
HAL Id: hal-04323857
https://inria.hal.science/hal-04323857

Submitted on 5 Dec 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

An Experience Report on the Implementation of the
KYKLOS Modeling Method
Georgios Koutsopoulos, Martin Henkel

To cite this version:
Georgios Koutsopoulos, Martin Henkel. An Experience Report on the Implementation of the KYKLOS
Modeling Method. 14th IFIP Working Conference on The Practice of Enterprise Modeling (PoEM),
Nov 2021, Riga, Latvia. pp.103-118, �10.1007/978-3-030-91279-6_8�. �hal-04323857�

https://inria.hal.science/hal-04323857
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

This document is the original author manuscript of a paper submitted to an IFIP
conference proceedings or other IFIP publication by Springer Nature. As such, there
may be some differences in the official published version of the paper. Such
differences, if any, are usually due to reformatting during preparation for publication or
minor corrections made by the author(s) during final proofreading of the publication
manuscript.

An Experience Report on the Implementation of the

KYKLOS Modeling Method

Georgios Koutsopoulos [0000-0003-2511-9086] and Martin Henkel [0000-0003-3290-2597]

Department of Computer and Systems Sciences, Stockholm University, Stockholm, Sweden

{georgios,martinh}@dsv.su.se

Abstract. Several types of enterprise models and methods have been developed

that may help an organization to describe and improve its business. A common

practice is also the development of tool support to complement an enterprise

modeling method’s application. The development of tool support for a modeling

method includes creating a representation of the modeling concepts, but also de-

signing how the user should interact with the tool. This paper reports on the

challenges and opportunities encountered during the process of implementing the

KYKLOS modeling method in a modeling tool. The KYKLOS method, which is

an enterprise modeling method, is specialized in supporting the design and anal-

ysis of changing capabilities. Using as input an initial meta-model of capability

change, all the necessary tasks are performed to elicit a language model, which

is required for the implementation of the method in a tool.

Keywords: Enterprise Modeling, Meta-modeling, Implementation, Capability,

Business Transformation

1 Introduction

Enterprise Modeling (EM), which is a subset of conceptual modeling, is focused on

capturing organizational knowledge and providing input and motivation for the design

of Information Systems (IS) for an organization [1]. The complexity of developing IS

and other business solutions is on the rise because of rapidly changing business require-

ments [2]. The development and operation of an IS can be considered as a knowledge-

based activity which is continuous and utilizes conceptual modeling in order to bridge

the understanding of complex organizational phenomena and the effort to design IS

which can support dynamic change and agility [3]. This usually involves employing

modeling methods which have been implemented in supporting modeling tools. Using

modeling tools to handle a method successfully is considered state-of-the-art, because

they do not only support defining modeling languages and facilitate the creation of

model representations that can be processed, but also enable accessing, storing and ex-

changing models and specifying functionalities for improved user experience [4]. A

specialization of EM is capability modeling, which uses capability as its focal point.

Several capability modeling methods exist and the majority also includes capability

2

modeling languages and notations. They usually employ different meta-models which

consist of different sets of concepts to capture the nature of capabilities.

KYKLOS is one such method [5], designed specifically for designing and analyzing

changing organizational capabilities. In order to capture the relevant characteristics, the

phenomenon of capability change has been explored and conceptualized in the earlier

steps of our study. Starting with identifying the relevant concepts already existing in

the literature [6, 7], requirements were elicited [8] and the phenomenon of capability

change was conceptualized in the form of an initial meta-model [9, 10].

 To be readily useable for a modeler, the KYKLOS method was in need of tool sup-

port to aid the user in creating models of capability change. The implementation of the

method required a modeling language meta-model, which used as input the initial meta-

model. Therefore, during the implementation, several transformations were made to the

initial meta-model. These transformations were done to make use of the tool platform,

and to make the implemented language less complex. For example, several classes in

the initial meta-model were implemented as attributes of other classes in the final tool

implementation. Thus, the initial detailed conceptualization of the phenomenon of ca-

pability change and the conceptualization of the method bear significant differences,

mainly because of different degrees of operationalization potentials existing among the

meta-model’s concepts.

The aim of this paper is to share the KYKLOS implementation experience with the

Enterprise Modeling community by reporting the opportunities, challenges and lessons

learned that have been encountered during the implementation of the method in a tool.

The rest of the paper is structured as follows. Section 2 briefly presents the related

background. Section 3 provides an overview of the KYKLOS method’s state before the

implementation. Sections 4 reports on the implementation procedure and the included

activities. Section 5 discusses the procedure and its results. Finally, Section 6 provides

concluding remarks.

2 Background

The primary aim of conceptual modeling is the description of specific aspects of the

physical and social world for understanding and communicating. An abstract represen-

tation of specific aspects of entities that exist within a specific domain is called a con-

ceptualization, e.g. a meta-model, while an abstraction of the domain’s state of affairs

that is expressed via a conceptualization is called a model [11]. Since models are ab-

stract entities, they must be represented using an artifact, for documentation, commu-

nication and analysis purposes, and this indicates the need for a highly expressive mod-

eling language, the focus of which should be on representation adequacy [11].

Furthermore, to construct a model, guidance is needed in the form of a modeling

method. As defined in [2], the components of a modeling method are a modeling tech-

nique, which consists of a modeling language and a modeling procedure, and mecha-

nisms and algorithms working on the models that the language describes. A modeling

procedure describes the required steps to apply the method to create the resulting model.

3

The modeling language consists of its syntax, semantics and notation. The syntax

includes the description of rules and elements for the creation of models and is de-

scribed by a grammar. The two major approaches for modeling language grammars are

graph grammars and meta-models [2]. A common means to describe the meta-model

of the syntax is by using UML class diagrams [12]. The semantics describe a modeling

language’s meaning, often using informal textual descriptions for semantic definition.

The visualization of a modeling language is described by the notation. There are static

approaches that define symbols for the visualization of the syntactical constructs, like

pixel-based or vector graphics, yet these do not take into consideration the model’s

state. Dynamic approaches consider this state and usually split the notation in two parts;

representation, which maps to the static approach, and control, which defines rules that

influence the visualization according to the model’s state [2].

An important factor for a successful modeling method and language is the provision

of a set of modeling elements that can express the given domain abstraction, and this

benefits from complementing efficient tool support [11]. Thus, there are specialized

modeling tools that support the user in creating models that follow a certain syntax.

The domain specificity [13] of KYKLOS is organizational capability change. Since

there is no consensus in the literature, the concept of capability is defined in this project

as a set of resources and behaviors, with a configuration that bears the ability and ca-

pacity to enable the potential to create value by fulfilling a goal within a context [14].

Often considered as the missing link in business/IT transformation, it is associated to

core business concepts like goal, resource, actor, process [15] and serves as the basis

for change management, impact analysis and strategic planning [16]. A detailed review

of the concept, and the variety of capability modeling approaches that exists in the lit-

erature has been explored and reported in an earlier step of this project [6].

3 Overview of KYKLOS Before the Implementation

KYKLOS, which has been introduced in [5], is a capability modeling method that fo-

cuses on capturing the concepts that are relevant to the phenomenon of capability

change, aiming to support organizational change. This section describes the initial

meta-model, and the modeling procedure, which consists of the required steps for ap-

plying the method.

Figure 1 shows the initial meta-model. Using the meta-model enables capturing

changes in a given capability. The meta-model is based on a previously published

framework [6], which includes the functions of change, in particular, observation, de-

cision and delivery. Observation is captured using the concepts of context, which con-

sists of monitored factors that are expressed as Key Performance Indicators (KPIs), and

Intention elements. The model describes that a capability has at least one configuration

that leads to the realization of the capability. Resources are allocated to a configuration

which also consists of behavior elements. Realizing the capability produces at least one

outcome, which can be measured to serve as criterion for a decision to change, along

with the capability’s assessment via contextual factors. Regarding delivery, it concerns

the transition from a configuration to another. The meta-model also includes elements

4

of ownership in order to capture the owners of the capability, the change and the re-

sources. When more than one owners exist, their interaction and boundaries are cap-

tured. One last part that is included in the meta-model is the description of the states of

the capability and change in the form of their traits which have been identified in [7].

Fig. 1. The conceptualization of capability change, adapted from [10].

Concerning the modeling procedure, KYKLOS consists of four phases [5], namely

(i) foundation, (ii) observation of context and intentions, (iii) decision alternatives, and

(iv) delivery of change. Foundation is the initial phase and describes the base of the

analysis, in terms of identifying the changing capability and its outcomes. The obser-

vation phase follows up and concerns capturing the need for change, in terms of context

elements, with their associated monitored factors which are deemed relevant to the ca-

pability and are expressed as measurable KPIs. The organization’s intentions are also

captured in the form of goals, problems or any other element that motivates a change

to the capability. The phase that follows is related to the analysis of alternative capabil-

ity configurations that tackle the identified need to change. Different configurations can

fulfill the same set of goals. A part of this phase is identifying the resources that need

to be allocated to each alternative configuration and the behavior elements that are nec-

essary for realizing the capability per configuration. Resources can be both material and

immaterial. Capturing the ownership of the capability, the resources and change enables

capturing potential organizational collaboration elements and the respective boundary

controls. The final phase of the modeling procedure is the delivery of change. The focus

of this phase is on understanding what is necessary to deliver the change. The change

takes the form of a transition from one configuration to another. The delivery of change

enables an inactive configuration while disabling an active one, or in the case of intro-

ducing a new capability or retiring an old one, there is a single enablement or disable-

ment respectively. Describing how the change needs to be delivered includes capturing

how the change is performed, in terms of identifying the attributes of change. These

have been published in [7] and are (i) control, (ii) scope, (iii) frequency, (iv) stride, (v)

5

time, (vi) tempo, (vii) desire, and (viii) intention. The process can be iterative, if, for

example, the delivery has an impact on the context or outcome of the capability, the

initial phases can initiate again.

4 The KYKLOS Implementation

The implementation of the KYKLOS method in a tool requires using the initial meta-

model to develop a language meta-model, developing a graphical notation and facili-

tating the user’s interaction with the tool. The implementation has taken place using the

ADOxx meta-modeling platform [17], which is provided by the Open Models Labora-

tory (OMiLAB). The use of a platform also meant that the implementation needed to

use the ADOxx platform’s concepts for model implementation. The implementation

was done iteratively and involved the following steps:

─ Conversion of the initial meta-model concepts to a language meta-model that could

be implemented. This step included the decision if a concept should be represented

as a concept, attribute, or relationship in the language meta-model. Moreover, sev-

eral concepts were removed.

─ Creating a syntax for the concepts in the tool meta-model. This included creating the

graphical representation using the ADOxx GraphRep language.

─ Creating tool behavior to facilitate user interaction. ADOxx is quite flexible, so it

was possible to add several dynamic aspects to the model.

4.1 Initial meta-model to language meta-model conversion

A color-coded version of the initial meta-model is depicted in Fig. 2. The colors depict

how they have been handled during the transition to the language meta-model. A de-

tailed description of the process follows in the current section.

Conversion of Classes.

Transitioning from the initial meta-model to the language model provided the oppor-

tunity to reduce the number of included concepts. This contributes to reducing the com-

plexity and clutter that has been identified to exist in the models derived from applying

the initial meta-model [9]. The transition was done by converting initial classes to at-

tributes, association classes or tool functionalities.

Conversion to Attribute.

─ Owner: The Owner concept has been included in the initial meta-model to capture

the ownership of capabilities, components and change. It has been modeled as a class

as good modeling practice to avoid duplicate data. In the language model, it has been

converted to an attribute with added functionality in the tool, which is better ex-

plained in Section 4.3. The introduced tool functionality makes it easier for the user

to keep track of ownership, without the need to have it as a separate class.

6

─ Tempo: This concept is a trait of change that has initially been modeled as a class

because of its identified association to the Size class. Size is removed from the lan-

guage meta-model (see below), and Tempo is converted to an attribute of Change.

Fig. 2. A color-coded version of the meta-model, showing, remaining (orange) and removed (red)

classes, along with classes converted to attributes (light blue), functionalities (grey) and associa-

tion classes (purple).

Conversion to Association Class.

─ Change: The concept of Change has been essential in the conceptualization and has

been associated to various concepts, the majority of which do not exist as classes in

the language meta-model. It was initially decomposed in three functions, observa-

tion, decision and delivery, but, since these are removed from the language meta-

model and are implemented as method phases and tool functions, Change gains a

link to the transitioning Configurations. Additionally, there are specific attributes of

Change that need to be captured, therefore, it has been converted to an association

class that describes how a configuration transitions to another, also gaining the

Change State attributes.

Conversion to Tool Functionalities.

─ Capability state: The concept of capability state is meant to capture whether a capa-

bility is active or not. This is captured in the tool by associating the capability to an

active configuration. Therefore, the class can be omitted from the language model

since the functionality of the tool will keep track of the active configuration.

─ Change state: The class Change state existed to capture if a change is active or not.

The tool version of KYKLOS can depict this via the existence of an active configu-

ration element that is the target of change. The temporal attributes of Change can

also assist. So, it can be omitted as well. Its attributes have moved to class Change.

7

─ Observation: It is one of the three functions of capability change that has been mod-

eled as a class in the initial conceptualization. Naturally, including a class that cap-

tures an activity bears value in a conceptualization but has limited utility in an im-

plemented method and tool. As mentioned earlier, the KYKLOS method uses obser-

vation as its phase where the context factors and intentions whose fulfillment status

motivates a potential change in the capability. All the necessary elements to perform

this phase exist in the language meta-model, therefore, Observation can be omitted

as a class.

─ Decision: In a similar way to observation, the decision phase has been associated to

a set of concepts that have been removed from the language meta-model, like crite-

rion and configuration (as decision alternative), and replaced with tool mechanisms.

The details on the specific related concepts follow.

─ Delivery: The Delivery class captures the transition between capability configura-

tions by enabling one and disabling another. In the method and tool implementation

only one configuration is active at any time. This functionality captures the transition

without a need to have the specific Delivery class.

─ Criterion: This class refers to capturing how a decision is made, in terms of changing

or not, and what to decide when changing. The tool design allows both these aspects

to be addressed without including a specific Criterion class. Changing or not is mo-

tivated by the dynamic association elements between capability and contextual and

intentional elements. In practice, a KPI or intention that is not fulfilled, is a criterion

to change. What to decide refers to selecting a configuration among potentials. The

tool allows a configuration to be active only when its required components are

properly allocated. In this way, the decision is supported dynamically without need-

ing the Criterion class, so, it is omitted.

─ Measurement: In the initial meta-model, this class captured the act of comparing the

target context and intention elements to reality. The functionalities described in the

previous paragraphs also explain why this class has been omitted.

─ Motivation: Same as Criterion, even though it can be included as an attribute to im-

prove the descriptive ability of the tool. Moreover, in the implemented tool the mo-

tivation for performing a change can be implicitly shown by referring to one or sev-

eral intention elements.

─ Interaction type: This class captured the way two owning organizations interact with

each other. The class requires a detailed understanding of the capability business

ecosystem [18], which is not the primary goal of this project. The class has been

converted to a high level tool functionality. The owners of the capability and the

configuration components are captured in a control element of the notation that col-

ors the borders of the components according to same or different ownership.

─ Organizational boundary: Using the functionality that was introduced for different

owners’ interaction, the tool calculates the amount of externally owned required

components and their owners and provides a decision-supporting suggestion to the

user to take into consideration the reported results. In this way, the class is omitted

from the language meta-model.

─ Boundary control: Same as Organizational boundary.

8

Removal of Existing Classes.

─ Size: It has been completely removed from the language meta-model. It refers to the

size of an organization and has been introduced in [10], as a factor affecting the

tempo of change. Even if an association between Size and Tempo has been strongly

indicated, there was no clear and operational formula identified to provide utility in

the tool. Thus, capturing the size of an organization without a clear effect on the

tempo of change would have questionable value, therefore, Size was removed.

─ Organization: As a specialization of Owner, the Organization class does not need to

exist as a class since the parent class has been converted to an attribute.

─ State: State existed in the phenomenon’s conceptualization as a superclass of Capa-

bility state and Change state. There is no value in the existence of the superclass

without its specializations, thus it is removed.

─ Function: This class is the generalization of the three functions. Converting the spe-

cializations allows the removal of the superclass as well.

─ Change type: This class captures if the change is an introduction of a new capability

or the modification or retirement of an existing one. The model that is produced by

the tool can capture this information by checking the activity states of configurations.

If an active configuration has no prior alternative, it is an introduction, if it has tran-

sitioned from an alternative it is a modification and if it is deactivated without tran-

sitioning to an active configuration, it is retired.

─ External context: The external context is a specialization of the Context class. The

implementation can have a Context element described in terms of externality without

a need for the specific subclass.

─ Internal context: Same as External context.

Remaining Classes.

The remaining concepts of the conceptualization are the core elements and focal points

not only of the KYKLOS method but also of the tool. They cannot be absent the lan-

guage meta-model and they also retain their class status. The concepts included in de-

fine the fragment of the conceptualization that comprises the language meta-model are:

─ Capability

─ Configuration

─ Outcome

─ Resource

─ Intention element

─ Context

─ Monitored factor

─ Behavior element

─ KPI

Introduction of New Classes.

The implementation provided the opportunity to introduce new classes to the language

meta-model, as a means to improve the utility of the method via the tool. Three types

of additions were performed to the KYKLOS meta-model in this step, in particular:

─ Specializations of elements

• The Behavior element, which is a meta-element, got a specialization class, in par-

ticular:

○ Process

9

The Process concept has been previously identified as the most common and pop-

ular concept [6] in the literature, regarding the behavioral aspect of capabilities.

Other concepts like Activity, which are also popular, did not get included because

a process consists of tasks and activities, and capturing the lower levels of a ca-

pability’s behavior is beyond the scope of KYKLOS. In this way, Behavior ele-

ment was implemented as an abstract class, which means that it is not usable in

the tool. Only the specializations are visible and usable by the users.

• The Intention element, which is another of the meta-elements of the meta-model,

has been complemented with three specialization classes, to improve the tool’s

descriptive capability. The specializations are:

○ Goal ○ Problem ○ Requirement

In addition, the specializations allow to capture the “purpose” attribute of the pre-

viously existing Capability State element, via their direct association to a capabil-

ity. The Capability State captured what is the purpose of a capability, in terms of

achieving a goal, avoiding a problem, or meeting a requirement, and if it actually

succeeded in the fulfillment of the Intention element.

─ Generalization of elements

• Component was introduced; Process, as a Behavior element, and Resource, are

both components of the Configuration class. This fact allowed the introduction of

the Component abstract class, which is not visible and usable in the tool, but is

the parent of both Component types and also gains their common Owner attribute.

─ Utility addition

• Resource pool, is a class that has no direct association to the phenomenon of ca-

pability change, however, its utility lies in the fact that the configuration compo-

nents have been designed in a way that does not allow them to exist independently

of a container. For this reason, the Resource pool element acts as a repository for

the entire set of organizational resources that have not been allocated to a capa-

bility’s configuration and improve partitioning potentials of a model.

Final implemented language meta-model.

The outcome of applying these changes to the initial meta-model is depicted in Fig.3,

while the complete set of language concepts and their definitions are shown in Table 1.

Table 1. The complete set of language concepts and their definitions, from [5].

Concept Description

Capability A set of resources and behaviors, whose configuration bears the ability and capacity

to enable the potential to create value by fulfilling a goal within a context.

Configuration The set of resources that comprise the capability along with the behavior elements that

deliver it. A capability may have several different configurations but only one may be

active at any given moment in time.

Resource Any human, infrastructure, knowledge, equipment, financial or reputation asset that

can be used by an organization to enable the capability’s realization. It can be allocated

to one or more capability configurations, based on its capacity.

Resource pool The complete set of an organization’s available resources.

10

Context All the factors that form the setting in which a capability exists, are relevant to its

performance and within which the capability is perceived.

Outcome The result of the capability’s realization. Comparing it to KPIs and Intention elements

can provide insight on whether a capability change is necessary or not.

KPI A preset measurable value that expresses an important aspect of the context that a

capability depends on to reach the desired outcome. Used to assess the efficiency of

the capability’s realization when compared with outcome values.

Monitored

Factor

A context factor that has been identified and associated to a capability’s performance

and is being observed in relation to the capability. It is usually expressed as a KPI.

Intention

element

An abstract element that includes all the concepts that refer to the intentions governing

the capability, for example, goals, problems or requirements.

Goal A desirable state that an organization aims to achieve. It is a type of Intention element.

Problem An undesirable condition that an organization aims to avoid or tackle. It is a type of

Intention element.

Requirement A necessary state that an organization has to fulfill. It is a type of Intention element.

Behavior

element

An abstract element that describes a structured set of activities whose execution deliv-

ers the value of the capability, for example, a process, service, activity or task.

Process A behavior element that consists of activities aiming to fulfill a certain goal.

Change Change represents the transition from one configuration to another. It can be described

using several change properties. A capability change is finalized when a configura-

tion’s activity state is modified.

Fig. 3. The language meta-model, with the remaining (orange), converted (purple) and new

(light green) classes.

4.2 Graphical Notation

As mentioned earlier, an essential part of a modeling language is its notation. While the

initial meta-model has been created using UML, for KYKLOS we introduced a new

notation that combines both symbols and shapes. Symbols and shapes comprise the

primary and secondary notation respectively. For the primary notation every concept

of the language meta-model has been assigned a unique symbol, as shown in Table 2.

11

Table 2. The primary notation of KYKLOS.

Capability Configuration Resource Outcome KPI

Goal Problem Requirement Process Change

Monitored

Factor

Intention

element

Resource pool Context Behavior

element

Container

Container N/A

Effort has been put to ensure the notation’s short learning curve. This is achieved by

a symbol set consisting of items that are consistent in terms of size, visual appearance

and maximized simplicity, while in parallel preserving a clear distinction among them.

The symbol color is black, to facilitate users with color deficiencies [19]. The secondary

notation includes colored shapes but relying on color alone to distinguish image content

is ineffective. The black symbols ensure that potential problems regarding compatibil-

ity with monochrome displays are avoided. Using color is not only for coding infor-

mation but also for aiding visual search as the items become easily discriminable [19].

The secondary notation consists of standard shapes, i.e. polygons, ellipses and rectan-

gles, and a set of colors that remain discriminable if superimposed on one another or

juxtaposed [19], to improve memorability. The secondary notation includes the primary

one and is complemented with text. Minimum elements have been used in both nota-

tions to avoid cluttered KYKLOS models, which has been a problem in earlier applica-

tions using the UML notation [9]. Table 3 depicts the secondary notation.

Table 3. The secondary notation of KYKLOS.

Capability Configuration Resource Outcome KPI

Goal Problem Requirement Process Change

Monitored

Factor

Intention

element

Resource pool Context Behavior

element

N/A

12

4.3 User Interaction

The last part of the implementation consists of technical additions provided using the

ADOxx platform. These additions are implemented using the AdoScript language and

provide automation that facilitates modeling in the tool and improves empirical quality

of the model in terms of graph aesthetics [20]. Fig. 4 depicts these functionalities in an

example KYKLOS model.

Fig. 4. User interaction facilities in the KYKLOS tool.

New configuration. Creating a new configuration is facilitated by a button existing on

Capability objects. The tool creates and automatically connects a new Configuration,

taking into consideration the spatial alignment of the object for increased visual quality.

Containment: This functionality uses the core ADOxx relationship “Is Inside”. Having

a model element graphically put inside another allows them to be related in an invisible

way (no connecting lines required), which improves the model in terms of complexity

by reducing crossing lines.

Configuration activation. Whether a configuration is active depends on whether the

required components are allocated to it. In the tool, the required components are listed

in a “Notebook” area. The tool checks on this list and calculates whether the compo-

nents that are contained in a configuration match the list or not and activate or deacti-

vate the configuration accordingly.

Component ownership. The ownership attribute captures if a component is owned by

the same organization as the capability (internally) or not (externally). A button existing

on Resource pool objects automatically calculates the ownership type and, changes the

visualization of the component’s right side border to blue (internal ownership) or red

(external ownership) for improved comprehensibility. Similarly, it calculates and re-

ports the externally owned components for consideration of organizational boundaries.

Prevention of loose components. Resources are components, so, they are not supposed

to exist outside a container. For this reason, the tool does not allow the creation or

movement of components if they are not contained.

13

Change attributes. An association exists between configurations that includes visually

the attributes of change. This association class change includes a button that shows or

hides the attributes of change in order to avoid clutter and complexity in larger models.

Decision motivation. KPIs and all Intention elements are connected to Capability with

a special association called Status that is a control graphic element. Dependent on

whether the object’s content is fulfilled or not by the given capability, the visualization

changes to facilitate identifying a reason for change, e.g. an unfulfilled goal.

Relationship grouping. Towards avoiding a large number of different association types,

as in the language meta-model, all the associations except Status and Transition/Change

are using the same visualization. However, strict rules have been coded to prevent using

wrong association types in a produced model. This mitigates the risk of mistakes.

5 Discussion and Lessons Learned

The greatest opportunity addressed during the implementation was the potential to re-

fine the initial meta-model into a simplified version in the language meta-model. This

does not imply the loss or reduction of the initial meta-model’s effectiveness. On the

contrary, the KYKLOS language meta-model was expected to provide equal effective-

ness with the initial meta-model, while in parallel avoiding the complexity and clutter

that characterized the models produced using the initial meta-model, as in [9].

The most striking part of the meta-model transformation is the reduction of the clas-

ses, from 30 to 16, which indicates a significant simplification. In practice, a modeling

tool that would have provided 30 available classes to a user would require a longer

learning curve and modeling experience. The number of relationships has also been

significantly reduced. Six associations share a common visualization that depicts the

relationship status of the objects without a need to require additional learning steps from

the user. Our lesson here is that the initial meta-model was created to cover “all” con-

cepts of capability change and thus was not suited for creating a modeling language.

All the implementation activities bear their own advantages and disadvantages, often

achieving a balance between simplicity/utility and descriptive power. Every interven-

tion has been driven by advantages preponderating disadvantages. Introducing new

classes increases the language meta-model’s degree of complexity. However, all the

introduced classes have provided either improved user experience, as for example, with

the Resource pool class, or specified the more abstract concepts of the initial meta-

model, as for example the Process and Goal classes specifying Behavior element and

Intention element respectively. Similarly, it has been ensured that the removed classes

have a minimal cost on the tool’s descriptive power, for example, removing the Func-

tion class heavily simplified the model, and if desired, Functions can be described by

other means such as creating separate models for each function. In both cases, we con-

clude that preponderance of simplicity or descriptive power has been the driver.

During the implementation it became clear that the tool is more than the language

meta-model. The tool allows for more than just adding static concepts to a model, since

it is possible to add functionalities too. For example, even if converting the Owner class

to an attribute of two separate classes is considered a bad modeling practice in UML,

14

adding the component ownership functionality enables the tool to compare attributes of

different classes to see if they are “owned” by the same organization. Converting clas-

ses to functionalities like this does not reduce descriptive potential, but it improves the

user’s interactivity combined with reduced complexity, making the change worthwhile.

The greatest challenge has been to retain an operational and semantic consistency

between the initial and the language meta-model. The tool also needed to be operation-

ally aligned with the modeling procedure, that is, to provide an adequate set of primi-

tives for capturing the required elements for documenting, analyzing and communi-

cating the phenomenon of capability change during the different KYKLOS method

phases. This has been theoretically addressed, yet, a practical evaluation of the imple-

mentation by the actual users is required. KYKLOS is meant to be used both by tech-

nical and business people, therefore, the implementation needs to be evaluated both by

users with modeling experience and those without any, a step which is already planned

as a future step of the project.

Implementing the method with a variety of functionalities can facilitate the user fol-

lowing a modeling process. The dynamic automated aspects of the KYKLOS tool make

steps towards an evolved version of modeling software that can guide the user’s actions,

as for example with the automatic capability configuration design, and mitigate the risk

of syntactic mistakes, as for example with the restrictions applied on the association

selection in the KYKLOS tool. These functionalities have been possible because of the

ADOxx environment whose core platform enables different levels of automation.

Regarding ADOxx as the selected platform for the implementation of the KYKLOS

method, its advantages as a specialized meta-modeling platform can be summarized in

the pre-existing functions and meta-modeling structure that saves a significant amount

of time and effort for the developer. In theory, taking into consideration that the tool’s

requirements are not platform-dependent, platforms like Eclipse are equivalent, how-

ever, in practice, ADOxx’s existing functions are valuable, especially when it concerns

cases where a concept needs to be converted to a tool functionality and dynamic behav-

ior is required, as encountered in the KYKLOS implementation.

We aspire that the reported remarks can also benefit any implementation initiative

that encounters similar opportunities and challenges, especially when the addressed

phenomenon is as complex and dynamic as capability change.

6 Conclusions

In this paper, the implementation of the KYKLOS modeling method, specifically de-

signed for the phenomenon of capability change, has been reported along with the les-

sons learned from the procedure. The initial meta-model has been adjusted and simpli-

fied to improve the resulting tool models in terms of complexity and clutter. Converting

the initial meta-model’s classes to attributes, association classes and ADOxx function-

alities, along with the removal and introduction of classes led to the language meta-

model, which has been complemented with a graphical notation and additional UI func-

tions that aim to facilitate the user’s overall experience of the KYKLOS method, in

terms of applicability, learning curve and operational alignment with the tool.

15

References

1. Persson, A., Stirna, J.: An Explorative Study into the Influence of Business Goals on the

Practical Use of Enterprise Modelling Methods and Tools. In: New Perspectives on Infor-

mation Systems Development. pp. 275–287. Springer US, Boston, MA (2002).

2. Karagiannis, D., Kühn, H.: Metamodelling Platforms. In: Bauknecht, K., Tjoa, A.M., and

Quirchmayr, G. (eds.) E-Commerce and Web Technologies. pp. 182–182. Springer (2002).

3. Fayoumi, A., Loucopoulos, P.: Conceptual modeling for the design of intelligent and emer-

gent information systems. Expert Systems with Applications. 59, 174–194 (2016).

4. Fill, H.-G., Karagiannis, D.: On the Conceptualisation of Modelling Methods Using the

ADOxx Meta Modelling Platform. EMISA. 8, 4–25 (2013).

5. Koutsopoulos, G., Henkel, M., Stirna, J.: Modeling the Phenomenon of Capability Change:

the KYKLOS Method. In: (To appear in) Domain-Specific Conceptual Modeling: Concepts,

Methods and Tools Vol.II. Springer International Publishing, Cham (2021).

6. Koutsopoulos, G., Henkel, M., Stirna, J.: An analysis of capability meta-models for express-

ing dynamic business transformation. Softw Syst Model. 20, 147–174 (2021).

7. Koutsopoulos, G., Henkel, M., Stirna, J.: Modeling the Dichotomies of Organizational

Change: a State-based Capability Typology. In: Feltus, C., Johannesson, P., and Proper,

H.A. (eds.) Proceedings of the PoEM 2019 Forum. pp. 26–39. CEUR-WS.org, Luxembourg

(2020).

8. Koutsopoulos, G., Henkel, M., Stirna, J.: Requirements for Observing, Deciding, and De-

livering Capability Change. In: Gordijn, J., Guédria, W., and Proper, H.A. (eds.) The Prac-

tice of Enterprise Modeling. pp. 20–35. Springer International Publishing, Cham (2019).

9. Koutsopoulos, G., Henkel, M., Stirna, J.: Conceptualizing Capability Change. In: Nurcan,

S., Reinhartz-Berger, I., Soffer, P., and Zdravkovic, J. (eds.) Enterprise, Business-Process

and Information Systems Modeling. pp. 269–283. Springer, Cham (2020).

10. Koutsopoulos, G., Henkel, M., Stirna, J.: Improvements on Capability Modeling by Imple-

menting Expert Knowledge About Organizational Change. In: Grabis, J. and Bork, D. (eds.)

The Practice of Enterprise Modeling. pp. 171–185. Springer, Cham (2020).

11. Guizzardi, G.: Ontological foundations for structural conceptual models, (2005).

12. Object Management Group (OMG): OMG® Unified Modeling Language®,

https://www.omg.org/spec/UML/2.5.1/PDF, (2017).

13. Karagiannis, D., Mayr, H.C., Mylopoulos, J. eds: Domain-Specific Conceptual Modeling:

Concepts, Methods and Tools. Springer, Cham (2016).

14. Koutsopoulos, G.: Managing Capability Change in Organizations: Foundations for a Mod-

eling Approach, http://urn.kb.se/resolve?urn=urn:nbn:se:su:diva-185231, (2020).

15. Sandkuhl, K., Stirna, J. eds: Capability Management in Digital Enterprises. Springer (2018).

16. Ulrich, W., Rosen, M.: The Business Capability Map: The"Rosetta stone" of Business/IT

Alignment. Cutter Consortium, Enterprise Architecture. 14, (2011).

17. OMiLAB: The ADOxx Metamodelling Platform, https://www.adoxx.org/live/home

18. Tsai, C.H., Zdravkovic, J., Stirna, J.: Capability Management of Digital Business Ecosys-

tems – A Case of Resilience Modeling in the Healthcare Domain. In: Herbaut, N. and La

Rosa, M. (eds.) AISE. pp. 126–137. Springer International Publishing, Cham (2020).

19. Post, D.L.: Color and Human-Computer Interaction. In: Handbook of Human-Computer In-

teraction. pp. 573–615. Elsevier (1997).

20. Krogstie, J.: Quality of Conceptual Models in Model Driven Software Engineering. In:

Cabot, J., Gómez, C., Pastor, O., Sancho, M.R., and Teniente, E. (eds.) Conceptual Modeling

Perspectives. pp. 185–198. Springer International Publishing, Cham (2017).

