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Abstract. Sophisticated worms that use precomputed hitlists of vulner-
able targets are especially hard to contain, since they are harder to de-
tect, and spread at rates where even automated defenses may not be able
to react in a timely fashion. Recent work has examined a proactive de-
fense mechanism called Network Address Space Randomization (NASR)
whose objective is to harden networks specifically against hitlist worms.
The idea behind NASR is that hitlist information could be rendered
stale if nodes are forced to frequently change their IP addresses. How-
ever, the originally proposed DHCP-based implementation may induce
passive failures on hosts that change their addresses when connections
are still in progress. The risk of such collateral damage also makes it
harder to perform address changes at the timescales necessary for con-
taining fast hitlist generators.

In this paper we examine an alternative approach to NASR that allows
both more aggressive address changes and also eliminates the problem of
connection failures, at the expense of increased implementation and de-
ployment cost. Rather than controlling address changes through a DHCP
server, we explore the design and performance of transparent address ob-
fuscation (TAO). In TAO, network elements transparently change the
external address of internal hosts, while ensuring that existing connec-
tions on previously used addresses are preserved without any adverse
consequences. In this paper we present the TAO approach in more detail
and examine its performance.
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1 Introduction

Worms are widely regarded to be a major security threat facing the Internet
today. Incidents such as Code Red[l, 16] and Slammer[4] have clearly demon-
strated that worms can infect tens of thousands of hosts in less than half an hour,



a timescale where human intervention is unlikely to be feasible. More recent re-
search studies have estimated that worms can infect one million hosts in less than
two seconds [22, 23, 24]. Unlike most of the currently known worms that spread
by targeting random hosts, these extremely fast worms rely on predetermined
lists of vulnerable targets, called hitlists, in order to spread efficiently.

The threat of worms and the speed at which they can spread have moti-
vated research in automated worm defense mechanisms. For instance, several
recent studies have focused on detecting scanning worms [27, 12, 26, 18, 21, 25].
These techniques detect scanning activity and either block or throttle further
connection attempts. These techniques are unlikely to be effective against hitlist
worms, given that hitlist worms do not exhibit the failed-connection feature
that scan detection techniques are looking for. To improve the effectiveness of
worm detection, several distributed early-warning systems have been proposed
[29, 17, 30, 5]. The goal of these systems is to aggregate and analyze informa-
tion on scanning or other indications of worm activity from different sites. The
accuracy of these systems is improved as they have a more “global” picture of
suspicious activity. However, these systems are usually slower than local detec-
tors, as they require data collection and correlation among different sites. Thus,
both reactive mechanisms and cooperative detection techniques are unlikely to
be able to react to an extremely fast hitlist worm in a timely fashion.

Observing this gap in the worm defense space, a recent study has considered
the question of whether it is possible to develop defenses specifically against
hitlist worms, and proposed a specific technique called network address space
randomization (NASR). This technique is primarily inspired by similar efforts
for security at the host-level [28, 10, 9, 19, 13, 8]. It is also similar in principle to
the “IP hopping” mechanism in the APOD architecture[7], BBN’s DYNAT[14]
and Sandia’s DYNAT([15] systems, all three designed to confuse targeted attacks
by dynamically changing network addresses. In its simplest form, NASR can be
implemented by adapting dynamic network address allocation services such as
DHCP|[11] to force more frequent address changes.

The major drawback of the DHCP-based implementation of NASR as pre-
sented in [6] is the damage caused in terms of aborted connections. The damage
depends on how frequently the address changes occur, whether hosts have active
connections that are terminated and whether the applications can recover from
the transient connectivity problems caused by an address change. Although the
results of [6] suggest that the failure rates are small when measured in comparison
to the total number of unaffected connections, the failures may cause significant
disruption to specific services that users value a lot more than other connections,
such as long-lived remote terminal session (e.g., ssh), etc. Furthermore, the ac-
ceptable operating range of DHCP-based NASR does not fully cover the likely
spectrum of hitlist generation strategies. In particular, there are likely scenarios
that involve very fast, distributed hitlist generation, which cannot be thwarted
without extremely aggressive address changes. Aggressive address changes in the
DHCP-based NASR implementation have a profound effect on connection failure
rates, and the approach hereby becomes less attractive.



As an alternative to the DHCP-based implementation of NASR, in this pa-
per we consider a different approach that allows both more aggressive address
changes and also eliminates the problem of connection failures, at the expense of
increased implementation and deployment cost. Rather than controlling address
changes through a DHCP server, we explore the design and performance of trans-
parent address obfuscation (TAO). In TAO, we assume that hosts of a subnet
are located behind a network element that transparently changes the external
addresses of the hosts, while ensuring that existing connections on previously
used addresses are preserved without any adverse consequences.

In the rest of this paper, we first discuss in more detail how network address
space randomization works generally, and then discuss how transparent address
obfuscation can be implemented, and how well it performs.

2 Network Address Space Randomization

The goal of network address space randomization (NASR) as originally proposed
in [6] is to force hosts to change their IP addresses frequently enough so that
the information gathered in hitlists is rendered stale by the time the worm is
unleashed. The authors of [6] have demonstrated that NASR can slow down the
worm outbreak, in terms of the time to reach 90% infection, from 5 minutes when
no NASR is used to between 24 and 32 minutes when hosts change their addresses
very frequently. Their results are based on simulations, varying how fast the
hitlist is generated and how fast the host addresses are changed. It appears that
the mean time between address changes needs to be 3-5 times less than the
time needed to generate the hitlist for the approach to reach around 80% of its
maximum effectiveness, while more frequent address changes give diminishing
returns. The assumption of global deployment of NASR is unreasonable, thus it
is more likely that only a fraction of subnets will employ the mechanism, such
as dynamic address pools. NASR continues to be effective in slowing down the
worm, even when deployed in 20% or 40% of the network.

The authors of [6] have proposed to implement NASR by configuring the
DHCP server to expire DHCP leases at intervals suitable for effective random-
ization. The DHCP server would normally allow a host to renew the lease if the
host issues a request before the lease expires. Thus, forcing addresses changes
even when a host requests to renew the lease before it expires requires some
minor modifications to the DHCP server. This approach does not require any
modifications to the protocol or the client. In their implementation, three timers
on the DHCP server for controlling host addresses were used. The refresh timer
determines the duration of the lease communicated to the client. The client is
forced to query the server when the timer expires. The server may or may not
decide to renew the lease using the same address. The soft-change timer is used
internally by the server to specify the interval between address changes, assum-
ing that the flow monitor does not report any activity for the host. A third,
hard-change timer is used to specify the maximum time that a host is allowed to
keep the same address. If this timer expires, the host is forced to change address,
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as the DHCP server does not renew the lease, despite the damage that may be
caused.

The main drawback of this approach is the damage caused in terms of aborted
connections. The damage depends on how frequently the address changes occur,
whether hosts have active connections that are terminated and whether the
applications can recover from the transient connectivity problems caused by an
address change. As shown in Figures 1 and 2, the damage varies from 0.01 to 5%.
Experiments were done using traces collected at different network environments:
a one-week contiguous IP header trace collected at Bell Labs research[2], a 5-
day trace from the University of Leipzig|[3], a 1-day trace from a local University
Campus, and a 20-day trace from a link serving a single Web server at the
institute of the authors.

However, as we need to perform randomization in small timescales, where
the failure rates wave between 3 and 5%, failure rates may not be acceptable.
We can avoid network failures by using Transparent Address Obfuscation, an
approach which needs more deployment resources than the standard NASR im-
plementation. We describe the Transparent Address Obfuscation in the following
section.

3 Transparent Address Obfuscation

The damage caused by network address space randomization (NASR) in terms
of aborted connections may not be acceptable in some cases. Terminating, for
example, a large web transfer or an SSH session would be both irritating and
frustrating. Additionally, it would possibly increase network traffic as users or ap-
plications may repeat the aborted transfer or try to reconnect. To address these
issues, we suggest Transparent Address Obfuscation, an external mechanism
for deploying NASR avoiding connection failures.
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The idea behind the mechanism is the existence of an “address randomization
box”, called from now on “TAO box”, inside the LAN environment. This box
performs the randomization on behalf of the end hosts, without the need of any
modifications to the DHCP behavior, as suggested in [6]. TAO box controls all
traffic passing by the subnet(s) it is responsible for, analogous to the firewall
or NAT concept. The address used for communication between the host and
the box remains the same. We should note that there is no need for private
addresses, unlike the case of NAT, as end hosts can obtain any address from the
organization they belong. The public address of the end host — that is the IP
that outside world sees — changes periodically according to soft and hard timers,
similar to the procedure described in [6]. Old connections continue to operate
over the old address, the one that host had before the change, until they are
terminated.

The TAO box is responsible for two things. First, to prevent new connections
on the old addresses (before randomization) reaching the host. Second, to per-
form address translation to the packets based on which connection they belong,
similar to the NAT case. Until all old connections are terminated, a host would
require multiple addresses to be allocated.

An example of how the TAO box works is illustrated in Figure 3. The box is



responsible for address randomization on the 11.22.70.0/24 subnet, that is it can
pick up addresses only from this subnet. Initially the host has the IP address
11.22.70.40 and TAO box sets the public IP address of this host to 11.22.70.50.
The host starts a new SSH connection to Host A and sends packets with its own
IP address (11.22.70.40). The box translates the source IP address and replaces it
with the public one, setting it to 11.22.70.50. Simultaneously, the box keeps state
that the connection from port 2000 to Host A on port 22 belongs to the host with
behind-the-box address 11.22.70.40 and public address 11.22.70.50. Thus, on the
Host A side we see packets coming from 11.22.70.50. When Host A responds back
to 11.22.70.50, box has to perform the reverse translation. Consulting its state,
it sees that this connection was initiated by host 11.22.70.40 so it rewrites the
destination IP address.

After an interval, the public address of host 11.22.70.40 changes. TAO box
now sets its public address to 11.22.70.60. Any connections initiated by external
hosts can reach the host through this new public IP address. As it can be seen
in Figure 3 the new connection to Host B website has the new public IP as
source. Note that in the behind-the-box and public address mapping table host
now has two entries, with the top being chosen for new connections. The only
connection permitted to communicate with the host at 11.22.70.50 address is
the SSH connection from Host A. For each incoming packet, the box checks its
state to find an entry. If no entry is found, then packet is not forwarded to the
internal hosts, else the “src IP” field of the state is used to forward the packet.
As long as the SSH connection lasts, the 11.22.70.50 IP will be bound to the
particular host and cannot be assigned to any other internal host. When SSH
session finishes, the address will be released. For stateless transport protocols,
like UDP or ICMP, only the latest mapping between public and behind-the-box
IP address is used.

4 Simulation Study

The drawback of the TAO box is the extra address space required for keeping
alive old connections. An excessive requirement of address space would empty
the address pool, making the box abort connections. We tried to quantify the
amount of extra space needed by simulating the TAO box on top of four traffic
traces. The first two traces, CAMPUS and CAMPUS (2), come from a local university
campus and include traffic from 760 and 1675 hosts respectively. All hosts of this
trace belong to a /16 subnet. The second trace, BELL, is a one-week contiguous
IP header trace collected at Bell Labs research with 395 hosts located in a /16
subnet. Finally, the WEBSERVER trace is a 20-day trace from a link serving a
single Web server at our institute. In this trace, we have only one host and we
assume it is the only host in a /24 subnet. In our simulation, the soft timer had
a constant value of 90 seconds, while the hard timer varied from 15 minutes to
24 hours.

The results of the simulation are presented in Figure 4. In almost all cases,
we need 1% more address space in order to keep alive the old connections. We



+ CAMPUS » BELL - WEBSERVERe CAMPUS(2)

10

] o

154 : @

o 1 c

@ Is)

[} > .

3 0 Institute

‘g 1 W .g " CAMPUS

3 e 2 ISP prefix 1

a AR 5 '

— o1 o ISP prefix 2

° S 27 ISP prefi

o prefix 2

>

001 1 1 1 1 1 \ 0 T T T T 1
0 4 8 12 16 20 24 0 32 64 96 128 160
hard limit (hours) Hosts per subnet

Fig.4. The percentage of extra IP Fig.5. Subnet address space utiliza-
space needed tion

o + CAMPUS «» BELL - WEBSERVERe CAMPUS(2)
I EE
D_ —
) -
" .
& 100 5
— =
o o
5 Jx

i
o i
- 10 7
2 E e i, =
g S

B o

= °s . 3
el — 3 e
5]
L 1 1 1 1 1 1 |

0 4 8 12 16 20 24
hard limit (hours)

Fig. 6. The percentage of extra IP space needed relative to the load of subnets

measured the number of hosts that are alive in several subnets. We used full
TCP scans to identify the number of hosts that were alive in 5 subnets: our
local institute, a local University campus and three subnets of a local ISP. Our
results, as shown at Figure 5, indicate that 95% of the subnets are less than
half-loaded and thus we can safely assume that this 1% of extra space is not
an obstacle in the operation of the TAO box. However, the little extra address
space needed derives from the fact that subnets are lightly loaded. For example,
the 760 hosts of the CAMPUS trace correspond to the 1.15% of the /16 address
space. In Figure 6, the relative results of the previous simulation are shown. On
average, 10% more address space for hard timer over one hour is needed, which
seems a reasonable overhead. In the case of the WEBSERVER trace the percentage
is 100% but this is expected as we have only one host.



5 Related Work

Our work on network address space randomization was inspired by similar tech-
niques for randomization performed at the OS level [28, 10, 9, 19, 13, 8]. The
general principle in randomization schemes is that attacks can be disrupted by
reducing the knowledge that the attacker has about the system. For instance,
instruction set randomization[13] changes the instruction set opcodes used on
each host, so that an attacker cannot inject compiled code using the standard
instruction set opcodes. Similarly, address obfuscation[9] changes the locations
of functions in a host’s address space so that buffer-overflow exploits cannot pre-
dict the addresses of the functions they would like to utilize for hijacking control
of the system. Our work at the network level is similar, as it reduces the ability
of the attacker to build accurate hitlists of vulnerable hosts.

The use of IP address changes as a mechanism to defend against attacks
was proposed independently in [7], [14] and [15]. Although these mechanisms
are similar to ours, there are several important differences in the threat model
as well as the way they are implemented. The main difference is that they focus
on targeted attacks, performing address changes to confuse attackers during
reconnaissance and planning. Neither project discusses or analyzes the use of
such a mechanism for defending against worm attacks.

Reference [20] proposes the use of honeypots with instrumented versions of
software services to be protected, coupled with an automated patch-generation
facility. This allows for quick (i.e., less than 1 minute) fixing of buffer overflow
vulnerabilities, even against zero-day worms. However, that work is limited to
worms that use buffer overflows as an infection vector.

While some of these reactive defense proposals may be able to detect the
worm, it is unclear whether they can effectively do so in the timescales of hitlist
worm propagation.

6 Summary and Concluding Remarks

Fast-spreading malware such as hitlist worms represent a major threat for the
Internet, as most reactive defenses currently being investigated are unlikely to
be fast enough to respond to such worms in a timely fashion. Recent work on
network address space randomization has shown that hitlist worms can be sig-
nificantly slowed down and exposed to detection if hosts are forced to change
their address frequently enough to make the hitlists stale. However, the impli-
cations of changing addresses in a DHCP-based implementation, as proposed in
[6] hamper the adoption of this defense, as it can cause disruption under nor-
mal operation and cannot be performed fast enough to contain advanced hitlist
generation strategies.

The approach examined in this paper, Transparent Address Obfuscation
(TAO), offers more leeway for administrators to more frequently change ad-
dresses, while at the same time eliminating the problem of “collateral damage”
in terms of failed connections, when compared to the DHCP-based implemen-
tation. The experiments presented in this paper demonstrated that the cost of



TAO in terms of additional address space utilization is modest and that the
operation of the system is transparent and straightforward.
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