
Attribute Delegation Based on Ontologies and
Context Information

Isaac Agudo, Javier Lopez, and Jose A. Montenegro

Computer Science Department, E.T.S. Ingenieria Informatica
University of Malaga, Spain

{isaac, jlm, monte@lcc.uma.es}

Abstract. This paper presents a model for delegation based on partial
orders, proposing the subclass relation in OWL as a way to represent the
partial orders. Delegation and authorization decisions are made based on
the context. In order to interact with the context, we define the Type
of a credential as a way to introduce extra information regarding con-
text constraints. When reasoning about delegation and authorization
relationships, our model benefits from partial orders, defining them over
entities, attributes and the credential type. Using these partial orders,
the number of credentials required is reduced. It also classifies the possi-
ble criteria for making authorization decisions based on the context, in
relation to the necessary information.

1 Introduction

This work presents a delegation model that defines general credentials. A cre-
dential is defined as a link between two entities, in relation with some attribute.
Credentials also have a type, which defines their special characteristics and in
particular, information regarding the context. Two of these characteristics are
whether it is a delegation or an authorization credential and the validity time
interval.

We use the word Delegation to describe the transfer of management rights
over certain attributes. The sentence “A delegates attribute r to B” is used as a
shortcut for “A authorizes B to issue credentials regarding the attribute r to any
other entity C”. We use delegation as a Meta concept in an authorization frame-
work, because delegation statements are authorization statements over the act
of authorizing. This meta information is used to facilitate the distribution of au-
thorization, providing a powerful instrument to build distributed authorization
frameworks.

In real organizations, there are several variables that need to be considered
when taking authorization decisions. It is important to define the different kinds
of entities in the system and the relationships between them. We need and Orga-
nization Chart to be able to classify entities. This chart establishes a hierarchy
of entities and all the decisions made within the organization have to comply
with this hierarchy. There are cases in which this organization chart only has a
few classes of entities and others in which there are a considerable number of



them, but in any case the chart is quite static, so it is not worth using certifi-
cates or credentials to define it. One possible solution is to define an ontology of
entities, represented as classes, using the subclass relation. This can be de done
very easily using OWL [6] and any of the tools that support it. There is both an
OWL plug in for Protege [5] and a stand alone application called SWOOP [2]
that allows us to use OWL graphically.

Classes that are higher up in the hierarchy refer to more general classes and,
on the other hand, those classes that are lower down in the hierarchy refer to
more specific classes. So, if class A is a specialization of class B, then all privileges
linked with B have to be inherited by A. Membership of entities is modeled using
unitary classes, so we only talk about classes and subclass relations. This simple
ontology simplifies the process of issuing credentials as we can issue privileges to
several entities using only one credential and the OWL ontology. This ontology
can be mapped to a partial order set in which the elements correspond to the
OWL classes (unitary or not) and the subclass relation defines the partial order.
We take the same approach with privileges. Attributes are used as a bridge to
cover the gap between entities and privileges. We define a partial order over
attributes as a hierarchy in which we go from general attributes (those more
related to the concept of Role) to specific attributes (those more related to
privileges and resources). With these ontologies, we simplify the delegation and
authorization chart of the Organization, as we split it into three sections:

– Organizational relation between entities
– Organizational relation between attributes
– Specific delegation and authorization credentials.

The point here is to combine this information to make correct delegation and
authorization decisions. Another interesting point of our proposal is the concept
of Type, which is closely related to the context. In the Type of a credential we
encode extra information that might affect delegation and authorization deci-
sions depending on the context in which the decisions have to be made. The
validity interval is an example of information that has to be included in the
specification of the Type of a credential. We follow the same principle of using
ontologies, in the definition of Types. In the simple example of time intervals,
it is clear that we may establish a subclass relation over them, using the subset
relationship. In general, to be coherent, all the information included in the Type
is interpreted as a concept in a subclass only ontology. This ontology is used to
automatically derive virtual credentials from real ones. Going back to the time
intervals, if we chain two delegation credentials C1 and C2, which are valid in
intervals t1 and t2 respectively, the validity interval of the path will be t1 ∩ t2 as
it is the maximal element that is both lower than t1 and t2. What we do here is
to derive new credentials C1 and C2, both valid in t1∩ t2, using the ontology (or
partial order) defined for the type of credentials and in particular for validity
intervals.

Therefore, in this paper we present a general framework to model both dele-
gation and authorization relationships. This model is based on the definition of



typed credentials, which is one containing extra information called the Type of
the credential. This information is used to link the credential with its context.

We propose the definition of subclass relations over all the concepts used
in the framework: Entities, Attributes and Types. These relations are encoded
using ontologies, and in particular the OWL subclassOf relation. These subclass
relations can be interpreted as a partial order relation1 and in this paper we use
only the mathematical notation, because it is easier to understand and work
with. These ontologies provide helpful information for defining access control
polices, simplifying the process of defining access credentials, control policies
and making authorization and delegation decisions more efficient.

The definition of a credential type is particularly useful as it allows us to re-
strict delegation according to context parameters, such as location and time, and
in general according to the state of the system. When working with delegation
credentials, it very important to define the requirements that must hold for a
credential to be valid, because revoking delegation credentials is very expensive
task in terms of computation.

The structure of the paper is as follows. In section 2, we present the basic
elements or building blocks of the framework: Entities, Attributes and Types,
and explain the meaning of the ontologies (partial orders) defined for each of
them. In section 3, credentials are defined as a construct that describe the ba-
sic elements of the framework. Credentials are defined as tuples of the form:
(Issuer,Holder,Attribute, Type). In this section we introduce the validity evalu-
ation as a function that distinguishes between valid (active) and invalid (inactive)
credentials in a given state and classify them according to the information used
to make this decision. Section 4 defines paths or chains of delegation credentials,
and explains how validity evaluation can be extended to define an evaluation
function over credential paths. In section 5 some conclusions are presented.

2 Elements of the Framework

We mentioned before that a Delegation is a Meta-Authorization. So, before the
definition of delegation credentials, we have to review authorization credentials.

The standard X.509 defines an authorization credential having the following
fields2:

– Issuer : The entity who authorizes the Holder.
– Holder : The entity who receives the attributes.
– Attributes: The attributes issued to the Holder.
– Validity Period : The validity period of the authorization.

For a credential to be valid, the Issuer should have management rights over
the attributes issued in the credential. In this case, the Holder is able to use
the new attributes but it is not able to issue new credentials regarding these

1 A ≤ B if and only if A is a subclass of B
2 we focus on the most important ones



attributes. In the case where it is a Delegation credential, the Holder should be
able to issue new (Authorization) credentials regarding these attributes, instead
of being able to use the attributes directly. This is the main difference between an
Authorization Credential and a Delegation Credential. Based on this definition,
we define credentials as 4-tuples, in which we have an Issuer field, a Holder field,
an Attribute field and a Type field.

2.1 Entities

Delegation is established between two entities. Thus, we have to define what
an entity is in our framework. We distinguish between individual entities, those
that are indivisible, and general entities (or just entities) that may be composed
of more than one individual entity or refer to more complex concepts. We use
this distinction inspired by the concept of Role [3]. In this sense, Roles are
related to general entities. We define both general and individual entities as
OWL classes. For example, in our framework Bob will be represented as a class,
and the members of this class will be the instances of Bob, each time he is
authenticated in the system.

In any working environment, there are some fixed rules that define entity
relationships. If we think of a University, there is an inclusion relation between
professors and employees, as professor is a specification of the concept (class)
employee. So the classes Professor and Employee are related by the subClassOf
relation. All privileges granted to employees should also be granted to professor.
A shortcut to avoid this double issuing of credentials could be to define a partial
order on entities. In this case, employee is a general entity but professor is an
individual entity as there are no other entities more specific than professor. If we
include real people in this simple example, the following chain of implications is
obtained:

Alice ⇒ Profesor ⇒ Employee

Therefore neither Employee, nor Professor are individual entities, and only
Alice has this category of individual entity.

Instead of using the symbol ⇒ we use the symbol ≤ to emphasize that we
have a partial order defined in the set of entities, we also use < as a shortcut for
≤ and 6=. In this way, the previous chain of implications can be translated to:

Alice ≤ Profesor ≤ Employee

Definition 1 (Entities). The set of entities is defined as a partial order (E ,≤e)
and the subset of individual entities by E∗ := {e ∈ E : @e′ ∈ E , e′ < e}

Now, let us do it the other way round, and think about the following scenario.
Suppose Bob needs a credential issued by an employee of the University to be able
to enter the Library. If Alice issues this credential, the verifier of the credential,
i.e. the library, should be able to compare Alice and Employee to determine
if this credential is valid for this purpose. In this case, as Alice ≤ Employee



a credential issued by Alice could also be interpreted as a credential issued by
Employee.

So, if we have two entities E1 and E2 where E1 ≤ E2 we obtain the following
inference rules:

1. Any attribute issued to E2 should also be issued to or used by E1.
2. Any credential issued by E1 could also be interpreted as a credential ’issued’

by E2.

Although only individual entities (minimal elements of E) are allowed to
issue credentials, we can give meaning to a credential ’issued’ by non-individual
entities. So a credential ’issued’ by non-individual entities could be a requirement
constraint for the authorization of some operations. This constraint means that
an individual entity, which is lower in the hierarchy than the required non-
individual entity, has to issue a credential in order to authorize the requested
operation.

Depending on how many entities are ordered we get two extreme cases: a
non ordered set and a complete lattice.

– Trivial poset. In this case, the set of entities in not really ordered. Thus, any
entity is minimal and therefore all entities are individual entities, i.e E∗ = E .
This is the simplest approach and is the one used for example in SPKI [4].

– Power Set with the inclusion order. In this case E ' P(E∗). This structure
allows us to use groups of entities as holders of credentials. The partial
order is induced by the inclusion operator. In fact, the defined structure is
a complete lattice, using the Union and Intersection operators as the join
and meet operators. This case is not realistic due the huge number of classes
that have to be considered.

Depending on the application context, the number of classes will vary. We
have to reach a balance between the two extreme cases previously presented.

2.2 Attributes

In many authorization management systems, credentials grant access directly
to resources, so there are no attributes. An attribute is a more general concept
than resource. Resources can be easily identified in the system, but they do not
provide us with a fine grain way of defining authorization. A Unix file, f , is
clearly a resource, so an entity A could issue an authorization credential to B,
regarding the resource f . In this case, shall B be able to modify it? In general
it depends on the file. So, in many cases, resources are associated with different
access modes. In order to describe an operation that could be authorized or
not, we need a tuple (resource, right). But resources are normally composed of
lower level resources, e.g. a Computer is made up of memory, hard disk (which
is also composed of files) and many other components. There is an implicit order
relationship over the resources of a given system, as there is a partial order over
entities. Because of the complexity of defining what is a resource and what not,



it is better to use privileges or more accurately, attributes to define the nature
of the authorization.

The use of attributes is an initiative to generalize the use of a tuple of the
form (resource, operation). Using attributes we give the authorization policy
more relevance, as it is in the policy where we have to match attributes with
the traditional tuple (resource, operation). So attributes allow us to divide the
authorization into two phases:

– Defining Attributes. It consists of giving a meaning to the attributes used
in the system and therefore, it assigns a tuple (resource, right) or a set of
privileges to each attribute.

– Issuing Attributes. It consists of issuing credentials in relation with the pre-
viously defined attributes.

We identify two kinds of attributes widely used in the literature:

– Membership Attribute. It encodes the concept of x is a member of role A.
Here the attribute is totally equivalent to the concept of Role.

– Specific Attribute. It encodes the concept of x has access privilege A. Here
the attribute is totally equivalent to the privilege A which directly translates
to a tuple of the form (resource, right).

These two examples show that by using attributes we could model any of
the existing traditional approaches. In our framework we can encode roles and
role membership using entities and the partial order over entities, so we think
of attributes as an intermediate concept between roles and privileges.

There are many situations in which there is a hierarchy over attributes. For
example, write access to a file may imply read access. Another clear example
is the case of attributes with parameters, if AGE(x) represents that the owner
entities are at least x years old, then AGE(x) also implies AGE(x − 1) and in
general AGE(y) where y ≤ x.

For this reason, we translate this hierarchy into a partial order over attributes
using an OWL ontology similar to the one defined over entities. This ontology
helps us in the decision making process.

If we think of a drug store, where alcohol is sold, prior to buying an alco-
holic drink, entities should present a credential stating that they are at least
21 years old, i.e. AGE(21). Now, suppose that an older person, with the at-
tribute AGE(60) tries to buy whisky. In our case, as his attribute is ’greater’
than the required one,i.e. AGE(21) ≤ AGE(60), he should be allowed to buy
whisky. Then, the requirement is the attribute AGE(21) instead of the classical
approach in which we require an attribute AGE(x) where x ≥ 21.

The privilege BuyAlcohol is defined as a specific attribute in the set of at-
tributes {AGE(x) : x ∈ N}

⋃
{BuyAlcohol}. The partial order is defined as

follows: BuyAlcohol ≤ AGE(21) and AGE(x) ≤ AGE(y) if and only if x ≤ y.
This ontology helps us to understand the authorization policy in which only the
attribute BuyAlcohol is required to buy alcohol.



2.3 Type

There are other parameters that have to be included in the specification of the
credentials, besides the attribute, the issuer and the holder. We define the type
of credential to include all the properties that are not essential, but which are
helpful, to define Authorization and Delegation. This separation of concepts
was previously proposed in [1], but we extend it here to include more general
information, in particular, information regarding the context.

A credential type is mainly used to determine if it is valid or not under
certain circumstances. Time is the basic type and it will be used as a model to
define new types that help us to restrict delegation and authorization according
to context information.

Consider the situation in which the only relevant characteristic to determine
whether a credential is valid at a particular point in time is the validity interval.
In this case, the type of the credential consists of a time interval. The set of time
intervals has a natural partial order induced by the inclusion relation, i.e. one
interval I1 is lower than another interval I2 if I1 ⊂ I2. Formally, TI := {[n, m] :
n, m ∈ Time Instants

⋃
{∞}, n ≤ m}.

As with Entities and Attributes, this partial order can be used to derive
new information from the current credentials of the system. Suppose we have
a credential with type [0, 5], then we could derive new credentials with a lower
type, e.g. [1, 4].

Another important type is the one that defines whether a credential is dele-
gable or not. We define the type 0 for non delegable credentials and the type 1 for
delegable credentials. Therefore, the delegation type is defined by TD := {0, 1}.
If we prefer that delegation credentials explicitly imply authorization credentials,
i.e. non delegable credentials, then we should define the partial order 0 ≤ 1, but
in general we consider TD not to be ordered.

We can now combine these two types and define a new type, TI×D := TI×TD,
which includes both types with the natural partial order. We will describe more
types in the following sections.

3 Credentials

At first sight, the information needed for a Delegation credential is the same as
the information used to define an Authorization credential plus the delegation
type that states whether it is a delegation or an authorization credential.In this
way, we include the two types of credentials into one single concept. So here-
inafter, credential is used as a general concept that comprises both authorization
and delegation credentials.

If we look at the differences between delegation and authorization credentials,
we see that the revocation of delegation credentials is more problematic than the
revocation of authorization credentials. If we think of revocation of authorization
credentials, we know this is a bottleneck for authorization frameworks. Using
delegation credentials, a new problem arises however because when they are



revoked, all the authorization and delegation credentials which are linked with
it have to be revoked too. This is the chain effect.

In this situation, we need some mechanisms in order to minimize the num-
ber of revocations. To do this, we introduce restrictions in the credential to be
valid. These restrictions involve the validity period and in general any parameter
included in the credential Type.

We are now ready to define delegation and give an appropriate notation for
this concept.

Definition 2 (Delegation Credential).
A delegation credential is a tuple (I,H, A, T ) in E∗ × E ×A× T where,

– (E ,≤) is a partial order set representing the possible issuers and holders of
delegation credentials.

– (A,≤) is a partial order set representing the possible attributes we consider
in our systems.

– (T ,≤) is a partial order set representing the additional properties of the
credentials that have to be considered when deciding if a chain of credentials
is valid or not.

The set of all possible credentials is denoted by C := E∗ × E ×A× T

The meaning of (Alice,Bob,Attribute, Type) is that Alice issues a credential
regarding the attribute Attribute to Bob, and that this credential has type Type.

3.1 Validity Evaluations

When defining the credentials in the system, not all the possible credentials
of C are going to be considered as valid. Instead of defining a subset of valid
credentials, we define a map from C to the set {true, false} in such a way that
all the valid credentials will be mapped to true and the non-valid to false. But
this map should also take into account the state or context of the system: instant
of time, context of entities, location of entities, etc., as this information could
interfere in the credential validation process.

Let States be the set of possible states of our system. Each estate s ∈ States
encodes all the relevant contextual information for making delegation and autho-
rization decisions. In the simplest example it is reduced to the system time, so
the only relevant information for a credential to be valid is the validity interval,
but in a functional system, each state should include all the relevant information
for determining the validity of any credential. We define then a function

f : C × States → Boolean

which decides if a given instant of time (or state) is included in a certain
time interval. Using this function, a credential (I,H, A, T ) is valid in state s if
and only if f( , , , T, s) = true. A function f like this is a validity evaluation.



Definition 3 (Validity Evaluation).
Let S be the set of all possible states of the system. A function

f : C × S → {true, false}

is a validity evaluation if and only if

f(I,H, A, T ) = true =⇒ f(I ′,H ′, A′, T ′) = true

for all (I ′,H ′, A′, T ′) where I = I ′, H ′ ≤ H, A′ ≤ A and T ′ ≤ T

We distinguish between two sorts of evaluations, those that depend on the
subjects involved in the credential, i.e. the issuer and the holder, and those that
do not depend on them. We also distinguish between those functions that depend
on the attribute and those that do not depend on it.

Definition 4 (Classes of validity evaluations).
An objective validity evaluation is a function which depends only on the

attributes and the type of the credential,

f(I, A, H, T, s) = f(I ′,H ′, T, A, s)∀I ′,H ′

An universal validity evaluation is a function which does not depend on the
attributes,

f(I,A, H, T, s) = f(I,H, T,A′, s)∀A′

A subjective validity evaluation is a function that is not objective, i.e. depends
on the subject or the issuer of the credential.

Objective validity evaluations do not care about the issuers or holders of
the delegation credentials but are concerned with the attributes issued in each
credential. On the other hand, subjective validity evaluations are affected by the
entities (holders and issuers) involved in the credentials.

As an example, let us think of a reputation system and suppose that the
reputation of each entity is stored in the state of the system. If we take the
reputation of the entities involved in a delegation credential into account in
order to decide if the chain is valid or not, then we are using a subjective validity
evaluation. If, on the other hand, the entities are not considered then we are using
an objective validity evaluation.

Another example of validity evaluation is to use the instant of time. In this
way

f(I,A, H, T, s) = true iff time(s) ≤ time(T )

where time(·) gives us both the information of the state regarding time and
the time component of the Type. The symbol ≤ represents the subclass rela-
tion (partial order) of the time component of the type. This easy schema can
be used with other Type components, like location. Location can be encoded
using IP addresses with and ontology encoding the subnetting relation or using
geographical information [9, 10]



We encode the validity evaluation using RuleML [7] or SWRL [8] which is
also supported by a Protege plugin. The definition of the last kind of validity
evaluation in SWRL is trivial, as it only involves one subclass relation. With
some complex examples we have to use RuleML.

4 Chaining Delegation Credentials

We mentioned before that unlike authorization credentials, delegation creden-
tials can be chained to form a delegation chain. This consists of a sequence of
delegation credentials concerning the same attribute and in which the issuer of
a credential is the holder of the previous credential. Furthermore, in any given
path, the issuer of a credential has to be lower, in the subclass relation, than the
holder of the previous credential, formally:

Definition 5 (Delegation Path). A sequence of delegation credentials
{Ci}n

i=1, where Ci = (Ii,Hi, Ai, Ti), is a delegation path or chain for the attribute
A if,

1. Ii+1 ≤ Hi for all i ∈ {1, . . . , n}.
2. A ≤ Ai for all i ∈ {1, . . . , n}.
3. D ≤ Ti for all i ∈ {1, . . . , n}.

Where D represents the minimal type for delegation credentials. A sequence
of delegation credentials C := {Di}n

i=1 is a chain or path if there exists an
attribute A 6= ∅ such as C is a delegation chain for A. The set of all delegation
paths is denoted by P.

Condition 1, in Definition 5, makes use of the partial order given on the set of
entities. When an entity y is more specific, lower in the hierarchy, than another
entity x, then y inherits the attributes issued to x. In the extreme situation in
which the partial order is trivial, this condition is reduced to Ii+1 = Hi for all
i ∈ {1, . . . , n}.

Condition 2, makes use of the partial order given on the set of attributes.
When an entity x issues a credential over any attribute a, it is implicit that any
other attribute a′ which is more specific than a (a′ ≤ a) is also issued. Thus, we
use this implicit rule to chain credentials that have some attributes in common.

Condition 3, only establishes that all credentials in a delegation path must
be delegation credentials. We use the type element D to represent the type
delegable.

Given a path of credentials, we can map it to a single credential using a
sequential operator. This operator is well defined only when the partial order
sets A and T are not only partial orders but semi-lattices for the meet operator.
In this case we take advantage of the meet operator for lattices to define a
sequential operator for credentials.

Definition 6 (Sequential Operator). Let ∧ denote the meet operator of the
lattices A and T . Then, given two credentials (X, Y,A, T ) and (Y ′, Z,A′, T ′)
with Y ′ ≤ Y we define the sequential operator as



(X, Y,A, T ) ∧ (Y ′, Z,A′, T ′) = (X, Z, A ∧A′, T ∧ T ′)

Using this operator we give an alternative definition for credential paths

Definition 7 (Delegation Path for lattices). Let {Ci}n
i=1 be a sequence of

delegation credentials, where Ci = (Ii,Hi, Ai, Ti) and let (IP ,HP , AP , TP ) =
C1 ∧ C2 ∧ . . . ∧ Cn. The sequence is a delegation path or chain for the attribute
A if,

1. Ii+1 ≤ Hi for all i ∈ {1, . . . , n}.
2. A ≤ AP .
3. D ≤ TP .

Making use of the sequential operator we can map each credential path with
a single credential. These credentials encode the meaning of the path and will
be used when taking authorization and delegation decisions.

If we have a poset we may complete it with the special element ∅, that is
defined as the minimal element in the poset, in such a way that the resulting
set is indeed a semi-lattice for the meet operator. Then, we can use the previous
definition with the extended posets.

Now we define the concept of valid credential path. We decide if a chain of
credentials is valid or not, in a given state, using the same idea as with simple
credentials. To do so, we define a validity function to decide whether a chain of
credentials is valid or not.

Definition 8 (Validity Function). Let S be the set of all possible states of
the system. A function

f : P × S → {true, false}

is a validity function if restricted to the domain C×S is a validity evaluation.

The first and simplest approach to determine if a path of credentials is valid
is to check whether all the credentials of the path are valid in the state. Indeed,
this is the least restrictive approach. So, we call it LR validity function.

Definition 9 (LR validity function). Let P := C1C2 . . . Cn be a chain of
credentials. The Least Restrictive (LR) validity function is defined by,

f̂ ≡ fLR : P × S −→ {true, false}

(P, s) 7−→
n∧

i=1

f(Ci, s)

In the simple case in which, f(Ci, s) ≡ f( , , , Ti, s), f̂ depends only on the
types of the credentials that composed the path P . As with validity evaluations,
we distinguish between Objective and Subjective validity functions.



4.1 Examples of Types

We introduce here two incremental examples. We focus on the definition of the
type of the credentials and on the validity evaluations and functions associated
to the credentials. First of all, we define the set of States S0 consisting of points
in time. Let define

T0 := TI × TD

where TI and TD are the types defined in Section 2.3.
We define a Universal Objective validity evaluation as, f(I, H, A, T, s) = true

if and only if s ∈ T .
The validity function defined above is clearly universal and objective as it

only depends on the type of the credentials and of course on the given state. Let
us try to reduce the condition s ∈ T to a more general condition using only the
partial order. If we represent the states of S0 as unitary intervals:

S0 := {[s, s] : s ∈ N}

then the validity function f0 is defined as the following:

f0 : P × S0 −→ {true, false}
(P, s) 7−→ (s ≤ T ) (1)

Suppose we want to use a Multilevel security policy in which we define two
security levels: weak and strong. Suppose that the strong is more restrictive
than the weak level, so there could be credentials that are valid for the weak but
not for the strong one. In this case, we should include the label weak in those
credentials that are only valid in the weak level and the strong label in those
which are valid in any level. This situation can be easily encoded using partial
order. We define a new set of states, S1, that contains the level of security of the
state and a point in time.

S1 := S0 × {weak, strong}

Analogously, we define a new type,

T1 := T0 × {weak, strong}

that is a product of partial orders, where the partial order of {weak, strong}
is defined with the inequality weak ≤ strong. With those definitions, we define
the validity evaluation, f1, as in Equation 1.

In those cases in which we could give a meaning to s ≤ T we refer to f0 as
the canonical validity evaluation and to f̂0 as the canonical validity function.

The last example is a subjective validity function that requires a reputation
system. Suppose r(E) gives us the reputation of entity E as a real number in
the interval [0, 1]. We can define a lower bound of 0.5 for the reputation of the
issuer of the first credential in the path. In this way f(P, s) = true if and only
if fLR(P, s) = true, I1 ∈ E∗ and r(I1) ≥ 0.5.



5 Conclusions

We have defined a general mathematical framework for model delegation. Al-
though we have used a mathematical notation, the ideas presented in this paper
could have been formulated using a more common language. The use of par-
tial orders is clearly supported by ontologies, and in particular OWL offers a
subclass mechanism that is well suited to the concept of partial order. So, in
practice, when we talk about partial orders, we are thinking about a simple
subclass ontology. More work has to be done in order to support more complex
ontologies. The other interesting concept presented in this paper is the context,
which is encoded in the variable state. All information relevant to the system is
encoded using ontologies which allows us to use rule languages such as RuleML
and SWRL to reason on the delegation and authorization relationships in the
system.

References

1. Isaac Agudo, Javier Lopez and Jose A. Montenegro. “A Representation Model of
Trust Relationships With Delegation Extension”. In 3rd International Conference on
Trust Management, iTrust 2005, volume 3477 of Lecture Notes in Computer Science,
pages 116 - 130. Springer, 2005.

2. Aditya Kalyanpur, Bijan Parsia, Evren Sirin, Bernardo Cuenca-Grau and James
Hendler, “Swoop: A Web Ontology Editing Browser”, Journal of Web Semantics Vol
4(2), 2005

3. D.F. Ferraiolo, D.R. Kuhn and R. Chandramouli, “Role Based Access Control”,
Artech House, 2003.

4. C. Ellison, B. Frantz, B. Lampson, R. Rivest, B. Thomas and T. Ylonen “SPKI
Certificate Theory”, RFC 2693, 1999.

5. Holger Knublauch, Ray W. Fergerson, Natalya F. Noy and Mark A. Musen “The
Protege OWL Plugin: An Open Development Environment for Semantic Web Ap-
plications” Third International Semantic Web Conference - ISWC 2004, Hiroshima,
Japan, 2004.

6. S. Bechhofer et al., “OWL Web Ontology Language Reference”. 2004.
7. Boley, H., “The Rule Markup Language: RDF-XML Data Model, XML Schema Hi-

erachy, and XSL Transformations”, Invited Talk, INAP2001, Tokyo, Springer-Verlag,
LNCS 2543, 5-22, 2003.

8. “SWRL: A Semantic Web Rule Language Combining OWL and RuleML”. W3C
Member Submission. 21-May-2004.

9. B. Purevjii, T. Amagasa, S. Imai, and Y. Kanamori. “An Access Control Model for
Geographic Data in an XML-based Framework”. In Proc. of the 2nd International
Workshop on Information Systems Security (WOSIS), 2004, pages 251–260.

10. V. Atluri and P. Mazzoleni. “A Uniform Indexing Scheme for Geo-spatial Data and
Authorizations”. In Proc. of the Sixteenth Conf. on Data and Application Security,
IFIP TC11/WG11.3, Cambridge, UK, 2002, pages 207–218.


