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Abstract. In terms of graph theory, the urban transport network can
be adequately represented as a graph. All crossroads in the city are consi-
dered to be the vertices of the graph, and streets are the edges. Using this
model, one can set and effectively solve many routing problems: (1) con-
structing the routes between given starting and ending points, satisfying
the rules of the road (allowed turns at crossroads and a given sequence
of driving through the streets), (2) finding the way, passing through all
the streets of the city in accordance with the rules of the road and a
given sequence of turns at crossroads (an algorithm for constructing an
permissible Eulerian chain), (3) constructing a minimal cardinality set
of routes running through all the streets of the city (Eulerian cover of
any graph with permissible chains). The paper provides a formalization
of these problems and effective algorithms for solving them.

Keywords: Graphs · Trajectory planning· Polynomial algorithm· Trans-
portation control.

1 Introduction

Various problems of management and automation design often lead to solving
the routing problem. So, for example, one of the most actively explored areas
is a mathematical model based on choosing the optimal route between different
objects. These objects can be considered to be the vertices of a directed graph,
and the optimal routes in this case will represent the shortest paths in the graph,
which is a mathematical model of the considered problem. [1] considers is the
problem of modelling the closed queuing networks, for example, the placement
of bicycle parking lots in the city, where parking lots are defined as the vertices
of a directed graph, and possible paths between them be weighted arcs. When
planning and managing the choice of a delivery route, it is possible to solve a
problem based on representing a set of typical system states as graph vertices, the
routes of this graph correspond to the control decisions of the fuzzy situational
network.

Let’s consider the solution of the routing problem solved by [2]. It requires the
distribution of transport and passenger flows and takes into account the specifics
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of driving in cities. To solve it, a correct description of the behaviour of the
passenger (or the car) when choosing a route is required. Many factors influence
his behaviour. For example, a special graph may be used to model the system
of all possible paths within the city. Such a graph can be called communication
graph. It is a superposition of the following subgraphs: subway routes, railway,
pedestrian paths, highways, etc. Such a system of all possible displacements is
not static, therefore it can be noted that all edges of the communication graph
routes are characterized by the moments of creation and marking for deletion.

Routing problems complicated by various constraints are of the greatest theo-
retical interest. There are various methods for solving such problems and various
constraints, for example, considered by [3], and [4].

In terms of graph theory, the transport network can be represented as a graph
G = (V,E), where the set of vertices V is the set of crossroads (cities, airports,
warehouses, etc.), and the set of edges E is a set of connections between objects
from V (roads, highways, flights, etc.). Thus, if there is an edge e = {v1, v2},
then there is a direct message between the objects corresponding to v1 and v2.
The solution of the routing problem in the transport network assumes (1) con-
struction of routes between the given starting and ending points, satisfying the
traffic rules (allowed turns at crossroads and a given sequence of travel along the
streets), (2) finding a path passing through all the city streets in in accordance
with the traffic rules and a given sequence of turns at crossroads (an algorithm
for constructing an permissible Euler chain), (3) constructing a minimal cardi-
nality set of routes passing through all the streets of the city (Euler’s cover of
an arbitrary graph by permissible chains). As mentioned above, the most inte-
resting are routing problems with constraints, since the constraints introduced
allow us to describe a fairly narrow class of applied problems. Since the graph
corresponding to the transport network has a sufficiently large dimension, the
most urgent are algorithms that make it possible to obtain a solution (or a fe-
asible solution) in the shortest possible time. The preferred algorithms are the
ones that solve the problem in polynomial time (if they exist for the declared
class of problems).

Constraints on constructing of routes in graphs can be classified as local
(when a condition is set at a fixed vertex or edge) and global (a constraint is set
for the graph as a whole). Problems with local constraints include the pro-
blem of constructing a route that satisfies a fixed system of allowed transitions.
In terms of the transport routing problem, the problem statement can be inter-
preted as follows. All crossroads of the city roads are considered as the vertices
of the graph, and streets are considered as edges. It is necessary to get a route
between the starting and ending points that meets the rules of the road (allowed
turns at crossroads) or the specified sequence of driving along the streets.

To solve these problems we define the following graphs: (1) the graph corre-
sponding to the map of the area, in which each vertex v ∈ V corresponds to a
crossroad, (2) transition graphs TG(v) defined at each vertex v ∈ V . The vertices
of the transition graphs are edges incident to v ∈ V , i.e. V (TG(v)) = EG(v), and
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the edges define the allowed transitions (the transitions correspond to the given
traffic rules at a particular crossroad).

2 Constructing the Permissible Path between Two
Vertices

The constraints on routes in the graph G can be formulated in terms of the
graph of allowed transitions. These definitions are given by [4]. Let us formulate
them for completeness.

Definition 1. Let G be a graph. Transitions graph TG(v) for vertex v ∈
V (G) be a graph, the vertices of which are the edges incidentto vertex v, i.e.
V (TG(v)) = EG(v), and set of edges be the allowed transitions. The system
of allowed transitions (or the transitions system for short) TG be the
set {TG(v) | v ∈ V (G)}, where TG(v) be the transitions graph for v. Path P =
v0e1v1 . . . ekvk in G be TG-compatible, if {ei, ei+1} ∈ E(TG(vi)) for each i
(1 ≤ i ≤ k − 1).

The following theorem proved by [5] holds for a problem of constructing the
TG-compatible chain, i.e. simple chain C = v0e1v1 . . . ekvk in graph G, for which
{ei, ei+1} ∈ E(TG(vi)) for each i (1 ≤ i ≤ k − 1).

Theorem 1. . If all transition graphs belong to class M of complete multi-
partite graphs, or class P of matchings, then the problem of constructing the
TG-compatible chain may be solved by time O(|E(G)|). Otherwise, this problem
is NP-complete.

If transitions system for vertex v ∈ V (G) is a matching then the problem can
be reduced to a problem for graph

G′ : V (G′) = V (G)\{v},
E(G′) = (E(G)\EG(v)) ∪ {{vi, vj} : {{{vi, v}; {v, vj}} ∈ E(TG(v))}} .

If TG(v) fro any vertex v ∈ V (G) is a complete multipartite graph then to
get a permissible chain we may use algorithm TG-COMPATIBLE PATH [4].

Note that in the general, the direct application of this algorithm does not
allow to solve the problem of finding a TG-compatible route containing the maxi-
mum number of edges. Note that TG-COMPATIBLE PATH algorithm cannot
be used to construct routes that cover all edges of graph G.

Indeed, a maximum cardinality matching in the graph G′ cannot contain
a pair of edges forming a forbidden transition, since they are incident to one
common vertex of graph G′. At the same time, in the general, there may be
a TG-compatible route containing such a pair of edges. Note that [5] does not
consider the issue of recognizing the multipartition of graphs TG(v), as well as
the problem of constructing an permissible route or a set of routes covering all
edges of the original graph. This recognition is rather trivial, and it is advisable
to use the concept of a partition system introduced by [6] and [7].
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3 Algorithm for Constructing the Permissible Eulerian
Chain

As noted, algorithm by [5] generally does not allow constructing compatible
chains of maximum length. Compatible Eulerian chains are of particular interest.
A necessary and sufficient condition for the existence of PG-compatible chains is
given by [7]. The complexity of checking the existence of PG-compatible Euler
chain is not greater than O(|E(G)|).

To define PG-compatible chain in terms of forbidden transitions the term of
partition system is used.

Definition 2. Let G = (V,E) be a graph. Let PG(v) be some partition of set
EG(v). The partition system of G be a system of sets PG := {PG(v) | v ∈ V (G)}.
Let p ∈ PG(v), {e, f} ∈ p. Chain not containing the transitions e→ v → f and
f → v → e be called PG-compatible, and transitions e→ v → f and f → v → e
be forbidden.

Note that the graph of allowed transitions TG(v) uniquely determines the
graph of forbidden transitions TG(v) and vice versa. Obviously, TG(v)∪TG(v) =
K|V (G)|, i.e. the forbidden transition graph is the complement of the allowed
transition graph to a complete graph. Thus, using the definition of 1, one can
pose a problem with any graph of allowed (forbidden) transitions.

On the contrary, the graph of allowed transitions, defined using the partition
system PG, cannot be arbitrary, but belongs to the class M of complete multi-
partite graphs: the elements of the partition PG(v) determine the parts of the
graph TG(v) ∈M , and the set of its edges

E(TG(v)) = {e, f ∈ EG(v) : (∀p ∈ PG(v)) {e, f} 6⊂ p} .

In this case, the graph of forbidden transitions TG(v) will be a set of |PG(v)|
cliques, this fact can be used to recognize the belonging of T (v) to M .

Thus, a partitioning system into subsets can be given on E(v) (the set of
edges incident to the vertex v). If the edges e1 and e2 belong to the same subset,
then the edge e2 cannot follow the edge e1. The graph G(V,E) will be defined
as an adjacency list, the elements of which are structures. Each element of this
structure consists of two fields: (1) numbers of the vertex vi, adjacent to the
current vertex; (2) the number ci of the split element. Note that each edge e of
the graph belongs to two adjacency lists: for vertices vi and vj , which are the
ends of this edge. But for each vertex the edge e will belong to different partition
systems.

To construct the compatible Eulerian chain we may use PG-COMPATIBLE

EULER CHAIN algorithm [4] that solves the problem of obtaining P (G)-compatible
Euler chain by time O (|E(G)| · |V (G)|). This algorithm can be easily implemen-
ted using standard computational tools.
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4 Eulerian Cover of a Graph by Permissible Chains

Let us consider the problem of constructing an Euler covering of a graph with
compatible chains. We assume that the transition system TG contains only ma-
tchings and complete multipartite graphs [4].

Definition 3. Let the Euler cover be the minimal cardinality set of edge-disjoint
paths, covering the set of edges of a given graph.

In this case, the graph is completed to be Euler. One way to reduce a graph to
Euler is given by [4]. The considered algorithm 1 for constructing a covering by
feasible chains consists in introducing a fictive vertex v∗ and connecting it with
all odd vertices with fictitious edges. [4] proved that in this case it is possible to
solve the problem in linear time. As a result, l + 1 chain covering the original
graph will be constructed. Here l = deg(v∗).

Algorithm 1 COVERING BY TG-COMPATIBLE CHAINS

Require: : G = (V,E), transitions graphs TG(v) ∀v ∈ V (G).
Ensure: : a set of chains T i, i = 1, 2, . . . , k, covering graph G, m = 2k is the number

of odd vertices.
1: U = {v ∈ V (G) : TG(v)is matching }; . Step 1
2: V (G′) = V (G)\U, . Reduce G to G′

3:

E(G′) =

(
E(G)\

⋃
v∈U

EG(v)

)⋃{⋃
v∈U

{{vivj} : {viv, vvj} ∈ TG(v)}

}
;

4: TG′(v)=Reduce(TG(v), U) . Replace all entries of u ∈ U : vu,wu ∈ ETG(u) by w
5: G∗=AddSupplementary(G′, v∗); . Step 2.
6: . Introduce a supplementary vertex v∗ adjacent to all odd vertices of G′

7: TG∗=Modify(TG′(v));. Introduce vertex vv∗ adjacent to all vertices in the graph
TG∗(v) for all v ∈ V ′(G) : deg(v) ≡ 1 (mod 2) into the transition graph TG∗(v).

8: for all v ∈ V (G): ∃p ∈ P (v): |p| > deg(v)/2 do . Step 3.
9: for all i = 1, 2, ..., 2 |p| − deg(v) do

10: AddEdge(G∗,(vv∗)i); . introduce 2|p| − deg(v) supplementary edges
11: Modify(TG∗((vv

∗)i)); . Modify the transitions graph
12: end for
13: end for
14: TG∗=PG-COMPATIBLE EULER CHAIN(G∗). Step 4. Obtain compatible cycle
15: for all v ∈ V (G) do . Step 5
16: T ′(G′)=Delete((vv∗)) . Delete supplementary edges from T ∗ and obtain T ′

17: end for
18: for all u ∈ U do . Step 6
19: T=Modify(T ′); . Modify paths by adding the vertices deleted at Step 1.
20: end for
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Theorem 2. Algorithm 1 COVERING BY TG-COMPATIBLE CHAINS
correctly solves the problem of constructing the Euler cover of graph G by TG-
compatible chains. Its computing complexity is not greater than O(|E(G)|·|V (G)|).

In terms of the transport routing problem, this problem can be interpreted in
two ways: (1) the constructed cover is a set of permissible routes in the city, and
the vertex v∗ is a depot; (2) the constructed cover is a solution of well-known
applied problems when certain constraints are put on the sequence of passed
streets/corridors.

5 Example

Let’s consider the simple but visual example of constructing the cover by TG-
compatible chains for graph in figure 1. The real life examples (maps of the cities
where vertices are cross-roads, and edges are streets) have 104 − 109 vertices
and edges, and they are the subject of interest for another research concerning
minimization of calculation time. So, the graph in figure 1 has odd vertices

Fig. 1. Graph G with 6 odd vertices, partitions for each vertex, supplementary vertex
v∗, and supplementary edges adjacent to it

Vodd = {v1, v7, v8, v9, v10, v11}. Hence, Euler cover contains three chains. Let us
introduce the supplementary vertex v∗ and construct the edges incident to it,
the second ends of these edges be vertices

v ∈ Vodd : Eodd =

= {{v∗, v1}, {v∗, v7}, {v∗, v8}, {v∗, v9}, {v∗, v10}, {v∗, v11}}.

Thus, we obtain graph G∗ = G(V ∪ Vodd, E ∪ Eodd). According to transitions
system TG we complete transitions system TG∗ according to Step 2 of algorithm
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Fig. 2. Graph G∗ all vertices of which are split according to the given transitions
system. The gray circles round the split vertices

1. Splitting of graph G∗ vertices according to TG∗ is given in figure 2. Hence, we
obtain TG-compatible Euler cycle for G∗ by algorithm PG-COMPATIBLE EULER

CHAIN.

(G∗) = {v8v9v3v4v1v5v4v10v11v∗v10v9v∗v7
v11v5v6v7v8v2v6v1v2v3v1v

∗v8} .

When we delete edges e ∈ Eodd from C(G∗) we get the cover of initial graph
G by compatible chains

C1 = {v8v9v3v4v1v5v4v10v11}, C2 = {v10v9},
C3 = {v7v11v5v6v7v8v2v6v1v2v3v1}.

Nevertheless, additional edges in the graph can also be introduced in accor-
dance with additional constraints, for example, when solving a traffic problem,
these edges may represent a planar extension and/or duplicate the existing ed-
ges. In this case, the number of constructed chains depends on the number of
additional edges. So, if the graph from the considered example (Fig. 1) is a ho-
meomorphic image of some area map, then the following auxiliary routes will
be obtained between the chains Ci, i = 1, 2, 3: C1,2 = v11v10, C2,3 = v9v8v7
(or C2,3 = v9v10v11v7). In general, algorithm TG-COMPATIBLE PATH to construct
permissible chains between pairs of odd vertices.

In terms of the transport routing problem, this problem can be interpreted
in two ways:
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– the constructed cover is a set of permissible routes in the city, and the vertex
v∗ is a depot;

– the constructed cover is a solution of well-known applied problems when
certain constraints are put on the sequence of passed streets/corridors.

6 Conclusion

The known algorithms make it possible to construct a simple chain between
two different vertices that satisfies local constraints. The paper shows the pos-
sibility of recognizing a transition system, which allows solving the problem
of constructing a compatible path in linear time. It is proved that using the
developed algorithm PG-COMPATIBLE EULER CHAIN for Euler graph G it is pos-
sible to obtain a PG-compatible Euler cycle or to establish its absence in time
O(|V (G)| · |E(G)|). Covering the graph G with compatible chains is also possible
in time O(|V (G)| · |E(G)|) using algorithm COVERING TG -COMPATIBLE CHAINS.
The considered algorithms can be used, for example, to solve routing problems in
transport, when the dimension of the problem is large enough and it is necessary
to use algorithms that solve the problem in the shortest time. The directions for
further research is the development of C++-library that implements the con-
struction of routes with the local constraints discussed here.
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