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Abstract. Machine learning and artificial intelligence models have the potential 

to streamline public services and policy making. Frequently, however, the 

patterns a model uncovers can be more important than the model’s performance. 

Explainable Artificial Intelligence (XAI) have been recently introduced as a set 

of techniques that enable explaining individual decisions made by a model. 

Although XAI has been proved important in various domains, the need of using 

relevant techniques in public administration has only recently emerged. The 

objective of this paper is to explore the value and the feasibility of creating XAI 

models using high quality open government data that are provided in the form of 

linked open statistical data. Towards this end, a process for exploiting linked open 

statistical data in the creation of explainable models is presented. Moreover, a 

case study where linked data from the Scottish open statistics portal is exploited 

in order to predict and interpret the probability the mean house price of a data 

zone to be higher than the average price in Scotland is described. The XGBoost 

algorithm is used to create the predictive model and the SHAP framework to 

explain it. 

Keywords: Linked Data, Open Government Data, Machine Learning, Artificial 

Intelligence, XAI, SHAP, XGBoost. 

1 Introduction 

Machine learning and artificial intelligence models have been recently employed to 

improve public services and policy making [25]. In many cases these models have been 

proven accurate to predict the outcome of relevant events and thus effective to support 

public administration and policy makers [22], [12]. It is common, however, the patterns 

a model uncovers to be more important than the model’s prediction performance [3]. 

Explainable Artificial Intelligence (XAI) techniques have been recently introduced to 

explain individual decisions made by the model [1]. XAI aims at producing more 

explainable models while maintaining a high level of learning performance (e.g., 

prediction accuracy), and enabling humans to understand, appropriately trust, and 

effectively manage the emerging generation of artificially intelligent partners [7]. XAI 

has been already proved particularly important in medical applications [13] and in 



 

transport [18]. However, the need for using relevant techniques in policy making and 

public administration only recently has emerged, and their value and feasibility are still 

not clear [8]. 

At the same time, Open Government Data (OGD) can play an important role in 

creating machine learning and artificial intelligence models [6]. Linked Data 

technologies can further contribute towards this direction because they enable the 

creation and dissemination of high-quality data that can be easily combined across 

disparate sources [10]. In particular, linked open statistical data provide statistics such 

as demographics (e.g., census data), economic, and social indicators (e.g., number of 

new businesses, unemployment). In statistics, linked data enable the application of 

analytics on top of disparate and previously isolated datasets. 

The objective of this paper is to explore the value and the feasibility of creating XAI 

models using high quality OGD that are provided in the form of linked open statistical 

data. Towards this end, a process for exploiting linked open statistical data for the 

creation of explainable models is presented. Moreover, a case study where linked data 

from the Scottish open statistics portal are exploited in order to predict and interpret the 

probability the mean house price of a data zone to be higher than the average price in 

Scotland. eXtreme Gradient Boosting (XGBoost) is used to create the predictive model 

[2] and the SHapley Additive exPlanation (SHAP) framework to explain the predictive 

model [16]. 

The rest of this paper is structured as follows: In section 2 the process for applying 

XAI techniques on Linked Open Government Data is presented. Section 3 presents the 

research approach that is followed to achieve the objective of the paper. Section 4 

describes the case of creating an explainable predictive model using data from the 

Scottish open data portal. Finally, section 5 summarizes the results and identifies open 

research issues.   

2 Create Explainable Models using LOGD 

By adapting explainable machine learning processes in the literature [21], the four 

broad steps of our approach are defined: 

Specifying the problem: A supervised machine learning problem can be specified as 

either regression or classification. Government data and statistics typically include 

continuous variables and thus natively support regression analysis. However, 

classification problems can be addressed more easily and with higher accuracy. So, it 

is important in this step to transform a regression problem into a classification one. 

Moreover, the level of analysis should be decided in order to enable the use of a big 

number of data samples. For example, fine grained geographical areas (e.g., LAU levels 

in Europe) or time periods should be considered. Finally, the setting of the problem can 

be based either on time series analysis or on tabular analysis. 

Collecting the data: Today, a large volume of statistical data is disseminated using 

linked data technologies [9]. This linked open statistical data is provided on the Web 

through official open government data portals launched by organizations and public 

authorities. Examples include the data portals of the Scottish and Japan’s (e-Stat) 



 

governments, the data portal of the environmental department of the Flemish 

government (VLO), DCLG in the UK, and the data portals that host the Italian (ISTAT) 

and Irish (Irish CSO) 2011 censuses. The connection of these data portals would create 

a Knowledge Graph of quality and fine-grained statistical data including 

demographical, social and business indicators across countries. This knowledge graph, 

that would facilitate data discovery and collection, can be created by identifying [9] and 

addressing [11] interoperability challenges for connecting statistical data from multiple 

trustworthy sources. All the official portals provide SPARQL endpoints and thus the 

data can be easily collected by specifying and submitting relevant queries.  

Creating the predictive model: In this step the actual predictive model is created. 

This includes selecting the algorithm, tuning the model to the optimal hyper-parameter 

values, and selecting the evaluation score. The fact that the result of a SPARQL query 

is a tabular-style dataset should be taken into account. For example, tree-based models 

can be more accurate than neural networks in many applications. While deep learning 

models are more appropriate in fields like image recognition, speech recognition, and 

natural language processing, tree-based models consistently outperform standard deep 

models on tabular-style datasets [2].  

Explaining the predictive model: An explanation is the collection of features in the 

interpretable domain that have contributed to produce a decision (e.g., classification or 

regression) [17] for a given example. Various approaches have been proposed for 

explaining model predictions varying in scope and flexibility [19]. The scope indicates 

whether the method generates global explanations or local explanations, whereas the 

flexibility indicates whether the approach is model-specific or model-agnostic. Local 

explanations reveal the impact of input features on individual predictions of a single 

sample. Two recently proposed model-agnostic methods are the linear interpretable 

model-agnostic explainer (LIME) [20] and Shapley additive explanations (SHAP) [14]. 

Although SHAP is a local explainability model, it introduces global interpretation 

methods based on aggregations of Shapley values. Due to their generality, these 

methods have been used to explain a number of classifiers, such as neural networks and 

complex ensemble models, and in various domains ranging from law, medicine, 

finance, and science [24]. 

3 Research Approach 

In order to demonstrate the applicability and value of applying XAI techniques on open 

government data, the Scottish government data portal (http://statistics.gov.scot) 

providing statistical data for free reuse is employed. 

Currently, the portal contains 250 datasets covering various societal and business 

aspects of Scotland at different granularity levels. Data Zones refer to the primary 

geography for the release of small areas statistics in Scotland, while Council Areas are 

the coarser geographical units in Scotland. 

The portal utilizes linked data technologies in order to improve data quality and also 

to make available the data as a unified knowledge graph. The different datasets are 

connected through typed links (mainly using the RDF Data Cube vocabulary) enabling 

http://statistics.gov.scot/


 

users to search in a uniform way across all the available datasets and to easily combine 

data from different datasets. The portal has released a SPARQL endpoint 

(https://statistics.gov.scot/sparql), where users can submit queries to retrieve data. 

In this case, eXtreme Gradient Boosting (XGBoost) is used to create the predictive 

model. XGBoost is an implementation of a generalized gradient boosting algorithm [2]. 

Boosting refers to the general problem of boosting the performance of weak learning 

algorithms by combining all the generated hypotheses into a single hypothesis [4]. This 

idea was further elaborated in gradient boosting [5]. In this case, one new weak learner 

is added at a time and existing weak learners in the model are frozen and left unchanged. 

The XGBoost algorithm has been applied to many domains, such as transportation, 

health, and energy, because of its high speed, high accuracy, and good robustness. It is 

indicative that during 2015, the 17 out of 29 winning solutions that were submitted to 

Kaggle competitions used XGBoost [2]. 

Moreover, the SHapley Additive exPlanation (SHAP) framework is employed for 

explaining the predictive model. SHAP, a local explainability model that is based on 

Shapley values, is employed [16]. The Shapley value method is a game theory method 

that assigns payouts to players depending on their contribution to the total payout where 

players cooperate in a coalition [23]. In machine learning the “game” is the prediction 

task for a single instance of the dataset. The “gain” is the prediction minus the average 

prediction of all instances and the “players” are the feature values of the instance that 

collaborate to receive the gain. The Shapley value is the average marginal contribution 

of a feature value across all possible coalitions. 

The Shapley value method is computationally expensive because going over all 

coalitions scales exponentially with the increase in the number of features. SHAP 

solved this problem by enabling the exact computation of Shapley values in low order 

polynomial time instead of exponential by leveraging the internal structure of tree-

based models [14], [15]. SHAP also proposed SHAP interaction values, which are an 

extension of Shapley values that directly capture pairwise interaction effects. Moreover, 

SHAP introduced global interpretation methods based on aggregations of Shapley 

values such as the SHAP feature importance, which is measured as the mean absolute 

Shapley values. 

4 Predicting and Explaining House Prices in Scotland 

In this section, the results of applying XAI techniques to linked open government data 

is presented according to the four broad steps defined in Section 2 and the detailed 

setting described in Section 3. 

4.1 Specifying the Problem 

In our case, the 2011 Data Zones are employed as the geographical units of analysis for 

the case study. Data zones are the core geography for dissemination of results from 

Scottish Neighborhood Statistics. They are designed to have roughly standard 

populations of 500 to 1,000 household residents. There are 6,976 2011 Data Zones.   



 

The topic that will be explored is the mean house prices in the 2011 Data Zones in 

the year 2017. The average mean house price in 2017 across the 6,976 data zones is 

£168,285, while the median mean house price is £148,375. The problem that will be 

explored is the prediction of the probability the mean house price of a data zone is 

higher than the average price (£168,285). Moreover, what are the factors that contribute 

towards this prediction in each data zone. 

4.2 Collecting Data from the Scottish LOGD Portal 

In order to solve the specified problem, compatible datasets that can be exploited are 

collected from the Scottish open data portal. Towards this end, two criteria are 

specified: (a) the dataset includes data for 2017 as the year of reference, and (b) the 

dataset includes data at the granularity level of 2011 data zones. Because the available 

data have been shaped as Linked Data, a SPARQL query is structured in order to 

formally specify these criteria. In particular, the following query was submitted to the 

SPARQL endpoint of the Scottish portal to retrieve the compatible datasets. 

PREFIX sdmx-dim:<http://purl.org/linked-

data/sdmx/2009/dimension#> 

SELECT distinct ?b 

WHERE {?a qb:dataSet  ?b; 

       sdmx-dim:refPeriod 

<http://reference.data.gov.uk/id/year/2017>. 

       ?a sdmx-dim:refArea  [?m 

<http://statistics.gov.scot/def/foi/collection/data-

zones-2011>].} 

The query resulted in 17 datasets other than the “House Sales Prices” dataset. Each 

dataset includes one or more measures and thus the final list includes 23 variables that 

will be used in the creation of the predictive model. The final dataset containing the 23 

variables was created by submitting a second query to the Scottish SPARQL endpoint. 

Table 1 presents the variables along with the results of an initial statistical analysis. 

Two Independent Sample t Test was used for the 23 continuous variables. Statistical 

analysis was performed using Python’s SciPy library and values of p < 0.05 were 

considered statistically significant. 

 

 

 

 

 

 

 

 



 

Table 1. The data collected from the Scottish portal. Values are mean (± SD). 

Variables Overall  

(N = 5,841) 

Above average 

(n = 2,340) 

Below average 

(n = 3,501) 

p 

value 

Number of house sales 14.37 (11.36) 17.08 (15.39) 12.55 (6.99) <0.001 

Number of dwellings per 

hectare 

19.91 (20.89) 15.99 (22.16) 22.53 (19.58) <0.001 

Number of flats 144.68 (168.62) 109.11 (162.31) 168.45 (168.59) <0.001 

Percentage of flats 33.43 (32.01) 25.02 (30.45) 39.05 (31.8) <0.001 

Median number of rooms in 

dwellings 

3.99 (0.89) 4.52 (0.91) 3.63 (0.69) <0.001 

Number of dwellings 383.66 (117.88) 376.56 (126.75) 388.4 (111.32) <0.001 

Percentage of total dwellings 

that are long empty 

1.37 (1.48) 1.41 (1.5) 1.34 (1.47) 0.08 

Percentage of total dwellings 

that are occupied 

96.12 (3.98) 95.81 (4.47) 96.33 (3.6 <0.001 

Percentage of total dwellings 

that are second homes 

0.93 (2.69) 1.43 (3.37) 0.59 (2.05) <0.001 

Percentage of population 

living proxime to derelict site 

28.12 (39.05) 14.43 (28.62) 37.26 (42.28) <0.001 

Scottish access to bus 

indicator (weekday) 

23.66 (36.73) 21.17 (40.97) 25.33 (33.5) <0.001 

Scottish access to bus 

indicator (weekend) 

15.73 (25.22) 14.07 (27.6) 16.84 (23.44) <0.001 

Number of births 7.61 (5.3) 7.51 (6.56) 7.67 (4.25) 0.26 

Number of deaths 8.51 (6.6) 7.56 (6.81) 9.15 (6.37) <0.001 

Mid-year population estimates 799.12 (221.37) 841.8 (267.66) 770.6 (178.49) <0.001 

Number of families receiving 

child benefit 

80.15 (33.99) 72.77 (36.58) 85.08 (31.19) <0.001 

Number of children receiving 

child benefit 

131.56 (58.55) 120.27 (61.9) 139.11 (54.93) <0.001 

Comparative illness factor 94.68 (50.64) 57.93 (28.25) 119.24 (47.32) <0.001 

Standardised mortality ratio 96.03 (42.38) 79.33 (39.34) 107.2 (40.64) <0.001 

Hospital stays related to 

alcohol misuse: standardized 

ratio 

92.95 (88.95) 49.78 (48.9) 121.8 (97.61) <0.001 

Proportion of population 

being prescribed drugs for 

anxiety, depression or 

psychosis 

18.56 (5.1) 15.2 (3.69) 20.81 (4.65) <0.001 

The number of people who are 

employment deprived 

43.18 (33.98) 23.2 (19.37) 56.54 (35.07) <0.001 

The percentage of people who 

are employment deprived 

8.58 (6.22) 4.35 (3.07) 11.41 (6.18) <0.001 



 

There are 2,340 data zones with mean house price above the average price. These 

areas are more likely to have dwellings with more rooms, dwellings that are not 

someone's main residence (second homes), healthier population, and to be more 

populated. In addition, they were less likely to have good accessibility to public 

transport, flats, families receiving child benefits, hospital stays related to alcohol 

misuse, people who are employment deprived, people being prescribed drugs for 

anxiety, and people living within 500 meters of a derelict site. 

4.3 Create a Predictive Model 

In this paper, XGBoost is used to create the predictive model. The dataset created in 

the previous step was split in train and test sets in order to ensure that the evaluation of 

the model is unbiased. We tune the model using the train set and then we evaluate the 

final model in the test set. A total of 4,380 (75%) and 1,461 (25%) data zones were 

randomly assigned to the train and test sets, respectively. Repeated k-fold Cross-

Validation was employed in order to ensure that our model will have low variance and 

bias. Part of data (the training sample) is used for training each algorithm, and the 

remaining part (the validation sample) is used for estimating the risk of the algorithm. 

Using Cross-Validation, several XGBoost parameters were selected to maximize model 

performance. 

The performance of the models was assessed by measuring the total area under the 

receiver-operating curve (AUC). The model that was created and tuned is applied to the 

test set to get the AUC score in the holdout data. 

The results of the machine learning model creation along with the optimal hyper-

parameter values selected are depicted in Table 2. The holdout AUC score is 0.91. 

Table 2.  The AUC score to the created model along with the optimal hyper-parameter values 

Train set AUC Test set AUC XGBoost parameter values  

0.915 0.91 'colsample_bylevel': 0.8, 'colsample_bytree': 0.6, 

'learning_rate': 0.1, 'max_depth': 3, 'n_estimators': 

400, 'subsample': 0.8 

4.4 Explain the Predictive Model 

In this study the following types of visualizations are employed to explain the created 

predictive model:  

• SHAP summary plots: beeswarm plots where the dot’s position on the y-axis is 

determined by the feature and on the x-axis by the Shapley value. The color 

represents the value of the feature from low to high. 

• SHAP Dependence Plots show how a feature’s value (x-axis) impacts the prediction 

(y-axis) of every sample (each dot) in a dataset 



 

• SHAP Interaction Value Dependence Plots: dependence plot on the SHAP 

interaction values, which allows to separately observe the main effects and the 

interaction effects. 

SHAP Summary Plots. In Fig.1 the SHAP summary plot is presented in the form of a 

set of beeswarm plots. The order of the features reflects their importance, i.e., the sum 

of the SHAP value magnitudes across all samples. Each point on the summary plot is a 

Shapley value for a feature and an instance. The position on the y-axis is determined 

by the feature and on the x-axis by the Shapley value. The color represents the value of 

the feature from low to high. 

 

Fig. 1. A set of beeswarm plots, where each dot corresponds to an individual data zone in the 

study. 

The plot reveals that the Comparative Illness Factor (CIF) is the most important feature 

globally. CIF is a measure of chronic health conditions that takes account of people 

from all ages. CIF greater than 100 indicates poorer health conditions relative to 

Scotland and vice-versa. The plot indicates the direction of the effects, meaning, for 

example, that low CIF data zones (blue) have higher probablity of having expensive 

houses than high CIF data zones (red). Moreover, the plot presents the distribution of 

effect sizes, such as the long tails of many variables. These long tails mean that features 

with a low global importance can be extremely important for specific data zones. For 



 

example, although the number of house sales normally do not imply the level of house 

prices, in some abnormal cases the high number of sales indicate areas with expensive 

houses.   

SHAP Dependence Plot. The impact of a feature’s value to the prediction can be 

revealed by using the SHAP dependence plots. Fig. 2-a clearly reveals the inflection 

point on the impact of the comparative illness factor (CIF) to the house prices. For low 

CIF values overall SHAP values are positive up to a point around 75. Then, SHAP 

values are negative, which means that by increasing CIF, the probability of high house 

prices decreases.  

The vertical dispersion of SHAP values at a single feature value is driven by 

interaction effects. In Fig. 2-b, the number of people who are employment deprived is 

chosen for coloring to highlight possible interactions. The blue points mostly appear 

for lower values of CIF, meaning that areas of poorer health conditions tend to have 

more unemployed people.  

 

  

Fig. 2. (left) SHAP dependence plot of comparative illness factor vs. its SHAP value in the 

created predictive model, (right) SHAP dependence plot of comparative illness factor with 

interaction visualization with the number of people who are employment deprived. 

SHAP Interaction Value Dependence Plot. SHAP interaction values can be 

interpreted as the difference between the SHAP values for feature i when feature j is 

present and the SHAP values for feature i when feature j is absent [18]. The interaction 

effect is the additional combined feature effect after accounting for the individual 

feature effects. In this sub-section SHAP interaction effects are explored. Towards this 

end, the plots of the SHAP interaction values of multiple pairs of variables are created 

and presented in Fig. 3.  
The plot of the SHAP interaction value of ‘Total Dwellings’ with ‘Population’ 

(Fig.3-a) shows how the effect of total number of dwellings on the probability of high 

house prices varies with population. The plot of the SHAP interaction value of 

‘Anxiety/Depression’ (i.e., proportion of population being prescribed drugs for anxiety, 

depression or psychosis) with ‘Population’ (Fig.3-b) shows that in data zones with 

depressed population of more than 23%, total population has a different effect on the 

probability of high house prices depending on the size of the total population. Small 



 

population size has negative effect, while large population size has positive effect. 

Moreover, the plot of SHAP interaction value of the percentage of flats with the 

comparative illness factor (CIF) (Fig.3-c) shows that in data zones of poor health 

condition (CIF > 100) the effect of the percentage of flats reverses at a point around 

25%. Similar patterns can be found in three more plots. Fig.3-d shows that the effect of 

‘dwellings per hectar’ is different in data zones with small and large number of births. 

The same holds in Fig. 3-e and Fig.3-f that depict the effect of house sales in data zones 

with high and low number of dwellings and dwellings per hectar respectively. 

 

  

  

 

Fig. 3. SHAP interaction value dependence plots 

5 Conclusion 

Machine learning and artificial intelligence models promise to streamline public 

services and policy making. In many cases these models have been proven accurate to 

predict the outcome of relevant events and thus effective to support public 

(c) (d) 

(e) (f) 

(b) (a) 



 

administration and policy makers. However, there is growing emphasis on building 

tools and techniques for explaining these models in an interpretable manner. The 

objective of this paper is to illustrate the applicability and the value of applying 

eXplainable Artificial Intelligence (XAI) techniques on open government data that are 

formulated as linked open statistical data. Towards this end, a case study using data 

from the official open data portal of the Scottish Government is presented. In this case, 

an XGBoost algorithm is used to create and SHAP framework to explain a model that 

predicts the probability the mean house price of a data zone to be above the average 

price across all 6,976 data zones. The AUC score of the created model was 0.91, while 

the analysis based on Shapley values revealed some interesting insights. 

The analysis demonstrated that linked data facilitate the discovery and collection of 

high-quality data. The definition and submission of two SPARQL queries was 

sufficient to create the final dataset that was used for the creation of the predictive 

model. The first query identified 17 compatible and thus candidate datasets, while the 

second revealed 23 variables populated with data for the 2011 data zones. An important 

direction for future research in this area is to combine datasets that span across different 

data portals and countries. Interoperability challenges across data portals need to be 

further analyzed and addressed. 

The creation of an accurate model using an advanced tree-based ensemble algorithm 

demonstrates that open government data can be used in machine learning scenarios. In 

this direction, the specification of an appropriate question to answer is of vital 

importance.  

The local explanation analysis using Shapley values demonstrated the importance of 

such an analysis in policy making and/or public administration context. The 

computation of a feature’s effect per individual case (e.g., in each data zone area in our 

case study) enables applying different policies or making different decisions based on 

the distinct characteristics of each case. For example, although in general the high 

proportion of population being prescribed drugs for anxiety, depression or psychosis 

indicates areas with low house prices, in few areas this high proportion abnormally 

contributes to predict an area of high prices. This significantly improves the ability of 

public administrations and policy makers to make more accurate data-driven decisions 

and apply more focused evidence-based policies. 
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