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Abstract. Hitherto, the concept of Enterprise Architecture (EA) Smells
has been proposed to assess quality flaws in EAs and their models. To-
gether with this new concept, a catalog of different EA Smells has been
published and a first prototype was developed. However, this prototype
is limited to ArchiMate and is not able to assess models adhering to
other EA modeling languages. Moreover, the prototype is not integrate-
able with other EA tools. Therefore, we propose to enhance the exten-
sible Graph-based Enterprise Architecture Analysis (eGEAA) platform
that relies on Knowledge Graphs with EA Smell detection capabilities.
To align these two approaches, we show in this paper, how ArchiMate
models can be transformed into Knowledge Graphs and provide a set of
queries on the Knowledge Graph representation that are able to detect
EA Smells. This enables enterprise architects to assess EA Smells on all
types of EA models as long as there is a Knowledge Graph representa-
tion of the model. Finally, we evaluate the Knowledge Graph based EA
Smell detection by analyzing a set of 347 EA models.

Keywords: Enterprise Architecture · Model transformation · Archi-
Mate · Knowledge Graph · Analysis.

1 Introduction

With the increasing complexity of today’s enterprises and enterprise ecosystems,
creating, using, and maintaining a model representation thereof becomes increas-
ingly challenging. Enterprise Architecture Management (EAM) with the de-facto
industry standard modeling language ArchiMate [28] provides a high-level view
of different enterprise domains (e.g., business, application, and technology) as
well as their interrelationships. However, ArchiMate has also limitations, espe-
cially with respect to its semantic specificity [30] and the capabilities it offers to
process the modeled information [7].
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Naturally, with the increasing complexity of the modeled system under study,
also the complexity of the model itself increases. Although Enterprise Architec-
ture (EA) modeling is widely adopted in industry and much research is conducted
in the field, the analysis of EA models is surprisingly underrepresented [2, 19].
Generally, two analysis approaches can be distinguished: manual and automated.
Given the discussed complexity of EA models, manual analysis ”can be compli-
cated and omissions or miscalculations are very likely.” [10] Automated model
analysis can mitigate this problem by scaling well and by providing interactive
analysis means that extend static ones [22]. Aside from first attempts to equip
EA modeling by advanced visualization and analysis techniques [5, 12, 17, 21, 31,
40], automated analysis of EA models is still underdeveloped.

The value of EA models is of course threatened by the shortcomings stressed
at the outset. To mitigate parts of these problems, in the paper at hand, we
concentrate on the use and maintenance of EA models. In particular, we want
to automatically and efficiently analyze even large EA models with the aim
to detect EA Smells. EA Smells have been recently proposed as a novel and
promising research direction [33]. EA Smells are inspired by Code Smells, which
are a common means to indicate possible Technical Debts [8]. Generally, a smell
describes a qualitative issue that effects future efforts (e.g., maintenance) and
not the functionality. While Code Smells analyze source code, EA Smells analyze
an organization from a more holistic point of view and go beyond a technical
scope. Hitherto, first EA Smells and tool prototypes have been proposed aiming
to detect possible flaws in EA models [24, 33, 41].

To also allow the analysis of other EA models than ArchiMate and to realize
a scalable approach, we generalize the EA model to a Knowledge Graph (KG) [9]
and provide queries representing respective EA Smells. Hence, the detection of
EA Smells can be applied to all EA models, which can be represented as a KG –
which is not uncommon in EA research [2]. We propose a generic and extensible
platform that facilitates the transformation of EAs into KG representations. The
platform can be easily extended to support further modeling languages. Once
a transformation is realized, the existing EA Smells queries can be efficiently
executed even on very large models and model corpora.

Combining the discussed challenges with the sketched solution characteristics
mentioned at the outset, the research presented in the remainder of this paper
aims to contribute to the following research objectives:

i) Transforming Enterprise Architecture models into Knowledge Graphs
ii) Using Knowledge Graphs to automatically detect EA Smells

The rest of the paper is organized as follows. Background information on
graph-based analysis of EA models and EA Smells is presented in Section 2. The
transformation of EA models into KGs is then discussed in Section 3. Section 4
reports on how the KG can facilitate the automated detection of EA Smells. A
comprehensive evaluation of our approach is presented in Section 5 where we
report on the transformation and analysis of a huge corpora of openly available
ArchiMate models. We conclude this paper in Section 6 with a discussion and
some directions for future research.
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2 Background

In this section, we will first introduce the foundations and related works on
graph-based analysis of enterprise architecture models (Section 2.1) before in-
troducing the backgrounds of EA Smells (Section 2.2).

2.1 Graph-based Analysis of EA Models

Recently, the concept of Knowledge Graphs (KG) was proposed [9], which is con-
tinuously gaining more attention – also driven by the prominent use by Google
in presenting the search results to its users. KGs realize an integrated represen-
tation on heterogeneous data that is ready for automated and efficient reasoning
starting from (complex) graph queries toward the application of machine learn-
ing algorithms (e.g., Graph Neural Networks). At the core, a Knowledge Graph
is a labelled graph that connects nodes by edges. More generally, a Knowledge
Graph is ”a large network of entities, and instances for those entities, describing
real world objects and their interrelations, with specific reference to a domain or
to an organization.” [4, p. 27]

Interpreting EA models as graphs is a common approach in EA research [2].
For example, Garg et al. [13] propose a 3-tier architecture that allows defining
EAs and their transformation into a graph structure to enable stakeholders with
different visual analysis capabilities. Aier [1] propose the EA Builder tool that
supports the identification of clusters in graphs which can then be considered
as candidates for services in a service-oriented architecture. Similarly, Iacob et
al. [19] quantitatively analyze layered, service-oriented EA models.

Santana et al. [36] propose to combine manual inspection by enterprise archi-
tects with automated analysis of graphs. Johnson et al. [20] interpret modeling
of EAs as a probabilistic state estimation problem. They propose to facilitate
Dynamic Bayesian Networks and to observe a computer network in order to
predict the likeliest representation of the EA’s technology layer. This was later
implemented and refined in [3]. Similarly, Hacks and Lichter [16] use the graph
representation to plan for future evolutions of the EA by considering different
scenarios with underlying probabilities to become reality.

Taking a step further, several efforts have been taken to use graphs for
maintaining and optimizing EAs. Giakoumakis et al. [14] replace existing ser-
vices with new services while aiming not to disrupt the organization. Therefore,
they formalize the EA as a graph and solve the resulting problem by means of
multi-objective optimization. Similarly, Franke et al. [11] use a binary integer-
programming model to optimize the relation between IT systems and processes
based on needed functionalities. In contrast, MacCormack et al. [26] use Design
Structure Matrices to analyze the coupling between the EA components. More-
over, they consider future states of the EA and generate measures that can be
used to predict performance.

Further, there are also works using graph structures in the background with-
out naming it explicitly. Österlind et al. [29] extend selected ArchiMate concepts
with variables that are computed for structural analysis of the EA. Alike, Singh
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et al. [38] develop seven metrics to measure criticality and impact of any ele-
ment in an EA model. Holschke et al. [18] perform failure impact analysis with
Bayesian Belief Networks and Buschle et al. [7] adapt ArchiMate by fault trees
to analyze the availability of EA components.

2.2 EA Smells

Previously, Hacks et al. [15] proposed to combine the concept of Technical
Debt [8] with the concept of EA to so called EA Debts. EA Debts do not solely
cover technical aspects but provide a more holistic view on the entire organiza-
tion including for example flaws related to organizational structures. However,
their proposal lacks an effective means to measure EA Debts. Therefore, Salentin
and Hacks [33] facilitated the concept of Code Smells, which is popular to mea-
sure Technical Debt, and adapted it to EA models. They started with 56 Code
Smells and ended up with a catalogue of 45 EA Smells [34]. This catalog was
further extended by Lehmann et al. [24] and Tieu and Hacks [41], who took
inspiration from process anti-patterns and software architecture smells, respec-
tively.

In the aforementioned catalog [34], each EA Smell is documented in the same
manner [33]: First, each EA Smell has an associated name, possible synonyms,
and a description. The context provides further information such as the un-
derlying concept from other domain smells (e.g., Code Smells). An example is
provided to ease the understanding of the EA Smell. Second, the cause describes
the reasons for an EA Smell, while the consequences illustrate the negative in-
fluence on the organization. Additionally, a short description is provided how
the EA Smell could be detected. Third, a possible solution is proposed to solve
the EA Smell. Finally, for each EA Smell meta-information is provided, which
eases the searching for certain EA Smells, e.g., by filtering for EA layers.

An example for an EA Smell is Weakened Modularity [33]. It is adapted
from the Code Smell with the same name that desires each module for high
cohesion and low coupling. To detect this EA Smell, for each element and all
successive sub-elements the modularity ratio is calculated by dividing the number
of internal references (cohesion) by the number of external references (coupling).

Fig. 1 illustrates three examples of EA Smells in an EA model. Firstly, a
Cyclic dependency in which three services build on each other. Secondly, a Dead
Component, which has no relations to the rest of the model. Lastly, a Strict
Layers Violation where elements of the business layer are directly linked to an
element of the technology layer. Fig. 1 contains even more flaws such as other
EA Smells, underlying issues behind the smells themselves (i.e., EA Debts [15]
causing EA Smells to arise), or issues with ArchiMate. However, as the focus
of this work is to automate the identification of EA Smells using Knowledge
Graphs, we do not elaborate further on these aspects.

To achieve an automated detection of EA Smells, Salentin and Hacks [33]
developed a prototype [32] that is capable to detect 14 EA Smells listed in the
catalog. Therefore, it takes an ArchiMate Exchange File as input and prints
the found EA Smells. Accordingly, the prototype can only analyze ArchiMate
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Fig. 1: Three Examples for EA Smells [33]

models and integration with other tools is not possible. Moreover, the detection
of EA Smells is implemented in Java and, thus, the tool needs to be compiled
every time an EA Smell is added or removed and the scalability of the detection
mechanism for large EA graphs is limited.

In this paper, we therefore aim to develop a generic, extensible, and scalable
approach that supports i) the transformation of EA models into KGs and ii) the
automated detection of EA Smells by means of KG queries. In the following, we
will first elaborate on the transformation in Section 3. Section 4 will then report
on the realization of EA Smells detection by means of KG queries. Eventually,
applicability and scalability of our approach will be evaluated in Section 5.

3 Transforming EA Models into Knowledge Graphs

In order to analyze the EA in a graph-based manner, we propose an enhance-
ment of the extensible Graph-based Enterprise Architecture Analysis (eGEAA)
platform (see Fig. 2). The core platform, initially proposed by Smajevic and
Bork [40, 6], allows the transformation of ArchiMate models into graph struc-
tures. In this paper, we enhance this platform with the capability to transform
EA models conforming to the Open Group Exchange format to a KG. In con-
trast to the initial proposal, which only comprised basic graph analysis metrics
like Centrality and Betweenness, we furthermore enhance eGEAA by means of
semantic queries to automatically detect EA Smells (detailed in Section 4).

Compared to the related works (see Section 2), the eGEAA platform is
generic and extensible in two ways: First, it builds upon the conceptual mod-
els produced by state-of-the-art metamodeling platforms like Ecore and ADOxx
instead of being realized on – and being thus constrained to – one modeling lan-
guage or tool. This enables the transformation of any conceptual model created
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Fig. 2: eGEAA platform architecture – adapted from [40].

with these platforms into a KG. Second, we transform the conceptual model
into GraphML, a standardized graph representation format [27] that enables
interchangeability with many graph analysis (e.g., Gephi, yEd) and KG tools
(e.g., neo4j, Stardog). Consequently, eGEAA builds a bridge between powerful
modeling (and metamodeling platforms) and graph analysis and reasoning tools.

Listing 1 presents the pseudo-code for the transformation of EA models into
KGs. The transformation combines two parts, the generic part responsible for
transforming any conceptual model derived from the Ecore metamodel into a
graph structure, and the second part, that takes care of the specifics of the Archi-
Mate modeling language and the specific implementation of the Ecore metamodel
in Archi.

The first rule transforms a Grouping, Folder, or View element into a nested
Graph thereby overriding the generic transformation that would have resulted
in a Node. All contents connected with that grouping through a nested element
relation in the ArchiMate (ArchiMate) model will be added as Nodes in the
nested graph. Secondly, since Archi stores the ArchiMate relationships as entities
(i.e., IArchimateRelationshipEntitys), the generic transformation rule needs to
be overridden to transform an IArchimateRelationshipEntity into an Edge with
an additional edge data to store the relationship endpoints.

Fig. 3 visualizes the conceptual view on the model transformation approach.
It shows that the transformation itself is specified on the metamodel-level, i.e.,
using elements of the Archi metamodel and elements of the GraphML meta-
model when specifying the transformation rules. This enables the execution of
the transformation on any source Archi-based EA model which will transform
the conceptual model into a KG representation. From a technical point of view,
the source and target model are stored as xml documents – the former in the
Open Group Exchange format, the latter in the GraphML format.
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Algorithm 1: Archi ArchiMate model to GraphML transformation.
Input: Archi-based ArchiMate model instance in Open Group Exchange xml format.
Output: Knowledge Graph serialized in GraphML xml format.

1 for EObject package : input.eAllContents().getPackages() do
2 Graph g ← transformPackage(package)
3 for EObject eo : package.eAllContents() do
4 if eo instanceof Grouping, Folder, View then
5 Graph subg ← createSubgraph(eo)
6 for EObject eo : subg.getEAllNestedElements() do
7 Node n ← transformNode(eo)
8 for EAttribute a : eo.getEAllAttributes() do
9 n.addAttribute(transformAttribute(a))

10 end
11 subg.add(n)

12 end
13 g.add(subg)

14 else
15 Node n ← transformNode(eo)
16 for EAttribute a : eo.getEAllAttributes() do
17 n.addAttribute(transformAttribute(a))
18 end
19 g.add(n)

20 end

21 end
22 for EObject eo : package.eAllContents() do
23 if eo instanceof IArchimateRelationshipEntity then
24 Edge edge ← transformEdge(eo)
25 else
26 for EReference ref : eo.getEAllReferences() do
27 Edge edge ← transformEdge(ref)
28 end

29 end
30 edge.source ← findNode(eo)
31 edge.target ← findNode(eo.get(ref))
32 for EAttribute a : ed.getEAllAttributes() do
33 edge.addAttribute(transformAttribute(a))
34 end
35 g.add(edge)

36 end
37 output.add(g)

38 end
39 return output

4 Knowledge Graph based EA Smells Detection

Once the transformation of ArchiMate models into GraphML is achieved, en-
terprise architects can visually explore the graph structure or apply basic graph
analysis techniques as e.g., reported in [40]. More advanced analysis by means of
reasoning is required for larger models and where the interests go beyond basic
structural questions. This latter case is followed upon in the remainder of this
paper, where we use KG queries to automatically detect EA Smells.

Table 1 lists already in Java implemented EA Smells [33, 32] and maps them
to KG queries that are capable to automatically detect them. The presented
smells hereafter emphasize structural characteristics such as circular dependen-
cies while semantic aspects like the relation of data elements to service elements
are also considered. Of course, future extensions of the catalogue will most likely
be dominated by even more complex semantic smells (cf. [35]).
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Fig. 3: Archi to Knowledge Graph transformation example.

Table 1: KG queries resolving EA Smells

EA Smell [34] KG Query

Chatty Service
A high number of operations is required to
complete one abstraction. Such operations
are typically rather simple tasks that
needlessly slow down an entire process.

MATCH (a )−[ r ]−(b)
WHERE a . ClassName conta ins ’ Se rv i c e ’

and b . ClassName conta ins ’ Se rv i c e ’
and not r . Label conta ins ’ Composition

’
with a , count ( r ) as cnt
where cnt>4
MATCH (a )−[ r1 ]−(b1 )
WHERE a . ClassName conta ins ’ Se rv i c e ’ and b1

. ClassName conta ins ’ Se rv i c e ’
return a , b1 , cnt

Cyclic Dependency
Two or more abstractions directly or
indirectly depend on each other.

MATCH (a )−[ r1 ]−>(b)−[ r2 ]−>(c )−[]−>(a )
return a , b , c

Data Service
A service that exclusively performs infor-
mation retrieval and typically provides
only simple read operations.

MATCH (a )−[ r1 ]−(b1 )
WHERE a . ClassName conta ins ’ Se rv i c e ’

and (b1 . ClassName = ’ BusinessObject ’
or b1 . ClassName = ’ DataObject ’
or b1 . ClassName = ’ SystemSoftware

’ )
with a , r1 , b1
match ( a )
where not ( a )−−(: Bus ine s sSe rv i c e )
return a
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Dead Component
A component is no longer used or used to
support potential future behavior.

MATCH (n)
WHERE not (n)−−()
return n

Dense Structure
An EA repository has dense dependencies
without any particular structure.

MATCH (p)
RETURN CASE WHEN avg ( apoc . node . degree (p) )

>1.75 THEN 1 ELSE 0 END AS r e s u l t ;

Documentation
A lengthy documentation often points to
unnecessary complex structures.

MATCH (n)
where s i z e (n . documentation )>256
RETURN n

Duplication
Two or more abstractions with highly
similar functionality exist.

MATCH (a ) , ( b)
where a<>b and a . ClassName = b . ClassName

and apoc . text . jaroWinklerDistance ( a .
Label , b . Label ) >0.8

RETURN a , b , apoc . t ext . jaroWinklerDistance ( a .
Label , b . Label ) as similarNameScore

Hub-like Modularization
This smell arises when an abstraction
has dependencies (both incoming and
outgoing) with a large number of
other abstractions, being a single point
of failure.

match ( a )−[ r ]−(b)
where ( r . Label conta ins ’ Aggregation ’ or r .

Label conta ins ’ Rea l i z a t i on ’ or r . Label
conta ins ”Composition” or r . Label

conta ins ”Assignment” )
and a . ArchimateLayer = b . ArchimateLayer

with a , c o l l e c t ( r ) as r e l s , a+c o l l e c t (b) as
c l u s t e r

match (m)−[ r1 ]−(n)
where not ( r1 . Label conta ins ’ Aggregation ’

or r1 . Label conta ins ’ Rea l i z a t i on ’ or
r1 . Label conta ins ”Composition” or r1 .
Label conta ins ”Assignment” ) and

(m in c l u s t e r and not n in c l u s t e r )
with a , c l u s t e r , c o l l e c t ( r1 ) as fanout
match (m)−[ r2 ]−(n)
where not ( r2 . Label conta ins ’ Aggregation ’

or r2 . Label conta ins ’ Rea l i z a t i on ’ or
r2 . Label conta ins ”Composition” or r2 .
Label conta ins ”Assignment” ) and

( not m in c l u s t e r and n in c l u s t e r )
with a , c l u s t e r , fanout , c o l l e c t ( r2 ) as

fan in
where s i z e ( fanout ) > 7 and s i z e ( fan in )>7
return a , c l u s t e r , s i z e ( fanout ) , s i z e ( f an in )

Lazy Component
A component that is not doing enough
to pay for itself should be eliminated.
Those components often only pass
messages on to another.

MATCH (n)
where n . Label conta ins ’ c o n t r o l l e r ’ or n .

Label conta ins ’manager ’
RETURN n

Message Chain
A number of services that rely
on each other, while providing
similar functionality.

MATCH (a )−[ r1 ]−>(b)−[ r2 ]−>(c )−[]−>(d)−[]−>(e
)

where a . ClassName conta ins ’ Se rv i c e ’
and b . ClassName conta ins ’ Se rv i c e ’
and c . ClassName conta ins ’ Se rv i c e ’
and d . ClassName conta ins ’ Se rv i c e ’
and e . ClassName conta ins ’ Se rv i c e ’

return a , b , c , d , e

Shared Persistency
Different services access the same database.
In the worst case, different services access
the same entities of the same schema.

MATCH (a )−[ r ]−(b)
WHERE a . ClassName=’ SystemSoftware ’ and ( r .

Label=’ As soc i a t i onRe l a t i on sh ip ’ or r .
Label=’ Rea l i z a t i onRe l a t i on sh ip ’ or r .
Label=’ Ass ignmentRelat ionship ’ )

with a , count ( r ) as cnt
MATCH (a )−[ r1 ]−(b1 )
where cnt>1 and ( r1 . Label=’

As soc i a t i onRe l a t i on sh ip ’ or r1 . Label=’
Rea l i z a t i onRe l a t i on sh ip ’ or r1 . Label=’
Ass ignmentRelat ionship ’ )

return a , b1



10 M. Smajevic et al.

Strict Layers Violation
An element skips the EA layer directly
beneath and accesses a layer further
below instead.

MATCH (a )−[ r ]−(b)
where a . ArchimateLayer conta ins ’ Bus iness ’

and b . ArchimateLayer conta ins ’
Technology ’ // e x amp l e

return a , b , r

Weakened Modularity
Each module must strive for high cohesion
and low coupling. This smell arises when a
module exhibits high coupling and low
cohesion.

match ( a )−[ r ]−(b)
where ( r . Label conta ins ’ Aggregation ’ or r .

Label conta ins ’ Rea l i z a t i on ’ or r . Label
conta ins ”Composition” or r . Label

conta ins ”Assignment” )
and a . ArchimateLayer = b . ArchimateLayer

with a , c o l l e c t ( r ) as r e l s , a+c o l l e c t (b) as
c l u s t e r

match (m)−[ r1 ]−(n)
where m in c l u s t e r and n in c l u s t e r
with a , c l u s t e r , c o l l e c t ( r1 ) as i n t e r n a l
match (m)−[ r2 ]−(n)
where not ( r2 . Label conta ins ’ Aggregation ’

or r2 . Label conta ins ’ Rea l i z a t i on ’ or
r2 . Label conta ins ”Composition” or r2 .
Label conta ins ”Assignment” ) and

( not m in c l u s t e r and n in c l u s t e r ) or (m
in c l u s t e r and not n in c l u s t e r )

with a , c l u s t e r , i n t e rna l , c o l l e c t ( r2 ) as
ex t e rna l

where s i z e ( i n t e r n a l ) < s i z e ( ex t e rna l ) and
s i z e ( i n t e r n a l )>3

return a , c l u s t e r , s i z e ( i n t e r n a l ) , s i z e (
ex t e rna l )

5 Evaluation

For evaluating our approach, we refer to the openly available model corpora of
the MAR search engine [25]. In summary, we found 369 ArchiMate models which
were created with the Archi modeling tool. In average, a model in the corpus
comprised 51.41 ± 97.04 Nodes and 47.14 ± 70.23 Edges. We transformed these
models using the eGEAA platform and executed the EA Smells queries defined
in Table 1. The evaluation aimed to respond to the following research questions:

RQ.1 – Feasibility Is our approach feasible to automatically detect EA Smells
in ArchiMate models? If yes, how often do specific smells (co-) occur?

RQ.2 – Performance How efficient is our Knowledge Graph based approach
in detecting EA Smells?

RQ.1 – Feasibility For evaluating the feasibility, we collected a set of openly
available ArchiMate models [25] and transformed them initially into the Open
Group Exchange format using Archi. From the resulting set of 369 models, the
eGEAA platform was able to automatically transform 347 of them (94%) into a
KG stored in GraphML. The few models that were not transformed had some
encoding issues or the source model was corrupt. As can be derived from Fig. 4
(left), we found all implemented EA Smells in the data set. In future research,
we plan to extend the data set and to also involve real models form practitioners.
In an action design research setting, we could then investigate, how practitioners
value our EA Smell detection approach.
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Fig. 4: Detected EA Smells.

The results of applying the EA Smells queries of Table 1 are summarized in
Fig. 4. The detailed analysis showed that 78.38% of the EA models had at least
one smell. Fig. 4 (right) shows, how many EA Smells have been found in how
many of the analyzed EA models. It can be derived, that 45.82% of the models
had at most two smells, whereas the majority of the EA models had three or
more smells. Noteworthy, this is only an indicator of the smell’s existence in a
model, not the number of incarnations of the smell in a model.

We then were also interested to see, which smells occur most often and
which smells co-occur most often. The data showed, that DUPLICATION (249
hits), DENSE STRUCTURE (173 hits), DEAD COMPONENT (166 hits), and
WEAKEND MODULARITY (160 hits) together make up for almost 75% of all
detected EA Smells. When analyzing the relationships between the detected EA
Smells, the following three co-occurrences were most frequent in the data set: 162
co-occurrences (46.68%) of DENSE STRUCTURE and DUPLICATION, 155 co-
occurrences (44.66%) of DUPLICATION and WEAKEND MODULARITY, and
153 co-occurrences (44.09%) of DEAD COMPONENT and DUPLICATION.

RQ.2 – Performance Past research has indicated that Knowledge Graph
queries can be executed highly efficiently also on huge graphs with many thou-
sands or even millions of nodes [4]. With our experiments, we can confirm this
observation also for our Knowledge Graph based EA Smell detection. Fig. 5
plots the relationship between the size of the Knowledge Graph (x-axis) and the
model transformation time (blue) and the KG query time (orange) on the y-axis,
both measured in milliseconds.

It can be derived, that the performance is stable even when analyzing KGs
with more than 1000 elements (nodes and edges). In reality, it is unlikely to see
larger EA models (cf. [23, 37]), we can therefore conclude, that the performance
of our solution is promising to tackle the complexity of the task at hand. While
the model transformation time remains stable even for large KGs with an average
time of 7.46ms ±23.85ms, the query execution time naturally increases with the
size of the KG with an average of 786.31ms ±1044.09ms.
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Fig. 5: Performance of the EA Smells detection.

To show also the relative performance of our solution compared to the pro-
totype presented in [32], we used the same set of experimental models and com-
pared the query execution times. These early investigations yielded interesting
insights and confirmed, that our approach is stable with respect to time in ex-
ecuting smell detection while it is a bit slower in detecting EA Smells than the
previous solution. However, the results vary depending on the smell (i.e., the
complexity of the query itself). Moreover, these first results may not tell the
true story since the tracked time in our experiments involved setting up a con-
nection to a database and transporting from and to a database server instead of
the pure query execution time as for the previous solution. In our future research
we will, amongst others, therefore conduct further experiments to investigate the
performance of our approach more rigorously and comparatively.

6 Conclusion

In this paper, we showed, how we enhanced the extensible Graph-based En-
terprise Architecture Analysis (eGEAA) platform to automatically transform
Enterprise Architectures modeled with the ArchiMate modeling language into
Knowledge Graphs. We furthermore showed, how this Knowledge Graph struc-
ture can facilitate the efficient detection of EA Smells. For this, we transformed
a representative set of EA Smells into corresponding semantic KG queries.

For evaluating our approach, we created a data set comprising 347 ArchiMate
models. After transforming them into KGs, we applied the EA Smell queries and
analyzed the results. This elaborated quantitative evaluation proved feasibility
and the performance of the KG based EA Smell detection approach. Compared
to existing solutions, our proposal is generic, i.e., it can be easily adopted for
different EA modeling languages and tools [39], and extensible, i.e., further EA
Smells or different EA analysis techniques can be easily realized by means of KG
queries. However, a qualitative assessment of the smell identification is missing
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and needs to be addressed to ensure that it is complete and correct. Such an
evaluation would require a curated set of EA models which still needs to be
developed.

In our future work, we aim to further extend the catalog of EA Smells. Fur-
thermore, we plan to conduct empirical experiments with enterprise architects.
We expect that through such experiments, we can not only evaluate the ease
of use and usability of the platform, but also the intention to use EA Smells in
practice. Eventually, we perceive this work as a foundation for an entire stream
of research that concerns adding knowledge to the Knowledge Graph (e.g., KG
embeddings) and applying advanced reasoning (e.g., Graph Neural Networks).

The presented platform is available open source [6], enabling the enterprise
modeling and enterprise architecture communities to use the platform for realiz-
ing their specific EA analysis purpose and to provide valuable feedback. We are
also currently working on a plug-in that enables the execution of our KG based
EA Smell detection directly within the Archi modeling tool.
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