
An Architecture for Secure Policy Enforcement in E-
Government Services Deployment

Nikolaos Oikonomidis, Sergiu Tcaciuc, Christoph Ruland

Institute for Data Communication Systems, University of Siegen
[nikolaos.oikonomidis], [sergiu.tcaciuc], [christoph.ruland]@uni-siegen.de

1 Introduction

Citizens interact at regular intervals with municipalities or municipal organizations.
Public administrations offer a variety of services like requests/processing of certifi-
cates and (local) tax payment. An effective and efficient service provision brings
benefits to both municipalities and the involved citizens/customers of a particular
service. Due to the fact that exchanged data in forms and documents may contain
private or/and sensitive data, it is imperative to introduce security mechanisms that
guarantee to citizens a trustworthy means of communication via a network that may
be insecure, such as the Internet. Further, cross-border services involve different mu-
nicipalities and other public authorities in the processes. The described work is de-
rived from research for “eMayor”, a project funded by the EU committee. eMayor
addresses the specific audience of Small and Medium sized Governmental Organiza-
tions (SMGOs) across Europe. The project looks especially at transactions that are
performed on a European level. This paper focuses on an architecture for secure pol-
icy enforcement within eGovernment platforms, such as the eMayor platform.

2 Secure policy enforcement

The approach chosen for modeling the overall architecture of eMayor relies on the
Reference Model of Open Distributed Processing (RM-ODP) [1]. At first, the identi-
fied requirements together with the legal frameworks formed the Enterprise View-
point. This viewpoint resulted into a specification of a community of the platform
users and the respective business objects that derive from the community specifica-
tion. The identified scenarios have been converted into processes. The Information
Viewpoint has presented and analyzed various information objects that exist in the
eMayor context and the relations between them. Additionally, since Information Ob-
jects pass from various states through their life-cycle, their respective state transitions
have been specified as well. The interaction between system components on the func-
tional level and their respective interfaces have been described in the Computational
Viewpoint. Engineering and Technology Viewpoints have been placed in the imple-
mentation phase.

The system design resulted into the specification of an architecture as a set of mod-
ules, each one comprising certain functionalities. User Interface handles the interac-

2 Nikolaos Oikonomidis, Sergiu Tcaciuc, Christoph Ruland

tion of the user with the eMayor platform, required for the actual processing of the
service. Service Handling represents the core of the system and has dependencies to
all other modules. Format Transformation is responsible for transforming legal
documents from a country-bound local format to a universal format for use within the
eMayor environment and vice versa. Content Routing provides the routing functional-
ity for forwarding requests and legal documents from one municipality to another.
Municipal Systems Adaptation is the linking point to the existing (legacy) systems of
the municipalities. Persistent Storage handles data storage to databases. Output Noti-
fication and Printing provide support for notification and printing services. Finally,
Policy Enforcement encapsulates the enforcement of a series of functionalities which
are defined in municipal policies. Such functionalities include, e.g., auditing, access
control, digital signature verification and other security mechanisms. Within the In-
formation Viewpoint, a policy information object has been specified. Such a policy
object represents the constraints, conditions, and rules that have to be respected and
enforced by the platform. Security Services Policy implements the security services
that are required. Access Control Policy regulates access control to the requested
municipal services. Audit Policy controls how actions are recorded in the system for
auditing purposes. Policy Subject represents the entity which will invoke one or more
Policy Action objects. A Policy Action may take effect on a Policy Object. The result
of a Policy Action or even one ore more Policy Objects are related to the Policy Tar-
get. One or more Policy Pre Condition, Policy Condition and Policy Post Condition
objects control the invocation of one or more Policy Action objects depending on the
policy type. A subject of research is modeling of policies that control the secure exe-
cution of the municipal services. In other terms, a Service Execution Policy will de-
fine the steps that have to be taken during the system’s operation regarding the re-
quired security services and the pre-/post conditions that should be fulfilled.

Policy Enforcement is implemented in the policy enforcement module, which re-
sides in the eMayor platform of each municipality. Components of the policy en-
forcement module comprise different sets of functionalities in order to enforce the
appropriate policies. Policy Enforcement Management is the component that exposes
the module’s functionality as a set of “enforcer” interfaces. Policy Evaluation compo-
nent contains all elements which are responsible for taking a decision if a request or
functionality complies to the appropriate policy, whereas Policy Retrieval component
queries the respective policy repositories and retrieves the appropriate policy. The
model of the components and their communication within the policy enforcement
package derives from the XACML specification [2]. The current research objective is
to provide an extension to XACML for enforcement of other types of policies apart
from access control policies.

References

1. Information technology, Open Distributed Processing - Reference Model: Architec-
ture, ISO, 1996

2. Core Specification, eXtensible Access Control Markup Language (XACML) Version
2.0, OASIS, 2005

