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Abstract. This paper presents our progression in the search for reliable
anomaly-based intrusion detection mechanisms. We investigated differ-
ent options of stochastic techniques. We started our investigations with
Markov chains to detect abnormal traffic. The main aspect in our prior
work was the optimization of transition matrices to obtain better detec-
tion accuracy. First, we tried to automatically train the transition matrix
with normal traffic. Then, this transition matrix was used to calculate
the probabilities of a dedicated Markov sequence. This transition matrix
was used to find differences between the trained normal traffic and char-
acteristic parts of a polymorphic shellcode. To improve the efficiency of
this automatically trained transition matrix, we modified some entries in
a way that byte-sequences of typical shellcodes substantially differs from
normal network behavior. But this approach did not meet our require-
ments concerning generalization. Therefore we searched for automatic
methods to improve the matrix. Genetic algorithms are adequate tools
if just little knowledge about the search space is available and the com-
plexity of the problem is very hard (NP-complete).
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1 Introduction

During the past years, different polymorphic shellcode engines have shown up in
the internet. The concept of polymorphism is not new in the field of viruses, but
it took about 10 years that these polymorphic mechanisms were also used in the
field of polymorphic shellcodes. The most popular representatives are CLET and
ADMmutate. Especially on the example of CLET, the authors of [CLET03] used
a spectrum analysis mechanism to defeat data mining methods. The problem was
to develop an engine which is capable to generate shellcodes which will be con-
sidered as normal by NIDSs. The basic idea of this approach was to analyze it
usual traffic generated by the usual use of network services. This mechanism is
described in [ADMO03] and [CLET03] in more detail. The knowledge about bytes
and byte-sequences can then be used to generate shellcode-sequences, depending



on the probability of each occurring byte in the it normal traffic.

CLET and some other polymorphic engines try to be as similar to the normal
traffic as possible. The problem with known shellcode-engines is that just single
parts of the generated codes are used to adjust the generated byte-spectrum
to the byte-spectrum of the overall network traffic. All other parts remains un-
changed and can therefore be detected by using statistical methods. As shown
in [Yn01],[YEZ02],[Yn00],[JTMO01],[JV99] Markov models and HMMs are sto-
chastic methods which can be used if an statistical relation between events and
intrusion is given. Therefore it also must be able to use these methods to make
decisions directly upon network traffic.

2 Markov models

2.1 Overview

A Markov chain is a sequence of random values whose probabilities at a given
time depends upon conditional probabilities of the recent past. The controlling
factor in a Markov chain is the transition matrix which is used to calculate the
conditional probabilities of dedicated state sequences and lengths.

2.2 Definition
There are three items involved to specify a general markov chain:

— State space S.
S is a finite set of states. Let us label the states as S = {1,2,3,..., N}
for some finite N.

— Initial distribution ag.
This is the probability distribution of the Markov chain at time 0. For
each state ¢ € S, we denote by ao(i) the probability P = {X, = i}
that the Markov chain starts in state i. Formally, ag is a function
taking S into the interval [0,1] such that

ap(i) >0 forallie S (1)

and

> ali)=1. (2)

€S
— Probability transition matrix P.

If S is the finite set {1,2,..., N}, then P is an N x N Matrix. The
interpretation of the number p;; is the conditional probability, given
that the chain is in state ¢ at time n, and that the chain jumps to
the state j at time n + 1. That is,

Pij = P{QnJrl = ]|qn = Z} (3)



We can also express the probability of a certain sequence {q1,q2,...,¢,} (the
joint probability of the recent past and current observations) using the Markov
assumption:

n

P(g1, s a0) = [ [ Plailai-1) (4)

i=1

3 Transition matrix

In our first approach we trained the transition matrix automatically from a
given traffic data. This given network traffic was real network traffic captured,
and stored in a file. Thereafter, this file was used to train a Markov model. But
before training, this Markov model has to be initialized. Therefore, we have to
specify and initialize the following items:

— State space S
Because every character is coded as 1 byte, the possible state space
for network traffic would be S = {0,1,2, ..., 255}. Due to the fact that
Markov models are not intended to use zero as a state, we shifted
the state space by 1. Therefore we used S = {1,2,3,...,256} as state
vector.

— Initial distribution ag.
For the first version we used an initial distribution of equal proba-
bility for every state to be the first state.

ao(i) = 0,00390625 for all i € S (5)

— Probability transition matrix P.

As stated in section 2.1 it is crucial to determine an appropriate tran-
sition matrix to get good results. This is the main part of our work.
In our first approach we learned the transition matrix automatically
from a given traffic data. Therefore we collected the probabilities
for all transitions from one character to another. By using this in-
formation it is possible to detect something which is not normal in
relation to the learned traffic. The training data is represented as
an array b with elements from the state space S. Then we counted
all transitions from one particular character to another (e.g. 129 to
192) and divided the sum by the whole number of transitions for this
character. The transition probability p;; for one possible transition
1 — j requires the computation of

Tij:#{kE{l,...,N—l}:kaiAbk+1:j} (6)
where N specifies the length of the data b from which we learn the
transition matrix. Then, p;; can be written as

ris
Pij = = (7)

Zj:l Tij



Figure 1 shows the probability distribution of a CLET polymorphic shellcode
calculated with a Markov sequence length of 30 using the Markov assumption.
The x-axis shows the byte length (position) and the y-axis represents the proba-
bility value for the sequence. To proof if a sequence is a polymorphic shellcode we
used a threshold which we got from probability observations of many real shell-
codes. With the learned transition matrix it was possible to detect the decipher
engine and the enciphered code.
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Fig. 1. Learned transition matrix Fig. 2. Designed transition matrix

Since we did not get just one significant pike, causing more false positives, we
decided to improve the distribution matrix. We used the knowledge that some
byte-sequences are more likely in shellcodes than in normal traffic and modified
the corresponding values manually. This modified matrix applied to shellcodes
resulted in a substantial difference compared with normal network traffic. With
the created transition matrix we are able to obtain the requested probability
distribution (Figure 2). The First 100 Bytes show the probability of the NOP
zone and then the significant pike represents the decipher engine. Afterwards
the ciphered shellcode itself is displayed.

4 Optimizing the transition matrix

Since it is very hard to manually modify a transition matrix and take all impor-
tant parameters into account, we searched for new solutions to this problem.
Possible modifications are manifold and we just know very little about the val-
ues (instructions) and their influence on the result. Therefore, we decided to
give an automated (optimization) search algorithm a chance. There are many
methods which can be used to find a suitable solution, but all these methods
do not necessarily show the best solution [RN95],[PJ84]. The solutions found by
these methods are often considered as good solutions. One reason is that it is
often very hard to prove the correctness of possible optimal solutions. Therefore,
we decided to give the genetic algorithm a try.



5 Genetic algorithms

Genetic algorithms are inspired by Darwin’s theory of evolution. Solution to a
problem solved by genetic algorithms uses an evolutionary process (it is evolved).
The algorithm starts with a set of solutions (represented by chromosomes) called
population. Solutions from one population are selected and used to form a new
population through mutation and cross-over. This is motivated by a hope, that
the new population will be better (yield better) than the old one. Solutions
which are then selected to form new solutions (offspring) are selected according
to their fitness - the more suitable they are the more chances they have to be
reproduced.

5.1 Definitions

GAs always deal with solutions, goals, criteria, and fitness functions. These gen-
eral terms are described in more details within this section.

— Solution

In our case a solution is a representation of a specific transition
matrix representing a set of possible offsprings. Due to the fact that
our GA-implementation could not handle matrices, we converted the
transition matrix into a vector where the rows of the matrix are
appended consecutively. So we got a vector with 65536 values.

— Goal

To measure the fitness of the solutions we have to compare the calcu-
lated probability distribution of an distinct shellcode with a desired
probability distribution. This desired distribution is called goal.

— Evaluation criteria
Since a genetic algorithm demands a single value as a measure for the
fitness, we subtract the probability distribution of the solution from
the goal, squared them, summed it up and divided by the length of
the goal vector.

N ()2
fitnessvalue = ——Zi:l(]j\zf i) (8)

where R is the result and G the goal vector for the probability distri-
bution of a single solution. N specifies the length of the distribution
vector.

— GA parameters
We used the GAOT Matlab package from the North Carolina State
University with their default settings for floatGA [HJK95]. The op-
tions we used where [Ie-2 1 1 0.1].



5.2 Optimizing the detection for one specific shellcode

First we tried to use just one shellcode for our evaluation function to see if it
is possible to optimize the transition matrix. By using just a single shellcode, it
was possible to generate a transition matrix nearly reaching the preferred goal
(figure 3). The preferred goal in this case shows a very significant peak at the
position where the decipher engine appears in the evaluation function.
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Fig. 3. Optimization result for an arbitrary shellcode

But due to the fact that we just used a single shellcode, the obtained tran-
sition matrix is very specialized and just qualified to find this single shellcode.
All other shellcodes (generated by the same engine) seems to be to different and
cannot be detected by this "improved” transition matrix. In figure 4 you can
see five deciphering engines with a sequence-probability of 10~7°, whereas the
second one shows a a small peak in the middle of the shellcode where we expect
the deciphering engine. All other shellcodes just show that shellcodes are more
unlikely that normal network traffic, but the significant peak in the middle of
the shellcode is missing. The strong peaks at the top of the figure came from 0
bytes in the network traffic. Since no 0’s are allowed in a polymorphic shellcode
we do not calculate the sequence probability of such a sequence and assign a
value of 1 instead. This very much depends on the selection of the boundaries.
So we need another approach.
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Fig. 4. Detection result for 5 shellcodes

5.3 Applying the evaluation function to 10 shellcode instances

Since always a single fitness value decides about success or failure of a dedicated
solution it is quite obvious that more samples would lead to better results. We
started with a sequence of just 10 shellcodes packed-up back-to-back to evaluate
our solutions. All used shellcodes were generated randomly and can even be a
mix of different shellcode generators (Clet, ADMmutate, JempiScode).

After this preparation phase, the evaluation function is applied to the result of a
dedicated solution (solution-vector). In doing so, the fitness-values are calculated
for each single shellcode (according to 8) and the arithmetic median on all fitness
values is calculated and returned to the genetic algorithm.

In figure 5 the sequence of 10 different shellcodes, the best initial solution,
the goal, and the best found solution is shown. Here we see that calculating
the arithmetic median on several shellcode instances and the use of this value
as fitness value to train the GA yields much better than 5.2. In figure 5, you
still can see the difference between normal traffic and shellcodes. But the most
interesting point is the existence of the conspicuous peak in the middle of all
shellcodes.

5.4 40 decipher engines and similar traffic as evaluation function

The next idea was to use shellcode-data from different decipher engines. No
longer we are dealing with the whole shellcode. From now we just look at the
most interesting part of the shellcode - the decipher engine (the peaks). To get
a goal-function, we had to add some other traffic at the beginning and at the
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Fig. 5. Optimization result for 10 different shellcodes

end of our evaluation example. To get better results, we used normal traffic data
detected as false positives, by the captured method described in 5.3. And once
again - in figure 6 the best initial solution the goal and the best found solution
is displayed.

The green line represents the untrained, initial behavior. Since the shown dia-
gram is an enlarged picture of the interesting part of the diagram, we can se no
difference between the deciphering engine and the rest of the shellcode.

The blue line is the trained result, showing significant differences 10'° between
the deciphering engine and byte sequences looking very similar to decipher en-
gines. By careful threshold-selection, we are now able to distinguish between real
shellcode and false positives detected by 5.3, since peaks detected by 5.3 at 400
and 600 are eliminated by the improved transition matrix.

6 Experimental results

At least we present the detection results for all transition matrices we produced.
We have tested our implementation with real data from the hard disk. The
amount of data we used was 126 MB, which we collected from different locations
to get fair distributed data. The data itself contains no shellcodes but decipher
engine similar code. We used a threshold for the detection with which could
detect all the shellcodes from our test set. We are using only sequence calculation
without any additional improvements like:

— NOP-zone detection
— Prefilter- or preprocessing-techniques
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Fig. 6. Optimization result for 40 decipher engines and similar traffic data

— Abstract Payload Execution
— Assembler command improvement

We calculated the probability of Markov sequences with a length of 30 for
the whole data by using a sliding window. The sliding window was shifted by
one for every new sequence.

P1 | P2 |P3|P4
False negatives| 0 0 10]O0
False positives |33540(2540(652|13

Table 1. Markov model detection performance with different transition matrices

7 Conclusions

P1 - Learned transition matrix from normal traffic.
P2 - Manually created transition matrix.
P3 - Transition matrix obtained as solution from approach 5.3
P4 - Transition matrix obtained as solution from approach 5.4

Since we did not know a good algorithms to modify a Markov model, trained
with normal network traffic (to be able to detect any deviations from normal



traffic) we used GAs to solve this problem. Starting with the evaluation of a
single shellcode-instance, we proofed the concept of MM-adaptation by GAs to
make MMs more significant in the special case of polymorphic shellcode.

We learned quick that a single shellcode-sample was insufficient to be used in
our GA-fitness function. Thus, we increased the number of shellcode-probes and
we used 10 instances to train the MM. We know that 10 instances are still insuf-
ficient to be able to detect a broader spectrum of polymorphic code (generated
by different polymorphic generators). But the main idea of this paper was just
to give a proof of concept.
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