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Abstract Secure installation of Internet of Things (IoT) devices requires config-
uring access control correctly for each device. In order to enable correct config-
uration the Manufacturer Usage Description (MUD) has been developed by In-
ternet Engineering Task Force (IETF) to automate the protection of IoT devices
by micro-segmentation using dynamic access control lists. The protocol defines a
conceptually straightforward method to implement access control upon installa-
tion by providing a list of every authorized access for each device. This access
control list may contain a few rules or hundreds of rules for each device. As a
result, validating these rules is a challenge. In order to make the MUD standard
more usable for developers, system integrators, and network operators, we report
on an interactive system called MUD-Visualizer that visualizes the files contain-
ing these access control rules. We show that, unlike manual analysis, the level of
the knowledge and experience does not affect the accuracy of the analysis when
MUD-Visualizer is used, indicating that the tool is effective for all participants in
our study across knowledge and experience levels.

Keywords Usable Security · Internet of Things · Network Security · Usable
Access Control · IoT · MUD · Manufacturer Usage Description

1 Introduction

The forecast for the number of connected IoT devices in 2025 is now raised to
30.9 billion [13], yet their (in)security is still a major concern [16]. There is a
need for secure onboarding meaning that the device is secured as soon as it is
connected to the network. One major component of secure onboarding both for
cyber-physical systems and IoT is firewall configuration. Without access control,
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IoT devices are susceptible to participate in DDoS attacks [10], are vulnerable
to ransomware [24], and enable information exfiltration from within networks [6].
It is the nature of botnets that the subverted devices need to be controlled by
the attackers’ command and control (C2) infrastructure [3]. Secure onboarding
that implements allow-list access control limits exposure of devices to attacks and
prevents any subverted device from connecting to the attackers’ C2 points. Unlike
traditional botnets, the control servers in IoT are highly dynamic so the typical
response of identifying then block-listing is infeasible [21].

To this end, the Internet Engineering Task Force (IETF) has developed the
Manufacturer Usage Description (MUD); a standard that provides an isolation-
based defense for IoT devices using dynamic access control [12]. The urgency and
scale of the need for such a solution are shown by the fact that MUD is also a
part of the National Institute of Standard and Technology (NIST) security for
IoT initiatives [5]. In addition, the Department of Commerce has a working group
to integrate the Software Bill of Materials (SBoM) initiative with MUD1 and the
IETF has a proposed standard integrating SBoM with MUD2. MUD can also be
used for mitigating DDoS attacks in the Fog [1].

MUD relies on manufacturers for an Access Control List (ACL) in the form
of a MUD-File. A MUD-File defines the allowed and expected behaviors of the
associated device. The clear implication is that developers must be able to write
clear and correct MUD-Files and network operators must be able to read and
validate the MUD-Files to ensure that unnecessary communications, either locally
or over the Internet, are not allowed. These are difficult problems, and like many
security tasks, are not well aligned with human cognitive abilities [15].

In this work, we report on the usability analysis of the MUD-Visualizer [2]; a
tool that is intended to support developers and network operators in evaluating
overlaps, duplication, and possible conflicts in MUD-Files. We report on the design
and results of our human subjects research that we conducted to investigate the
following research questions:

RQ1: How does security knowledge affect the accuracy of the analysis of the
MUD-Files?

RQ2: How does security experience affect the accuracy of the analysis of the
MUD-Files?

RQ3: To what extent does level of knowledge and experience affect the
accuracy of the analysis of the MUD-Files?

2 The MUD Standard

In this section, we briefly review the MUD standard for those readers who are
unfamiliar with MUD. MUD is comprised of six main components: MUD-File
which is a YANG-based JSON file (RFC 7951) created and digitally signed by
the manufacturer. It embeds the behavioral profile of the IoT device in an access
control list. MUD-Files should be hosted on manufacturer’s MUD file server.
The location of these files on the Internet is the MUD-URI which is stored on

1 https://www.ntia.doc.gov/files/ntia/publications/ntia practices model and summary 19-
02-20 0.pdf

2 https://tools.ietf.org/html/draft-lear-opsawg-mud-sbom-00
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the IoT device. Upon connection of the device to a MUD-compliant network, the
device sends the embedded MUD-URI to the Authentication, Authorization, and
Accounting, i.e., AAA server. The MUD-Manager is the core of MUD ar-
chitecture. After receiving the MUD-URI, it will retrieve the MUD-File from the
manufacturer’s MUD file server and communicates the MUD-File rules to the AAA
server [12]. The Network Access Device (NAD) (i.e., the router) is equipped
with an internal firewall that is configured by the AAA server. MUD provides
seven abstractions that can be used to define the behavior of and constraints on
an IoT device in a MUD-File. The domain-name abstraction is used to enforce
restrictions on cloud access. The local-networks abstraction defines the commu-
nication of a device with other devices on the network. With the manufacturer
abstraction, the authority component (i.e., domain name) of a device is matched
against the MUD-URI of another node which restricts devices’ access to specific
manufacturers. Similarly, the same-manufacturer abstraction defines when de-
vices built by one manufacturer can communicate with each other but not with
devices built by other manufacturers. Both of the controller and my-controller
abstraction are used when devices use a controller to communicate. Lastly, the
model abstraction constrains a device to communicate only with other instances
of the same device (e.g., only lightbulbs interact) [12].

To address the human factors challenges in the analysis of the MUD-Files,
Andalibi et al. [2] proposed and implemented MUD-Visualizer with the goal of
1) protocol checking to avoid formatting errors in the MUD-File to prevent cod-
ing errors 2) identifying internal inconsistencies and inefficiencies to prevent logic
errors 3) enabling both manufacturers and sysadmins to review and validate the
MUD-Files by processing the abstractions’ access control rules and visualizing
them. This processing is performed by encoding the merged Access Control En-
tries (ACEs) into a tree (i.e., ACE Tree) followed by pruning that tree to remove
the duplicate ACEs that are generated by merging the MUD abstractions in two
or more MUD-Files [2]. MUD-Visualizer can be deployed either as a stand-alone
app or as a web app. It is scalable, open-source, and publicly available online on
GitHub [2].

3 Related Work

Currently there are five implementations of MUD: Cisco MUD3, NIST MUD4,
osMUD5, Masterpeace MUD (closed-source), and CableLabs Micronets MUD6.
NIST details the efficacy of these implementations against network-based attacks
[5]. Regarding the MUD-Files, mudmaker7 is a web app specifically for creat-
ing MUD-Files. For devices that are not MUD-compliant, Hamza et al. created
MUDgee that uses the network traffic of the target IoT device to generate its MUD-
File [8]. Beside MUD-Visualizer, which is the focus of this paper, mudpp8 (MUD
Pretty Printer) is another tool that is developed for summarizing the ACL in the

3 https://github.com/CiscoDevNet/MUD-Manager
4 https://tsapps.nist.gov/publication/get pdf.cfm?pub id=927289
5 https://github.com/osmud/osmud
6 https://github.com/cablelabs/micronets-mud-tools
7 https://www.mudmaker.org
8 https://github.com/iot-onboarding/mudpp

https://www.mudmaker.org


4 Vafa Andalibi et al.

MUD-File. However, since it does not perform any analysis on the interaction
between the MUD-Files we did not consider it for our study.

Usable access control has long been a challenge in usable security. An early
study on the mitigation of human error in access control management was done
by Maxion and Reeder [14]. They found that visualization improves the rate of
completing the assigned task by a factor of three. The error in these completed
tasks was also reduced by up to 94%. This study is particularly relevant to our
work here because, like Maxion and Reeder, we selected computer and network
science students with significant expertise.

The study conducted by Vaniea et al. [22] also investigated the difficulty of
translating policy rules into access control rules where they recommend visual
feedback. They implemented SPARCLE [22] to present the data in a table as
a commonly used method of information visualization. The ExpandableGrid devel-
oped by Reeder et al. [18] for improving file permissions in Windows XP is another
example in this category.

Graph Visualization was previously used by [11] which is more similar to MUD-
Visualizer’s flow-based visualization [2]. Another study that concludes the impor-
tance of visualization is the work by Xu and colleagues [23]. They investigate the
uncertainties in access control decisions and found that a lack of feedback forced
the administrators who intend to resolve access control conflicts into a trial and
error mode. Moreover, Smetters et al. [20] found that limitations in the UI would
lead to the reluctance to change the access control settings which applies to MUD
deployment as well; manual evaluation of the interaction between multiple MUD-
Files is a difficult and time-consuming task for system administrators.

Erbenich et al. [7] studied the efficacy of the link visualization to better protect
the end-users against phishing. They break down the URL and only visualize the
most critical part of it for successful phishing detection. The same concept was used
in MUD-Visualizer where only the summary of the MUD-Files was presented to the
users. In another work, Scott and Ophoff [19] conducted a user study to study the
effectiveness of information security knowledge in decision making. By analyzing
the knowledge-behavior gap, they found that a deeper technical understanding of
cyber threats will help the user to effectively derive a more cautious and preventing
behavior. This motivates one of our goals; to find out whether MUD-Visualizer
can help the users with higher knowledge and expertise in the analysis of the
MUD-Files.

4 Method

Our survey incorporated two groups of participants: the first group used MUD-
Visualizer for the analysis and the second group directly analyzed plain-text MUD-
Files (hereinafter referred to as mudviz and plain groups respectively). The plain

group acted as a control group to measure the efficacy of the mudviz group. We
asked a total of 81 questions, including three screening questions, five demographic
questions, twenty-three questions related to the analysis of the MUD-Files (main
experiment), forty expertise questions, and ten usability questions from the par-
ticipants.

Our Screening Questionnaire and recruitment were designed to ensure
that the participants have the required knowledge for analyzing a MUD-File. Be-
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fore inclusion, participants had to show the knowledge of fundamentals of com-
puter networking (i.e., understanding IP, Port, and access control) through manual
parsing of components of a MUD-File. We focused on recruitment in an advanced
computer networking course.

The demographic questions contained questions about age, gender, educa-
tion, employment status, and income motivated from the study about the privacy
for WEIRD populations [9].

The core of the experiment design was 23 questions about the analysis of the
MUD-Files. We first asked the participants about the remote servers or local de-
vices allowed for a specific device given its MUD-File. This included two questions
about the number of nodes devices allow-listed, seven questions about the name
of these allowed nodes, and one question about between-node communication. We
also included thirteen questions about the Transport and Network layer protocols
that are allow-listed for use, e.g. IP version, Port number, TCP vs UDP.

The post-experiment questions comprised 50 questions in two categories:
forty expertise questions incorporating a set of computer expertise questions from
[17] and ten usability questions from the System Usability Scale (SUS) [4].

5 Results

31% of our screening survey respondents (24 out of 76) failed to answer one or
more of the screening questions and were not considered for the main study. The
participants in our study were skewed with respect to gender (84.6% male, 15.4%
female). Out of the total of 52 participants, 41 were below the age of 30 years. Over
70% were students, with 50 participants having at least a technical Bachelors’s
degree. This includes only the participants who passed the screening questions.
Participants were split equally between the two groups, mudviz and plain.

In order to evaluate participants’ security and computer expertise, they
were presented with a set of 13 question categories. These questions were obtained
from the set of computer expertise questions from [17]. For measures of knowledge,
these were knowledge-based questions on (i) phishing (Kphish) (ii) certificates
(Kcert) (iii) SQL commands (Ksql) (iv) intrusion detection systems (Kids) (v)
port 80 (K80) (vi) Website markers for security (Kweb) (vii) defining IoT (Kiot)
and (viii) access control (Kac). For single response questions, if the participants’
answers matched the correct responses, these variables were coded as 1, otherwise
0. For multiple response questions (Kphish and Kcert), if the participants’ got
a sum of correct values above the median in each category, the variables were
coded as 1, otherwise 0. Since, all participants got responses to Kiot correct, these
responses were removed in calculating the covariance matrix for factor analysis.

We then performed a factor analysis on the remaining seven variables to create
a TotalKnowledge variable. A scree plot and a test of hypothesis showed that a
factor of one was sufficient to measure knowledge. This factor, TotalKnowledge,
was a combination of four factors, calculated by the equation below:

TotalKnowledge← (−0.5 ∗Kcert) + (0.6 ∗Ksql) + (0.6 ∗Kids) + (0.7 ∗K80)

TotalExperience was similarly a combination of weighted factors, given by the
equation below:

TotalExperience← (0.5 ∗ Eyears) + (0.4 ∗ Elang) + (0.4 ∗ Efreq)
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That is, for the measure of experience, the remaining five questions on ex-
perience were evaluated - (i) prior computer expertise (Eexp) (ii) prior security
expertise (Etech) (iii) programming languages known (Elang) (iv) years of ex-
perience working in security (Eyears) and (v) frequency of dealing with security
problems (Efreq). Since the answers to these questions cannot be evaluated as
correct/incorrect, we normalized each of the five variables and performed a second-
factor analysis to create a TotalExperience variable. A scree plot and a test of
hypothesis showed that a factor of one was sufficient to measure knowledge.

We then evaluated the Effect of Knowledge on Accuracy by first calculat-
ing TotalKnowledge and TotalExperience. Accuracy was measured as a summa-
tion of the correct answer to the 23 questions in the experiment, providing a raw
accuracy percentage for each participant.

In order to answer RQ1, we first performed a linear regression to measure
the effect of the independent variable TotalKnowledge on the dependent vari-
able Accuracy for both groups (Fig. 1a and 1b). Unsurprisingly, knowledge has a
positive effect on the accuracy of the analysis of the MUD-Files. We also found
that the effect of TotalKnowledge on Accuracy is significant in the plain group
(b = 7.689, p−value = 0.0164) but not for the mudviz group (b = 2.148, p−value =
0.406). Thus, participants in the mudviz group seemed to have the same level of
accuracy across computer and security knowledge levels. However, this is not the
case for plain text files. Participants with greater TotalKnowledge seemed to have
significantly high Accuracy in the plain group. This suggests that normally a high
level of security expertise is needed to understand textual MUD-Files, but that an
effective visualization can result in accuracy by moderate experts indistinguishable
from that of the most expert.

The results of a linear regression conducted on each of the factors indicate
that none of the factors in the mudviz have a significant effect on Accuracy, but
some factors in the plain group are significant. Table 1 shows the regression of
individual knowledge factors for both groups. We see that the Kphish, Kids, K80,
and, Ksql are more strongly significant than the other factors in contributing to
Accuracy.

To answer the first part of RQ3, we analyzed whether TotalKnowledge can
be divided into sub-groups of knowledge and expertise respectively; and how these
interact with Accuracy. We sorted the participants from each of the mudviz and
plain groups in ascending order based on their TotalKnowledge with 13 par-
ticipants in each sub-group. A signed Wilcoxon Rank-sum test indicated signifi-
cant difference between the four sub-group categories, with p-values between the

Table 1: Regression analysis for individual knowledge factors versus accuracy in
MUD analysis (showing significant components only).

Factors
mudviz plain

co-efficient p-value co-efficient p-value

Kphish 7.412 0.136 12.847 0.0445 *
Kids 1.967 0.624 11.594 0.0413 *
K80 3.370 0.411 9.576 0.0968 .
Ksql 1.733 0.701 11.957 0.0348 *

TotalKnowledge 2.148 0.406 7.689 0.0164 *
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Fig. 1: (a) and (b) show the scatter plot of Accuracy against TotalKnowledge. (c)
and (d) show Accuracy for four groups, indicating that the effect of the MUD-
Visualizer is consistently positive across knowledge groups.

low and high groups of less than 0.001. We conducted an ordinal logistic re-
gression between the two categories (low and high) for each of the two groups
for TotalKnowledge against Accuracy, (a) Mudviz and (b) Plain. As seen in
Fig. 1c, the accuracy in correct interpretation of the MUD-Files did not vary
significantly between high and low knowledge categories in the Mudviz group
(b = −0.018, p − value = 0.663). However, in case of the plain group (Fig.
1d) TotalKnowledge played a significant role in increasing the accuracy (b =
−0.066, p − value = 0.054). The accuracy was consistently higher in the mudviz

group compared to the plain group in all cases.

To investigate Effect of Experience on Accuracy (RQ2) we began with a
linear regression to measure the effect of independent variable TotalExperience

on Accuracy for the both groups. Fig. 2a and 2b show the scatterplot and the
regression lines for each of the mudviz and plain groups respectively. Unsurpris-
ingly, experience has a positive effect on Accuracy in case of mudviz. Yet there
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Fig. 2: (a) and (b) show the scatter plot of Accuracy against TotalExperience.
(c) and (d) show Accuracy for four groups, indicating that the effect of the MUD-
Visualizer is consistently positive across all experience groups.

appears to a weak negative effect on Accuracy in case of plain in Fig. 2d, which
we delve into in Table 2 below.

TotalExperience is not significant for Accuracy in either case of the plain

group (b = −1.879, p−value = 0.687) or the mudviz group (b = 2.018, p−value =
0.425); although differences in the distribution of the plain are apparent. Thus,

Table 2: Regression analysis for individual experience factors versus accuracy in
MUD analysis.

Factors
mudviz plain

co-efficient p-value co-efficient p-value

Eexp 1.187 0.393 6.505 0.00299 **
Efreq 1.789 0.259 -4.797 0.18
Eyears 0.345 0.899 -0.050 0.989
TotalExperience 2.018 0.425 -1.879 0.687
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participants in the group that were presented with the MUD-Visualizer seemed to
have the same level of accuracy across computer and security experience levels.

Taking a closer look at the experience factors by conducting a linear regres-
sion for each of the factors, we see that none of the factors in the mudviz group
affect Accuracy significantly, but the Eexp factor in the plain group does. In that
case, Eexp is significant and positive. Table 2 shows the regression of individual
experience factors for both groups. Eexp is a set of Booleans from querying if par-
ticipants had experience with any of the following: designing a website, registering
a domain name, using SSH, configuring a firewall, creating a database, installing
a computer program, and writing a computing program. The intriguing but not
significant negative effect on Accuracy is due to Efreq (frequency of handling se-
curity incidents) and Eyears (years of experience working in the security field).
It is possible that this may result from less experienced people defining security
incidents (e.g., spam vs. an intrusion) or being in the security field differently (e.g.,
total years in coursework vs. years in incident response not DevOps).

To answer the second part of the RQ3, we analyzed whether TotalExperience
can be divided into sub-groups of knowledge and expertise respectively, and how
they affect the Accuracy. We sorted the participants from each of the mudviz

and plain groups in ascending order based on their TotalExperience. Again, we
considered 13 participants in each sub-group. A signed Wilcoxon Rank-sum test
showed that the four sub-group categories are significantly different, with p−values
between each of the low versus high groups being less than 0.001. We conducted
an ordinal logistic regression between the two categories (low and high) for each
of the two groups of TotalExperience against Accuracy, (a) Mudviz (b) Plain.
The results illustrated that for Mudviz (b = 2.018, p−value = 0.425), the accuracy
in interpreting the MUD-File correctly was the nearly the same for low and high
TotalExperience (Similar to TotalKnowledge).

6 Conclusions

In this work, we sought to evaluate the efficacy of MUD-Visualizer for correct eval-
uation of MUD-File by participants with some expertise. We report on the increase
in efficacy among all participants, showing that the difference in the performance
of network engineers with and without knowledge of security or security exper-
tise was significant. More-so, accuracy of participants using the MUD-Visualizer
showed knowledge of security to be insignificant (among these participants). Given
the difficulty of providing network engineers with security expertise, having a vi-
sualization that decreases the cost of inexperience argues for the importance of
human factors in standards. Beyond that we found evidence that interpretation of
security questions may be having a subtle impact on the results; those with less
experience may not be reporting experience with the same baseline as those with
more. This phenomena is worthy of additional research, although in this case any
impact would strengthen the results.
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