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Abstract. In this paper, we study a large-scale re-entrant flexible job shop sched-

uling problem (FJSP) with the objective of makespan minimization. In the pro-

posed problem, machine quantities, job types, and processes of jobs are known 

in advance. At least one machine is available for each process. The large produc-

tion demand for each type of jobs leads to a large-scale manufacture feature in 

this problem. To address the problem, we first establish a fluid model for the 

large-scale re-entrant FJSP. Then, we design a priority update rule to improve the 

assignment of jobs and machines. We finally propose a fast and efficient fluid 

relaxation algorithm (FRA) to solve the large-scale re-entrant FJSP through the 

relaxation fluid optimal solution. Numerical results show that the FRA is asymp-

totically optimal with the increase of the problem scale. The scale of problems 

has little effect on the FRA’s solving speed. Therefore, we conclude the FRA is 

suitable for solving the large-scale re-entrant FJSP. 

Keywords: Flexible Job Shop Scheduling, Fluid Model, Fluid Relaxation, Re-

entrant flows, Large scale optimization. 

1 Introduction 

The flexible job shop scheduling problem (FJSP) is an extension of the job shop sched-

uling problem [1]. It breaks through the constraint of resource uniqueness. FJSPs have 

a set of available machines for each process and the solution space of FJSP is further 

expanded. Thus, we consider it as a more complex NP-hard problem [2]. We study a 

large-scale re-entrant flexible job shop scheduling problem (FJSP). In the large-scale 

re-entrant FJSP, each process has an available machine set, each process routing may 

have re-entrant flows, different processes of the same job can be processed on the same 

machine, and the demand for each type of job is large. The large production demand 

for each type of jobs leads to a large-scale manufacture feature in this problem. Com-

pared with FJSPs, the large-scale re-entrant FJSP has many identical copies of the fixed 

set of jobs, which increases the number of jobs to be scheduled. The increasing number 

of jobs results in the huge exponentially solution space which increases the complexity 

of scheduling. Hence, the large-scale re-entrant FJSP is more complex than FJSP with 

same job types. There are the large-scale re-entrant FJSP in actual production, such as 

semiconductor manufacturing lines [3]. Therefore, it is important to study an efficient 

solution algorithm for actual production. 
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In recent years, researchers have done a lot of research for large-scale job shop 

scheduling by the fluid approach. For instance, Bertsimas and Gamarnik (1999) pro-

pose a fluid relaxation algorithm that replaces discrete jobs with continuous fluid flow 

to solve the large-scale job shop scheduling and packet routing problem [4]. Boudoukh 

et al. (2001) propose a simulated fluid solution heuristic algorithm that approximated 

the job shop scheduling problem to a continuous deterministic scheduling problem [5]. 

Dai and Weiss (2002) propose a fluid heuristic online scheduling algorithm based on 

bottleneck machine safety inventory. However, the safety inventory calculation is cum-

bersome, which is not conducive to practical application. The inventory formation and 

inventory clearance take a long time, which increases the makespan [6]. Nazarathy and 

Weiss (2010) propose a simple heuristic method to solve a large-scale job shop sched-

uling problem with the processing time randomly generated. Numerical results show 

that the proposed heuristic method is asymptotic optimality with the increase of the 

number of jobs [7]. 

Some scholars propose some fluid approaches by constructing the fluid solution 

tracking formula to solve the large-scale job shop scheduling problems. Bertsimas and 

Sethuraman (2002) construct the fluid solution tracking formula by combining the fluid 

relaxation approach with fair queuing in communication networks. They propose a fluid 

synchronization algorithm based on the fluid solution tracking formula [8]. Gu et al. 

(2017) construct a virtual scheduling formula which as the benchmark to determine the 

processing priority of each job on each machine. Based on the virtual scheduling for-

mula, they propose a tracking virtual scheduling algorithm to solve the general job shop 

scheduling problem [9]. Gu et al. (2018) study the large-scale random job shop sched-

uling problem with a generally similar number of jobs. The objective of this problem is 

to minimize the maximum completion time. They propose a strategy to solve the ran-

dom job shop scheduling problem by tracking the fluid schedule [10].  

Up to now, scholars have done a lot of research on large-scale re-entrant job shop 

scheduling. However, no research has been found on large-scale re-entrant FJSPs. 

Thus, we establish a fluid model and propose an efficient fluid relaxation algorithm for 

the large-scale re-entrant FJSP. 

The remaining parts of this paper are as follows: In section 2, we establish a fluid 

model to describe our problem. In section 3, we design the priority updating rule and 

propose a fluid relaxation algorithm to solve the large-scale re-entrant FJSP. In section 

4, we verify the performance of the fluid relaxation algorithm on several artificial 

benchmark problems. The conclusion is presented in section 5. 

2 The Proposed Fluid Model 

We establish a fluid model for solving the large-scale re-entrant flexible job shop sched-

uling problem. In our model, processes of different types of jobs are divided into dif-

ferent classes k = {1, 2, 3 … K}. We use 𝑍𝑘𝑟𝑗 to indicate whether the jth process of the 

rth type of job is represented as class k (value 1 for yes, 0 for no). We assume the job is 

composed of fluid. We use continuous fluid flow instead of discrete jobs. Thus, the 

number of jobs is not required to be an integer in the fluid model. Within unit time, the 
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machine can allocate its processing time (the real number between 0 and 1) to different 

classes. Each machine has a fixed proportion of processing time to deal with each class. 

The output of our model is the proportion of time allocated to each class by each ma-

chine. The notations we used are introduced follows: 

Indexes: 

i : Machines, (i = 1,2,3 … 𝐼). 

r(r′): Job types, (r = 1,2,3 … 𝑅). 

j(j′): Processes, (j = 1, 2, 3 … 𝐽𝑟 , ∀𝑟 ∈ {1,2,3 … 𝑅}) 

k(k′): Classes,k = 1,2,3 … K, K =  ∑ 𝐽𝑟
𝑅
𝑟=1 . 

Input data: 

𝑁𝑟: The total number of rth type of job. 

𝑀𝐼: Set of machines, 𝑀𝐼 = {1,2 … 𝐼}. 

𝑡𝑖𝑘: Processing time of class k on machine i. 
𝐿𝐾: Set of classes, 𝐿𝐾 = {1,2 … 𝐾}. 

𝑀𝑘: Set of available machines for class k. 

𝐾𝑖: Set of available classes for machine i. 
Decision variables: 

𝑢𝑖𝑘: The proportion of processing time allocated to class k by machine i. 
Notations: 

𝑍𝑘𝑟𝑗: Binary variable, 𝑍𝑘𝑟𝑗 = 1 if the jth process of the rth type of job is represented 

as class k, ∑ ∑ 𝑍𝑘𝑟𝑗 = 1
𝐽𝑟
𝑗

𝑅
𝑟   ∀𝑘 ∈ 𝐿𝐾. 

𝑡𝑖𝑘: Processing time of class k on machine i. 
𝑒𝑖𝑘: Processing rate of class k on machine i, 𝑒𝑖𝑘 = 1/𝑡𝑖𝑘. 

𝑝𝑘𝑘′: Binary variable, take value 1 if class k′ is the tight post-process of class k. 

𝑇𝑘: Completion time of class k. 

𝑐𝑖𝑘: Binary variable, 𝑐𝑖𝑘 = 1 if class k is available for machine i. 
𝐸𝑘: Total processing rate of class k, 𝐸𝑘 = ∑ 𝑒𝑖𝑘𝑢𝑖𝑘

𝐼
𝑖=1 . 

𝑄𝑘(𝑡): The actual number of class k at time t. 

𝑄𝑘
+(𝑡): The actual total number of class k which at time t has not yet completed pro-

cessing. 

𝑄𝑖𝑘
+ (𝑡): The actual total number of class k which at time t has not yet completed the 

process by machine i. 
𝑞𝑘(𝑡): The fluid number of class k at time t. 
𝑞𝑘

+(𝑡): The total fluid number of class k which at time t  has not yet completed pro-

cessing. 

𝑞𝑖𝑘
+ (𝑡): The total fluid number of class k which at time t has not yet completed the 

process by machine i. 
The fluid model satisfies the following equations: 

 𝑄𝑘(0) = ∑ 𝑁𝑟𝑍𝑘𝑟1  ∀𝑘 ∈ 𝐿𝐾
𝑅
𝑟=1  (1) 

 𝑞𝑘(0) = 𝑄𝑘(0)  ∀𝑘 ∈ 𝐿𝐾  (2) 

 𝑞𝑘(𝑡) = 𝑞𝑘(0) − 𝑡𝐸𝑘 + 𝑡 ∑ 𝐸𝑘′𝑝𝑘′𝑘𝑘′∈𝐿𝑘
     ∀𝑘, 𝑘′ ∈ 𝐿𝐾 (3) 
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Equation (1) represents the actual number of each class in time 0. Equation (2) means 

the fluid number of each class in time 0. Equation (3) represents the fluid number of 

each class in time t. 

 𝑄𝑘
+(0) = ∑ ∑ 𝑍𝑘𝑟𝑗𝑁𝑟   ∀𝑘 ∈ 𝐿𝐾

𝐽𝑟
𝑗=1

𝑅
𝑟=1  (4) 

 𝑞𝑘
+(0) = 𝑄𝑘

+(0)     ∀𝑘 ∈ 𝐿𝐾 (5) 

 𝑞𝑘
+(𝑡) = 𝑞𝑘

+(0) − 𝑡𝐸𝑘     ∀𝑘 ∈ 𝐿𝐾 (6) 

Equation (4) means the actual total number of each class which has not yet completed 

processing in time 0. Equation (5) represents the total fluid number of each class that 

has not yet completed processing in time 0. Equation (6) represents the total fluid num-

ber of each class in time t. 

 𝑞𝑖𝑘
+ (0) = 𝑞𝑘

+(0)
𝑒𝑖𝑘𝑢𝑖𝑘

∑ 𝑒𝑖𝑘𝑢𝑖𝑘
𝐼
𝑖=1

       ∀𝑖 ∈ 𝑀𝐼 , 𝑘 ∈ 𝐿𝐾 (7) 

 𝑞𝑖𝑘
+ (𝑡) = 𝑞𝑖𝑘

+ (0) − 𝑡𝑒𝑖𝑘𝑢𝑖𝑘     ∀𝑖 ∈ 𝑀𝐼 , 𝑘 ∈ 𝐿𝐾 (8) 

 𝑇𝑘 =
𝑞𝑘

+(0)

𝐸𝑘
      ∀𝑘 ∈ 𝐿𝐾 (9) 

In Equation (7), the total fluid number of class k which has not yet completed the pro-

cess by machine i at the initial time is given. Equation (8) represents the total fluid 

number of class k which has not yet completed the process by machine i  at time t. 

Equation (9) means the completion time of each class in the fluid model. 

 ∑ ∑ 𝑧𝑘𝑟𝑗 = 1
𝐽𝑟
𝑗=1

𝑅
𝑟=1   ∀𝑘 ∈ 𝐿𝐾 (10) 

 ∑ 𝑢𝑖𝑘 ≤ 1     ∀𝑖 ∈ 𝑀𝐼
𝐾
𝑘=1  (11) 

 0 ≤ 𝑢𝑖𝑘 ≤ 𝑐𝑖𝑘     ∀𝑖 ∈ 𝑀𝐼 , 𝑘 ∈ 𝐿𝐾 (12) 

 𝐸𝑘 ≤ ∑ 𝐸𝑘′𝑝𝑘′𝑘
𝐾
𝑘′=1      ∀𝑘, 𝑘′ ∈ 𝐿𝐾: 𝑞𝑘(0) = 0 (13) 

Equation (10) means that each process of each type of job can only be represented by 

one class. Constraints (11) show that the machine utilization is less than 100%. Con-

straint (12) represents the range of decision variables. Constraint (13) indicates that the 

processing rate is less than or equal to the arrival rate if the initial fluid number of class 

k equal to zero, which guarantees the solution is feasible. 

The objective is to minimize the maximum completion time of all classes, as indi-

cated in Equation (14). 

 𝐶𝑚𝑎𝑥 = 𝑚𝑖𝑛(𝑚𝑎𝑥{𝑇1, … 𝑇𝐾})   (14) 
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3 The Priority Update Rule and The Fluid Relaxation 

Algorithm 

We can obtain the proportion of time allocated to each class by each machine using the 

fluid model. However, we do not specify the machine assignment for each job and the 

processing sequence of jobs on each machine in detail. Therefore, we propose a priority 

updating rule based on the fluid model to guide the machine selection and job pro-

cessing sequence. 

3.1 The Priority Update Rule 

We define the priority of class k at time t as Equation (15). 

 𝐹𝑘 =
𝑄𝑘

+(𝑡)−𝑞𝑘
+(𝑡)

𝑄𝑘
+(0)

  ∀k ∈ 𝐿𝐾 (15) 

We use 𝐹𝑘 value to represent the priority of class k. We select the class with the maxi-

mum 𝐹𝑘 value at each decision point. It means we select the job to process which has 

the maximum 𝐹𝑘 value at the decision time. We have to allocate an available machine 

for each chosen class. Thus, we define Equation (16) to represent the priority of each 

available machine to each class at time t. 

 𝐵𝑖𝑘 =
𝑄𝑖𝑘

+ (𝑡)−𝑞𝑖𝑘
+ (𝑡)

𝑞𝑖𝑘
+ (0)

    ∀k ∈ 𝐿𝐾 , 𝑖 ∈ 𝑀𝐼 (16) 

We choose an available machine which has the highest 𝐵𝑖𝑘 to process the job according 

to 𝐹𝑘. 

In each decision time, we select a class k that has the maximum 𝐹𝑘 value first (if 

different classes have the same 𝐹𝑘 value, we select a class from them randomly). Then 

we select an available idle machine that has the maximum 𝐵𝑖𝑘 value to process the class 

k (if different machines have the same 𝐵𝑖𝑘 value, we select a machine from them ran-

domly). Finally, we complete the job selection and machine assignment in manufactur-

ing. 

3.2 The Fluid Relaxation Algorithm 

We propose a fluid relaxation algorithm (FRA) to solve the large-scale re-entrant flex-

ible job shop scheduling problem. We first solve the fluid model with the CPLEX to 

obtain the optimal maximum completion time 𝐶𝑚𝑎𝑥 (the lower bound value) and the 

proportion of time allocated to each class by each machine in the fluid model. Then we 

propose a fluid relaxation algorithm based on the priority update rule. 

The detailed steps of the algorithm are as follows: 

Step1: Solve the fluid model with the CPLEX to obtain all 𝑢𝑖𝑘. 

Step2: We assume that the current time is represented by TIME_NOW, the next idle 

time of machine i represented by TIME_NEXT (i). Then all the machines are idling in 

the initial time (TIME_NOW = 0). 
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Step3: Generate the set of 𝑀𝑛𝑜𝑤 which includes all the machines which are idling and 

have available jobs at time TIME_NOW.  

Step4: Generate the available class set 𝐾𝑛𝑜𝑤,  

∀i ∈ 𝑀𝑛𝑜𝑤 , 𝑖𝑓 𝑘 ∈ 𝐾𝑖 𝑎𝑛𝑑 𝑄𝑘(𝑛𝑜𝑤 − 𝑡𝑖𝑚𝑒) > 0, 𝑡ℎ𝑒𝑛 𝑘 ∈ 𝐾𝑛𝑜𝑤 . If 𝐾𝑛𝑜𝑤 = ∅ , 

end the algorithm and output the solution. 

Step5: Select the class k from a set 𝐾𝑛𝑜𝑤 which has the maximum 𝐹𝑘 value, then select 

the machine i  from set 𝑀𝑛𝑜𝑤 ∩ 𝑀𝑘  which has the maximum 𝐵𝑖𝑘  value to process 

class k .  

Step6: Update the value of TIME_NEXT (i), 𝑄𝑘, 𝑄𝑘
+, 𝐹𝑘 and 𝐵𝑖𝑘. Update the set 𝑀𝑛𝑜𝑤. 

If 𝑀𝑛𝑜𝑤 ≠ ∅, go to step 4. 

Step7: Update the value of TIME_NOW. TIME_NOW = 𝑚𝑖𝑛𝑖∈𝑀𝐼
𝑇𝐼𝑀𝐸_𝑁𝐸𝑋𝑇(𝑖), go 

to step3. 

The asymptotic optimality of FRA: 

Theorem 1. Consider a flexible job shop scheduling problem with R job types and I 

machines. The FRA produces a schedule with makespan time 𝐶𝐹𝑅𝐴 such that: 

 𝐶𝑚𝑎𝑥 ≤ 𝐶𝐹𝑅𝐴 ≤ 𝐶𝑚𝑎𝑥 + (𝑅 + 2)𝑡𝑚𝑎𝑥𝐽𝑚𝑎𝑥 (17) 

In Equation (17), 𝐶𝑚𝑎𝑥  is the lower bound provided by the fluid model, 𝑡𝑚𝑎𝑥 is the 

maximum processing time over all processes in all machines. 𝐽𝑚𝑎𝑥 is the maximum 

number of processes of any job type. The proof of Theorem 1 is similar as the Theorem 

4 which proposed by Dai and Weiss [6].  

In our problem, (𝑅 + 2)𝑡𝑚𝑎𝑥𝐽𝑚𝑎𝑥 is a constant in a finite range. The FRA satisfies the 

following Equation (18) as the total number of jobs goes to infinity. 

 
𝐶𝐹𝑅𝐴

𝐶𝑚𝑎𝑥
≈ 1 (18) 

From Equation (18), we see that the FRA is asymptotically optimal as the number of 

jobs increases. 

 

 

4 Computational experiments and results 

To verify the superiority of the proposed fluid relaxation algorithm, we develop a nu-

merical experiment for the large-scale re-entrant FJSP. The algorithm is implemented 

on a PC with Inter (R) Core (TM) I5-9300 CPU @ 2.40GHz 2.40 GHz and 8GB RAM. 

We construct an artificial example with 3 job types and 10 machines. We initialize the 

set of available machines for each process randomly. The processing time of all pro-

cesses obeys the uniform random distribution U (1, 5). In Table 1, we provide the 

available machines and the processing time of each process. “-“indicates the machine 

is not available for this process. 
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Table 1. Processing times. 

Job Process M1 M2 M3 M4 M5 M6 M7 M8 M9 M10 

R1 

O11 3.3 - 4.1 - 2.2 4 1.5 1.2 - 3.9 

O12 - - 2.5 - 3.7 - 1.5 3 4.3 1.5 

O13 - - 4.2 - - 4.7 1.4 - - 4.5 

O14 - - - 2.1 - 5 - 3.9 2.9 - 

O15 - 3.4 - - - 1.6 - - 3.9 - 

R2 

O21 4.9 - 3.5 - - - - 4 4.1 3.7 

O22 3.8 - - 4.6 - 2.8 - 1.9 4.7 - 

O23 - 3.6 3.7 - 3.7 - - 2.2 2.1 - 

O24 1.1 - 1.4 - 1.5 - -  1.7 1.3 

O25 4.9 2.3 - - 1.1 1.5 1.5 1.4 - - 

R3 

O31 - 2.2 1.4 - 3.8 1.4 4.9 3.2 2.6 - 

O32 3.1 2.8 1.3 - - - - 2.7 - 3.4 

O33 1.9 - 2.8 - - 2.8 - 1.1 - 3.7 

O34 - 2 -  4 - 3.2 - - 2.6 

O35 - 1.1 - 4.5 - - 4 - 2.1 3.7 

In Table 2, we calculate the results of FRA solving the re-entrant FJSP with different 

problem scales. The problem scale is denoted by the total number of jobs multiply the 

total number of machines (n×m). 𝐶𝑚𝑎𝑥 is the lower bound value of the problem which 

we obtain with CPLEX. 𝐶𝐹𝐶𝐹𝑆 is the results which we obtain with the First Come First 

Serve policy (FCFS). GAP represents the proximity of the FRA solution to 𝐶𝑚𝑎𝑥. We 

get the GAP value through the following Equation (19). 

 GAP =
𝐶𝐹𝑅𝐴−𝐶𝑚𝑎𝑥

𝐶𝑚𝑎𝑥
× 100% (19) 

Table 2. Results obtained by FRA. 

Instance R1 R2 R3 n×m 𝐶𝑚𝑎𝑥 𝐶𝐹𝑅𝐴 𝐶𝐹𝐶𝐹𝑆 GAP Computing 

Time (s) 

1 6 8 10 24×10 21.2 24.6 37.8 16.03% 0.81 

2 12 16 20 48×10 42.4 47.1 74.8 11.08% 0.96 

3 24 32 40 96×10 84.9 89.6 144 5.53% 1.05 

4 48 64 80 192×10 169.9 175.6 285.2 3.35% 0.73 

5 96 128 160 384×10 339.9 348.1 545.8 2.41% 1.24 

6 192 256 320 768×10 679.9 691.7 1147.3 1.73% 1.74 

7 384 512 640 1536×10 1359.8 1378.3 2290.1 1.36% 2.36 

8 768 1024 1280 3072×10 2719.7 2755.9 4487.5 1.33% 3.44 

The GAP gradually decreases with the increase of problem scale, indicating that FRA 

is asymptotically optimal with the increase of the number for various jobs. The CPU 
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time of FRA within 4 seconds for all instances and the increments in CPU time is small 

as problem scale increases. The results show that the fluid relaxation algorithm (FRA) 

can solve the problem efficiently and quickly, the problem scale has little effect on the 

solving speed. The FRA is suitable for solving the large-scale re-entrant FJSP. 

The FCFS policy is a traditional dispatching rule in semiconductor manufacturing [11]. 

The following Fig. 1 compares the FRA and the FCFS policy in eight instances. Note 

that the FRA outperforms the FCFS policy in all instances. The results indicate that the 

FRA has the potential to improve the productivity in semiconductor manufacturing. 

 

Fig. 1. The makespan of FRA and FCFS 

5 Conclusion 

In this paper, we study a large-scale re-entrant FJSP with machine numbers, job types, 

and processes of job are known and fixed. Moreover, the demand quantity for each type 

of jobs is a large value. We present a fluid relaxation algorithm (FRA) and a priority 

update rule based on the fluid model to solve the large-scale re-entrant FJSP. We con-

struct a large-scale re-entrant FJSP with 3 job types and 10 machines to evaluate the 

proposed algorithm. Numerical results show that the fluid relaxation algorithm is as-

ymptotically optimal with the increase of the number of various jobs. Moreover, the 

problem scale has little effect on the solving speed of the FRA. The FRA outperforms 

the FCFS policy in all instances which indicates the FRA has the potential to improve 

the productivity in semiconductor manufacturing. Furthermore, the low computation 

times make the FRA practical for implementation.  

However, we do not consider the set-up time and machine failure in the fluid model 

which effects the productivity in semiconductor manufacturing. In future research, we 
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can incorporate set-up time and machine failure in the fluid model or as an additional 

step in the FRA. 
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