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Abstract. The transition planning problem is to move a system from an
existing starting configuration to a desired final configuration at the low-
est possible cost. Prior work shows that the transition planning problem
can be reduced to a bipartite matching problem and the stable marriage
algorithm can be used to approximate a minimum cost transition in
a distributed environment. In this paper, we study the efficiency of this
mapping, including its best-case, worst-case, and statistical behavior. We
discuss the relationship between algorithm performance and the distribu-
tion of the input data. We show that while there are cases in which this
algorithm performs poorly, works well when the costs of transitioning be-
tween distributed resources follow a normal distribution. We discuss the
applicability of this algorithm to real-world situations in which resources
are thus distributed.

1 Introduction

The transition planning problem for a system (such as a network) is to design a
plan of operations that – when executed – will move the system from its existing
configuration to a new configuration having desirable properties. In a previous
paper [8], we discussed the distributed transition planning mechanism. Transi-
tion planning is reduced to a matching problem whose solution is approximated
by solving the stable marriage problem. We apply distributed algorithms to com-
pute the transition plan. We show that although these algorithms do not always
achieve optimal solutions, they return acceptable results in most cases. Thus
they can be used for system management.

For example, suppose that there are three physical servers X, Y, and Z that
act as web servers and serve three types of content that we call A, B, and C.
Each server initially serves one form of content: server X serves content A, Y
serves content B, and Z serves content C. We think of each kind of content as
a role for the server. Initially, each server is matched to a unique role and the
cost of changing roles is more than the cost of remaining at the same role. This
is depicted as a bipartite graph, with X, Y, Z on one side and A, B, C on the
other(Figure 1(a)). Edges represent cost of transition, which can be estimated
by a variety of methods. In this bipartite graph, the cost of keeping the current
server-role mapping is zero so we say that the system is at a fixed point [2, 1].
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Fig. 1. The bipartite graph before and after the catastrophe.

When the environment changes (e.g., the users of content A increase), the
processing power of servers serving content A may not be enough. We call such
a change a transition catastrophe [8], to distinguish it from policy changes that
do not incur configuration change and incur no cost. To provide the same level
of service, some servers serving other content need to be transitioned to serve
content A. The goal is to find a plan to meet the new requirements so that the
transition happens at minimum cost. The difference between this and the prior
state is that remaining at the current roles now has a nonzero cost, e.g., including
the cost of violating a service-level agreement(Figure 1(b)). The minimum cost
matching for this graph will not be the status quo. The Hungarian method
[4] can be used to compute the minimum cost matching, which represents the
minimum cost solution. The new minimum-cost matching is shown with bold
lines. The roles have been rearranged so that SLAs are again met. The resulting
reconfiguration achieves a fixed point again, because the cost of remaining in
this state is again zero.
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Fig. 2. The bipartite graph using rankings before and after the catastrophe.
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However, in a distributed environment, the bipartite matching method for
transition planning may not work properly for several reasons. Agents might
not agree on how the costs are computed, or their units for cost may differ. We
proposed in [8] to use a stable marriage algorithm, the Gale-Shapley algorithm
[3], to solve the distributed transition planning problem. The first step in using
this method is to convert costs to rankings. Each node ranks the edges connected
to it in order of preference, from lowest cost to highest cost. For example, for
Figure 1(a), the rankings are shown in Figure 2(a). If costs are at a fixed point,
so are rankings. When a catastrophe arises, instead of considering costs (as in
Figure 1(b)), agents will consider rankings, as illustrated in Figure 2(b). Thinking
of agents as representing both sides, agents will attempt to form a set of stable
marriages, so that there is no advantage to any server switching roles. Such a
matching is shown again in bold.

2 Hospitals/Residents Problem
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Fig. 3. Assign virtual machines to physical hosts

The stable marriage problem results in a one-to-one mapping. Another re-
lated problem is the Hospitals/Residents problem (a.k.a college admission prob-
lem) [3], which computes a one-to-many mapping. The hospitals/residents prob-
lem describes the matching process that is used to match medical students and
hospitals having openings for residents; because a hospital only has limited po-
sitions, only the top candidates ranked by that hospital will be admitted. This
problem is also called the college admission problem. The hospital/residents
problem can again be solved by the Gale-Shapley algorithm [3]. In each round,
each unmatched applicant proposes to the most preferred hospital that has not
rejected his proposal.

We can investigate the resource allocation and transition problem by reducing
it to the hospitals/residents problem. Let us use the virtual machine assignment
problem as an example. In virtual machine (VM) management, a common task
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is determining how to assign a VM to an appropriate physical machine. Figure
3 shows an example of assigning virtual machines to physical machines.

One challenge of applying the Gale-Shapley algorithm to VM assignment is
how to determine the ranking of the VMs. An agent representing a physical
host can rank VMs by many standards, such as the importance of the VM, the
resource-utilization profile (e.g., CPU-bound, disk-bound) of the VM, or user
preferences. We start from the simplest cases and build to a discussion of how
to handle various kinds of constraints.

For example, suppose that there are four virtual machines V M1, V M2, V M3,
and V M4, and two physical hosts PHY1 and PHY2 (Figure 3). The attributes
of physical hosts are memory size, storage size, and network bandwidth. There
are also several constraints that limit matching between the VMs and PHYs.

Suppose that our task is to deploy new applications to VMs that are hosted
by physical hosts. First, the resources needed for applications are estimated,
though these estimates can be adjusted later. The goal is to find steps (ideally
in a distributed way) to provide resources for the new application and ensure
minimum cost.

In the bipartite graph, the virtual machines are listed on the right side; the
physical hosts are listed on the left side. Each node has a ranking of all the
nodes on the other side, based on its own standard. The right side proposes to
the agents representing the physical hosts and current VMs. As in the one-to-
one case, once stabilized, the left side ranks current bindings the highest. The
ranks among current bindings are decided by the physical host based on its own
standard. The same three-step process applies here: first use the Gale-Shapley
algorithm to get a stable matching; then change the bindings according to the
matching; finally change the rankings on the left side to reflect the new bindings.
This transition process is a deterministic fixed-point operator.

When a catastrophe arises, some VMs will be chosen to be served by other
physical servers; this is called “swinging the physical servers to serve new VMs”.
Once transitioned, these VMs may be adjusted to meet the new requirements.
For example, one problem might be to find enough bandwidth for a new appli-
cation (by moving some existing applications around in the physical hosts).

Failover can be characterized as a transition catastrophe: when a physical
server fails, the VMs running on it will try to locate new physical servers for
their host environment. Agents monitoring these VMs will notice the outage
and reflect it in their stable marriage rankings. Then these agents will propose
to the rest of the physical hosts and determine whether the matching is feasible,
because the capacity of each physical server is limited.

3 Quality of Stable Marriage and Hospital/Resident
Solutions

The Gale-Shapley algorithm always produces a stable marriage, but there is some
question as to how well that marriage substitutes for the more ideal transition
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plan based upon costs rather than ranks. We first develop a measure of how well
stable marriage works compared to the theoretical best solution.

Definition 1. The approximation ratio of a stable marriage solution is the ratio
of the cost of the stable marriage solution to the cost of the ideal solution obtained
through minimum bipartite matching.

The ratio is always >= 1.0. Values near 1.0 indicate that the stable marriage
algorithm is working well, while high values indicate that it is working poorly. A
value of 1.0 means that the stable marriage algorithm did as well as a bipartite
matching solution in which all weights (costs) are collected in a central location.
The approximation ratio may be thought of as the “cost of distributing” the
algorithm onto an agent network.

The approximation ratio is highly distribution dependent; it differs with the
statistical distribution of the input weights.

Theorem 1. When all the weights in the bipartite graph are identical, the ratio
of the total cost computed through stable marriage to the optimal solution is 1.0.

Proof. Suppose that d edges need to be selected. When all the weights are the
same, the total cost in any mapping is always d·weight. Thus the approximation
ratio is always one. ⊓⊔

Theorem 2. Suppose the maximum ratio of two weights in the bipartite graph is
k. In the worst case, the ratio of the total cost computed through stable marriage
to the optimal solution (i.e. the approximation ratio) is less than or equal to k.

Proof. Let max(weight) and min(weight) represent the maximum and mini-
mum weights in the graph. Let k = max(weight)/min(weight). In the worst
case, the stable marriage or the hospital/resident algorithm selects the worst
solution possible. Suppose that d edges need to be selected in the solution. The
optimal solution has a total weight greater than or equal to d ·min(weight), and
the stable marriage or hospital/resident solution has a total weight less than or
equal to d ·max(weight). Thus the maximum ratio is less than or equal to k. ⊓⊔

The worst scenario is illustrated in the following example (Figure 4).
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Fig. 4. The solution of the stable marriage problem vs. the solution of the assignment
problem. Bold lines represent the matchings derived in each case.
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Theorem 3. Suppose that for one side of the bipartite graph, we select the max-
imum and minimum labels maxi and mini for each node i on that side. Suppose
that max and min are the sums of maxi and mini over all i, respectively. Then
the approximation ratio cannot be greater than max/min.

Proof. The best possible outcome of a bipartite matching includes the minimum
edge taken from every node, yielding a minimal score. The worst outcome of
stable marriage includes the maximum edge taken from every node, yielding a
maximum score. ⊓⊔

In this example, the optimal solution has a total cost of 1.01 + 1.01 = 2.02,
whereas the stable marriage algorithm yields a total of 1000 + 1 = 1001. The
ratio is almost 500, which is less than 1000/1 = 1000.
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Fig. 5. The solution of the hospitals/residents problem vs. the solution of the matching
problem. Bold lines represent the matchings derived in each case.

In the worst case, the approximation ratio can also be arbitrarily large in
the hospitals/residents problem (Figure 5). In the figure, on the left side, each
physical host has two slots and there are four VMs. The approximation ratio is
almost 250.

In practice, the upper bound is tighter because there is no case in which the
optimal solution chooses all minimum weights and the stable marriage solution
chooses all maximum weights, because the stable marriage algorithm chooses at
least one edge that has minimum weight.

4 Simulations

In the following we study the approximation ratio of the Gale Shapley algorithm
and that of a variant utilizing a heuristic strategy.
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Fig. 6. The approximation ratio for weights following the uniform, normal, and Pareto
distributions.

4.1 The Gale-Shapley Algorithm

In the previous section, we showed several examples where the approximation
ratio for stable marriage depends upon the choice of weights. In this section, we
consider how the approximation ratio for stable marriage changes as we change
the statistical distribution of the weights in the original bipartite matching prob-
lem. For some distributions, stable marriage yields low approximation ratios that
are nearly optimal. For others, high approximation ratios are observed. We tested
the stable marriage transition planning scheme in simulation and compared the
resulting matching to that obtained from bipartite matching. We used different
probability distributions to determine the weights of the transition edges. The
results for the uniform, normal, and Pareto distributions are shown in Figure 6.
We tried two uniform distributions. The first setting (uniform distribution 1) has
a mean of 1000 in range (0,2000], and the second setting (uniform distribution
2) has a mean of 10000 in range (0,20000]. These yield almost identical results.

Next we simulated approximately normally distributed weights with mean
10000 and 3 different standard deviation parameters. The first setting (normal
distribution 1) has a standard deviation of 2000; the second setting (normal
distribution 2) has a standard deviation of 5000; the third setting (normal dis-
tribution 3) has a standard deviation of 10000. In the experiments, when a
negative random number is generated following these settings, we discard it and
choose another with the same distribution function. So the actual distribution
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function slightly tilts toward positive numbers. The coefficient of variation (the
ratio of the standard deviation to the mean) is an important factor. When the
coefficient of variation is small (for example, 0.2 in normal distribution 1), the
weights are relatively clustered and the performance is near-optimal. When the
coefficient of variation increases, the approximation ratio moves towards that of
the uniform distribution.

We also tried the Pareto distribution. The Pareto distribution function is
P (x) = aba/xa+1 [7]. We use several cases: distributions with a = 1 b = 0.6
(Pareto distribution 1), a = 2 b = 0.6 (Pareto distribution 2), and a = 3 b = 0.6
(Pareto distribution 3). The larger the value of a, the shorter the tail is in the
PDF function. In the case of Pareto distributions 2 and 3, the efficiency is near
optimal, but in the first case (Pareto distribution 1), the approximation ratio is
undesirable when the number of nodes is small.
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Fig. 7. 10000 data points collected from simulation for approximation ratio.

For the above scenarios, the approximation ratio is good in most case, but
some cases have a high approximation ratio. Because of the long tail of the Pareto
distribution (especially with a = 1, where the probability distribution function
curve is relatively flat), a weight can be far away from other weights, and as we
have shown, this may results in a large ratio. In our experiment, because there is
no upper limit for the weights in the Pareto distribution, one case can generate a
large approximation ratio. Figure 7 shows the raw simulation data. While most
of the points in Figure 7(a) have low approximation ratios, there are many with
ratios that reach into the hundreds. By contrast, Figure 7(b) shows much fewer
ratios in the hundreds, but also uncovers a ratio high in the thousands. For 21
nodes, there are less points with approximation ratios in the hundreds but there
is one data point whose approximation ratio is in the thousands. The figure
demonstrates that the long-tail distribution leads to poor approximation ratios.
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4.2 The Gale-Shapley Algorithm Plus a Greedy Heuristic

To address the issue that occurs in the worst-case scenario, we propose a simple
heuristic that could improve the efficiency of the stable marriage approximation.
After running the Gale-Shapley algorithm once, the most expensive edge in
the result is marked “infeasible”, and the right side of that edge is forced to
take its first preference as its match. Then the rest of the nodes use the Gale-
Shapley algorithm to determine a stable marriage of the remaining bipartite
graph. This process continues until the total cost can no longer be decreased.
In practice, each agent will determine its own criteria for marking edges as
expensive. The exclusion of edges will not be as close to optimal as that obtained
in our simulation, which utilizes global knowledge. The simulation results can
be viewed as the best-case result for this heuristic.
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Fig. 8. The approximation ratio with and without using the greedy heuristic.

We selected two weight distributions to verify the effectiveness of this heuris-
tic. First we use the long-tail Pareto distribution (Pareto distribution 1). Then
we use the normal distribution with a large coefficient of variation (normal dis-
tribution 3). The greedy heuristic works very well for the Pareto distribution,
but only slightly improves the result in the case of normal distribution. The
result is shown in Figure 8.

4.3 Simulating Real Cases

In the first experimental simulations, the left and right sides of the graph share
the same weight. In the next simulations, we try to evaluate the stable-marriage-
based scheme under a more realistic environment. We now estimate their cost
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based on different formulas and use a cost function to derive the cost incurred
by the bipartite matching.

We estimate the cost of a transition in two parts: file transfer cost and usage
time lost due to downtime during the transition. The first part can be estimated
based on the size of files transferred, and the second part can be estimated
based on CPU cycles. It is known that in practice, file sizes follow the Pareto
distribution. CPU speed follows a Moore’s law [5] growth pattern. We estimate
the speed of computer servers through a 3-year cycle. One third of the CPUs
are the latest fastest, one-third are middling, and the last third are the slowest.
The total cost formula is as follows:

totalCost = fileSize ∗ coefficient1 + CPUSpeed ∗ coefficient2 (1)
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We collect the RPM package size on a typical Linux server and show the raw
sizes and their counts in Figure 9. The X axis shows the package size and the Y
axis shows the number of packages of that size. The distribution is Pareto; we
use another distribution function 0.6/x2 to fit the curve. The Pareto distribution
function is P (x) = aba/xa+1, where a = 1, b = 0.6. Figure 10 shows these two
PDFs.

For CPU, we select three products: AMD Athlon 64 3800+ X2 (Dual Core)
(14,564 MIPS), Intel Core 2 X6800 (27,079 MIPS), and Intel Core 2 Extreme
QX6700(57,063 MIPS) [6]. To normalize file sizes and CPU speeds, we multiply
file size by 10 and average with CPU MIPS. For example, a 3MB file and a Intel
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Fig. 10. The probability distribution function and the fitted curve of the package size
distribution.

Core 2 CPU will give us (3000*10 + 27079)/2 = 28539.5. We use this model
to explore the relationship between a cost function and individually decided
rankings until we can find a more accurate cost model.

In this experiment, each side of the bipartite graph ranks the other side
differently; the left side ranks using the file size, and the right side ranks using
the CPU speed. The minimum cost transition uses weights computed from the
cost function. The result is shown in Figure 11.

5 Conclusion and Future Work

In this paper, we investigate the statistical behaviors of transition planning mech-
anisms in a decentralized environment. The Gale-Shapley algorithm can be used
to find transition plans. Theoretically, we can create an arbitrarily large ap-
proximation ratio by using the Gale-Shapley algorithm to simulate the optimal
solution. But in practice, the worst case rarely arises and can be prevented via
heuristics. We use simulation to study the impact of different probabilistic dis-
tributions. The result shows that the normal distribution has a very good perfor-
mance when the coefficient of variation is low. When the coefficient of variation is
high (for example, 1) the performance is similar to that of the uniform distribu-
tion. The uniform distribution has an average performance. But in a probability
distribution that is flat and has a long tail, such as the Pareto, some settings
(for example, a = 1) will produce a poor approximation ratio when the number
of nodes is small. The performance improves dramatically when the number of
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nodes is increased. Thus, a minimum node size above 50 is recommended or the
greedy heuristic should be used.

Although better stable marriage algorithms exist, which might address these
issues, these algorithms take more time to settle than the Gale-Shapley algo-
rithm. We propose a simple heuristic that greedily removes the most expensive
edge from the mapping, and thus improves the stable marriage performance. In
the future, heuristics can be investigated, that leave out some options in order
to avoid obviously bad marriages.
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