2002.

16. N. Haller. The S/KEY One-Time Password System. http://www.rfc-
archive.org/getrfc.php?rfc=1760, 2005.

17. J. T. Harkavy and H. Kikuchi. On cheating in sealed-bid auctions. In EC’03, 2003.
18. J. T. M. Harkavy and H. Kikuchi. Electronic auctions with private bids. In 3rd USENIX

Workshop on Electronic Commerce, Boston, Mass., pp. 61–73, 1998.
19. A. Joux and K. Nguyen. Separating decision diffie-hellman from diffie-hellman in

cryptographic groups. Available from http://eprint.iacr.org/2001/003/, 2001.
20. A. K. Lenstra and E. R. Verheul. Selecting Cryptographic Key Sizes. In Proceedings PKC

2000, Springer- Verlag LNCS 1751, pages 446-465, 2000.
21. W. Mao. Timed-release cryptography. In SAC ’01, Springer-Verlag LNCS vol. 2259, pages

342-357, Aug. 2001.
22. K. H. Marco Casassa Mont and M. Sadler. The hp time vault service: Exploiting IBE for

timed release of confidential information. In WWW2003, 2003.
23. T. May. Timed-release crypto. Manuscript, http://www.hks.net.cpunks/cpunks-0/1560.html,

Feb. 1993.
24. R.C Mercle. Secure communications over insecure channels. Communications of ACM,

21(4):294-299, April 1978.
25. A. Menezes, T. Okamoto, and S. Vanstone. Reducing elliptic curve logarithms to logarithms

in a finite field. In IEEE Transactions on Information Theory IT-39, 5 (1993), 1639–1646,
1993.

http://eprint.iacr.org/2004/211/

26. M. Naor, B. Pinkas, and R. Sumner. Privacy preserving auctions and mechanism design. In
Proceedings of ACM Conference on Electronic Commerce, pp. 129–139, 1999.

27. P. van Oorschot, and M. Wiener. A Known Plaintext Attack on Two-Key Triple Encryption.
In Advances in Cryptology – Eurocrypt '90. New York: Springer-Verlag, pp. 366-377, 1991.

28. I. Osipkov, Y. Kim, and J. H. Cheon. A Scheme for Timed-Release Public Key Based
Authenticated Encryption. Available from http://citeseer.ifi.unizh.ch/709184.html, 2004.

29. R. L. Rivest, A. Shamir, and D. A. Wagner. Time-lock puzzles and time-released crypto. In
MIT laboratory for Computer Science,MIT/LCS/TR-684, 1996.

30. Shamus Software Ltd. Miracl: Multiprecision integer and rational arithmetic c/c++ library.
Available from http://indigo.ie/mscott/.

31. Marcus Stögbauer. Efficient Algorithms for Pairing-Based Cryptosystems. Diploma Thesis:
Darmstadt University of Technology, Dept. of Mathematics, Jan 2004.

32. P. F. Syverson. Weakly secret bit commitment: Applications to lotteries and fair exchange.
In 1998 IEEE Computer Security Foundations Workshop (CSFW11), 1998.

33. G. Yuval, How to Swindle Rabin. Cryptologia 3, pages 187-189, Jul. 1979.

http://www.amazon.com/exec/obidos/ASIN/038753587X/ref=nosim/weisstein-20

