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Abstract. Increased flexibility and improved resilience in production and manu-

facturing processes are goals that are becoming more and more important in the 

context of Industry 4.0 and from the experience of the Covid-19 pandemic. At 

the same time, efficient operation of production must be guaranteed to achieve 

economic as well as ecological objectives. Intelligent assistance systems follow 

the idea to support stakeholders of production systems in their decisions and can 

thus be useful applications for helping to master the various challenges and to 

meet these goals. In this paper, we describe functional components of these de-

cision support systems: data provision and data extraction, knowledge base, sim-

ulation models, model execution and analytics, and application and user interac-

tion. We show the underlying technologies and illustrate why these assistant sys-

tems are valuable for several stakeholders. 
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1 Introduction 

The optimal operation of automated production systems in the process and manufac-

turing industry is an ongoing challenge. With the continuous advancements of Industry 

4.0, there are more and more opportunities for a more customized and flexible manu-

facturing of products. Simultaneously, this leads to ever smaller batch sizes and more 

diverse products with shorter order times and more significant changes in order quan-

tity. In addition to considering quality, time, and cost targets against this backdrop, the 

flexibility and resilience of the manufacturing processes on the shop floor are therefore 

inevitably becoming more relevant. Accordingly, the challenges get much more com-

plex with the possibilities of Industry 4.0 and must be solved. Some of these challenges 

on the shop floor include: 

• Virtual sensor: Analyze the behavior and monitor states where no sensor is available. 

• Forecasting: Predict future behavior, detect undesirable trends, and prevent them. 
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• Optimizing of the plant operation: Apply optimization methods to improve plant 

performance. 

• Replay of situations: Analyze situations reversely based on recorded values, e.g., for 

root cause analysis. 

• Offline reconfiguration planning based on the current plant state evaluation for re-

duced downtime. 

In this context, our vision of a Digital Twin can solve such problems and covers the 

entire lifecycle of production systems and products. However, since such solutions have 

not yet been sufficiently researched and therefore represent future work, in this paper, 

we focus on the path to our vision and identify essential functional components for 

decision support on the shop floor.  

2 The Vision of Digital Twin in Production 

While so far data-based approaches and artificial intelligence (AI) methods dominate 

in operation phase, simulation is currently primarily used in design and engineering. A 

simulation model represents the planned real system and calculates its properties or 

validates its behavior. With the advancement of simulation technology and the availa-

ble computing power, these simulation models become more detailed and cover more 

aspects of the system under development. They thus represent a Digital Twin of the 

planned system, which leads to an extended understanding of the term Digital Twin [1]. 

The vision of the Digital Twin refers to a virtual representation and a description of a 

component, product, system, infrastructure, or process by a set of well-aligned, descrip-

tive, and executable models. It is a semantically linked collection of all relevant digital 

artifacts, including design and engineering data, operational data, and behavioral de-

scriptions. It exists and evolves along the whole life cycle. Digital Twins integrate the 

currently available and commonly required information and knowledge and is synchro-

nized with the real twin if it exists.  

 

With the understanding of the seamless reuse of simulation models over all phases 

of system development and their use for virtual commissioning, simulation models will 

be applied more and more in the operation and service phases in the future [2]. The 

combined use of rigorous models from simulation - mainly physics-based models in the 

manufacturing domain - and AI methods that process operational data will facilitate 

new, more powerful applications. The decision support for the shop floor and its archi-

tecture concept shown in this paper are a step towards this ambitious goal. 

3 Related Work 

The term Digital Twin has been used for several years now. It is still understood very 

differently, depending on the perspective and its application, but it is always considered 

a technological approach with potential, as can be seen in [3]–[5]. One explanation for 

the different definitions lies in the large variety of physical elements that the Digital 
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Twin can be linked to. It represents the current status of the real system and can be e.g. 

used for diagnoses [6] but also in applications to improve the performance of manufac-

turing systems [7]. Hence, different architectures and frameworks for the implementa-

tion of Digital Twins and Digital Twin based applications exist. [8] indicates a Digital 

Twin to consist of three main building blocks: the physical space, the information pro-

cessing layer, and the virtual space. The information processing contains essential 

points with data storage, data processing, and data mapping. In [9], a Digital Twin ar-

chitecture for a manufacturing cell is presented that consists of six layers. These layers 

are the physical devices, the local controllers, the local data repositories, the IOT gate-

way, cloud-based information repositories, and emulation and simulation. OPC UA is 

used as the communication standard over almost all components. In general, these two 

works only deal to a small extent with the applications and the functionality and logic 

that makes the implementation of the application possible, but rather deal with the in-

frastructure required to implement a Digital Twin. Our work starts at this point and 

focuses on the functionality and components needed to create applications, more pre-

cisely decision support systems, based on the Digital Twin.  

 

[10] presents a survey on decision support systems in manufacturing. The authors 

discuss simulation-based decision support systems in manufacturing as well as ap-

proaches integrating simulation and AI methods. On that basis, a theoretical framework 

for decision support system development, mainly consisting of a simulation model, a 

database, an AI component, and a user interface, is presented. [11] discusses digital 

twin-based machine learning applications in more detail, presenting a framework for 

implementing them in general. The framework consists of a layer-based architecture 

for Cyber Physical Systems and Digital Twin, where the Digital Twin mainly serves 

the purpose of providing data for machine learning algorithms. These works have iden-

tified critical components and already address the challenge of linking artificial intelli-

gence methodologies with the model-based approaches of a decision support system. 

Nevertheless, the approaches miss technologies for integrating production data from 

heterogeneous sources in knowledge-based models, as well as the flexibility in task 

completion through hybrid methodologies of AI and simulation. We see the classifica-

tion in the overall system, including the knowledge representation as improvement to 

the pure mapping between physical data and virtual operation. 

4 Functional Components for Simulation-Based Assistance 

4.1 Overview 

Decision Support Systems (DSS), in general, are interactive computer-based systems, 

which utilize data, models, knowledge, and communication technologies to support 

people who are required to solve complex problems [10], [12]. In our understanding, a 

decision support system for the shop floor specifies this definition. It bears the integra-

tion and connection of heterogeneous production data, simulation models, and AI mod-

els, as well as the utilization of reusable and flexible components to address the growing 

challenges. In this work, we have identified these functional components to build upon 
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to implement decision support systems: data provision and data extraction, knowledge 

base, simulation models, model execution and analytics, and applications and user in-

teraction. Figure 1 gives an overview of the building blocks and shows a high-level 

architecture of the Digital Twin that arises from these. In the following paragraphs, we 

want to discuss these building blocks' functionalities, how they interact and highlight 

their requirements. 

 

Fig. 1. Building Blocks of Decision Support for the Shop Floor. (extended from [1]) 

4.2 Data Provision and Data Extraction from heterogeneous IT-Systems 

For Industry 4.0 technologies, usually a large amount of data is permanently collected 

by various sensors, connected machines, systems, and digital models. Due to the evo-

lutionary development of most factories – i.e., new machines and new technologies are 

permanently integrated into the legacy systems or existing structures of the production 

system – the data landscape in production systems is very heterogeneous and comes 

from very different sources, such as MES, ERP, SCADA, machine data and is provided 

in different structured and unstructured formats e.g., XML, JSON, CSV.  

 

Decision support systems need this data to provide the user with analytical compo-

nents to make decisions in different situations. However, to feed these analytical com-

ponents at all, this data must first be extracted from the mentioned systems. For this 

purpose, already several data-extraction, data-mining [13] and data-cleansing tech-

niques and tools exist that need to be adapted to the production system domain [14], 

[15]. Nevertheless, data connectors for the different data sources have to be imple-

mented. This is usually a tool or system-specific, or even factory-specific task and often 

has to be set up and configured anew in each project. To reduce the factory-specific 

configuration effort, two things need to be simplified:  

1. Connectors to existing big data providers in factories such as ERP, MES, etc., based 

on data communication standards such as OPC-UA or REST, need to be set up. 

2. Mapping between the often proprietary data models of existing IT systems and 

standardized data models needs to be simplified (auto mappers, style sheets, appro-

priate UI support, data analytics ...). 
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4.3 Knowledge Base – Data Integration in Semantic Models 

It is desirable to relate the just mentioned data and the respective data generators to 

create a knowledge base, the second building block, to enable and empower analytical 

components such as machine learning algorithms, simulations, and optimization algo-

rithms. At the same time, this can help to make data extraction more reusable and par-

tially automated [14] and therefore also automate the decision-support algorithms 

which is quite challenging to implement. 

 

The knowledge base should represent the knowledge in the production line and at 

the same time be a virtual representation of the production line itself, thus forming an 

ontology of the production domain. Optimally, each instance within the production, be 

it a machine, a product, a process, a material, or a worker, can be mapped and related 

to each other. A more recent technology used for this purpose are knowledge graphs. 

However, it is not easy to build such large knowledge graphs, especially because of the 

extreme distribution of individual data [16], [17]. The knowledge graphs must have 

certain aspects to serve the decision support systems on the shop floor. As described in 

[18], the use of different layers and applications in decision support requires reusable, 

standardized, flexible, and extensible means for data exchange between them. This is 

an essential prerequisite for ensuring that decision support solutions do not have to be 

rebuilt entirely for each factory but that certain parts can be reused across projects - i.e., 

following a library or framework approach. In addition, the knowledge graphs must 

provide structures for two core aspects in particular: 

1. Simulation knowledge, which leads to the linkage of simulation components and by 

that enables the automatic model generation of simulation models. 

2. Production knowledge, which brings a deeper understanding of the data and the con-

nections between them.  

4.4 Multi-Level Simulation Models 

As described above, a knowledge base gives meaning to the data and allows the data to 

be connected to AI and simulation models. The simulation models, our third functional 

component, form the basis for the analytic algorithms and represent the current state of 

production at different levels. That means that depending on the task for decision sup-

port, there are different modeling options and levels of details used, e.g., within one 

production unit or for the entire production stage. In the context of factory simulation, 

the two main simulation types are material flow simulation and 3D kinematic simula-

tion. In material flow simulation, the logistics inside a production system are modeled 

e.g., to analyze the dimensioning of the factory and the planning of the production with 

respect to efficiency, utilization, and in-time delivery, also considering failure situa-

tions. 3D-kinematic simulation is used to analyze the interaction within the production 

cell between machines, like robots, humans, and the product. It is mainly used during 

the detailed design and commissioning phase [19]. Regardless of the type of simulation, 

the setup of these models usually requires a huge effort for both the data acquisition as 

well as the model generation itself [20].  
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4.5 Model Execution and Analytics for Monitoring, Planning and Scheduling 

To deliver value to different stakeholders on the shop floor, the models described above 

need to be executed, and further analytics need to be added. Besides simulation and 

optimization, AI is increasingly coming to the fore. The target is to give decision sup-

port in a descriptive, predictive, and prescriptive manner. 

 

Descriptive analytics. Data from the current or a previous situation are fed into the 

simulation model, which is then executed. The simulated plant behavior is further ana-

lyzed or evaluated with respect to relevant Key Performance Indicators (KPI), e.g., ma-

chine utilization, lead times, blockages, bottlenecks, in-time delivery.  

 

Predictive analytics. Data for upcoming production scenarios are fed into the sim-

ulation model, which is then executed. Different alternatives for operational decisions, 

e.g., production order sequencing and worker assignments, should be examined with 

respect to the KPIs mentioned above. A systematic experiment management can make 

use of machine learning approaches reinforcing the most relevant and promising deci-

sion alternatives. Uncertainties and risks should be taken into account by also executing 

particular stochastic deviation and failure scenarios.  

 

Prescriptive analytics. To evaluate upcoming decisions in a systematic way to end 

up with the best decisions is part of the field of optimization. Production planning and 

scheduling tasks often lead to NP-hard optimization problems [21]. Therefore, analyti-

cal solvers are applicable only in small-size scenarios. For larger problems, meta-heu-

ristics like genetic algorithms, ant algorithms, or neighborhood search are often used 

instead [22]. It may be a promising approach using machine learning to acquire fast but 

realistic surrogate models. Any decisions based on heuristics or abstract surrogate mod-

els should be further validated by a detailed simulation to end up with a feasible solution 

(Figure 2). 

 

Fig. 2. Hybrid approach for production planning and scheduling 

 To summarize, the described analytics all require access to field data to synchronize 

the simulation models with the current situation in the physical world. Hybrid ap-

proaches of analytical and data-driven methods can help to manage complexity, but of 
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course, require a lot of data and face challenges in adapting to scenarios not foreseen 

by previous data.  

4.6 User-Specific Application and Interaction 

In our last building block, the data calculated by the analytical components is prepared 

and provided to the various stakeholders. The data must be prepared differently depend-

ing on the current situation of the stakeholders in the production. For example, in the 

case of short-term machine failures, a machine operator needs quick solutions that are 

understandable. Virtual voice assistants and mobile devices are ideally suited for this 

purpose. The implementation of the assistant on a personal mobile device answers in-

dividual questions and problems so that each person is optimally supported in his or her 

own work processes. By contrast, planners of larger production sections, for example, 

may need more information about the problem at hand and the associated solution. For 

these stakeholders with in-depth technical knowledge, a desktop application with many 

details to browse through and interact with may be the more appropriate application.  

Therefore, a solution for the application layer should provide certain flexibility and 

choices for different representations and information of the data coming from the ana-

lytical part within the respective application to serve the different stakeholders depend-

ing on their task at hand, their level of knowledge and their authorization. 

5 Conclusion 

This paper has presented the idea of an operator assistance system for manufacturing 

and process industries and its main components, namely the data provision and data 

extraction, the knowledge base, multi-level simulation models, model execution and 

analytics, and application and user interaction. The functionality of each component 

and the connection points between them were outlined. Furthermore, the connection to 

our vision of the Digital Twin as a tool for decision support of the future was shown, 

where our future work will be dedicated to the implementation. From a scientific point 

of view, two topics are in the foreground:  

1. The conception and implementation of an integrated knowledge base for simulation 

and production knowledge. 

2. Approaches for hybrid models of AI and simulation for decision support on the shop 

floor. 

Furthermore, we will investigate on how to implement more natural interaction mech-

anisms between production stakeholders and decision support systems. The evaluation 

of this concept and the individual components within the decision support system is 

performed using a scheduling problem within a manufacturing environment. The spe-

cific tasks concern the validation and optimization of manufacturing schedules, as well 

as support for make or buy decisions regarding individual parts. 
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