N
N

N

HAL

open science

Collaborating CPUs and MICs for Large-Scale LBM

Multiphase Flow Simulations
Chuanfu Xu, Xi Wang, Dali Li, Yonggang Che, Zhenghua Wang

» To cite this version:

Chuanfu Xu, Xi Wang, Dali Li, Yonggang Che, Zhenghua Wang. Collaborating CPUs and MICs for
Large-Scale LBM Multiphase Flow Simulations. 16th IFIP International Conference on Network and
Parallel Computing (NPC), Aug 2019, Hohhot, China. pp.366-370, 10.1007/978-3-030-30709-7_35 .
hal-03770526

HAL Id: hal-03770526
https://inria.hal.science/hal-03770526

Submitted on 6 Sep 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License


https://inria.hal.science/hal-03770526
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

~ederationforintor

This document is the original author manuscript of a paper submitted to an IFIP
conference proceedings or other IFIP publication by Springer Nature. As such, there
may be some differences in the official published version of the paper. Such
differences, if any, are usually due to reformatting during preparation for publication or

minor corrections made by the author(s) during final proofreading of the publication
manuscript.



Collaborating CPUs and MICs for Large-scale
LBM Multiphase Flow Simulations *

Chuanfu Xu, Xi Wang, Dali Li, Yonggang Che, and Zhenghua Wang

College of Computer Science, National University of Defense Technology, Changsha
410073, P.R.China

Abstract. This paper highlights the use of the OpenMP4.5 accelera-
tor programming model to collaborate CPUs and Intel Many Integrated
Cores (MIC) co-processors for large-scale LBM multiphase flow simula-
tionson the Tianhe-2 supercomputer. To enhance the collaborative ef-
ficiency among intra-node CPUs and co-processors, we propose a flex-
ible load balance model with heterogeneous domain decomposition for
CPU-MIC task allocation, as well as asynchronous offloading to overlap
operations of CPUs and multiple MICs. Tests for 3D multi-phase (liquid
and gases) problem (about 100 Billion lattices) simulating drop impact
with gravity effect using D3Q19 Lattice Boltzmann discretization and
Shan-Chen BGK single relaxation time collision model are presented,
achieving a weak parallel efficiency of above 80% in going from 128 to
2048 compute nodes.

Keywords: Heterogeneous parallel computing - Lattice Boltzmann meth-
ods - Many-core processor - OpenMP4.5 accelerator programming model.

1 Introduction

Lattice Boltzmann Methods (LBM) regard fluids as Newtonian fluids from a
microscopic perspective, divide flow field into small lattices (mass points), and
simulate fluid evolution dynamics through collision models (lattices collision and
streaming) [I]. Currently, LBM has been increasingly used for real-world flow
problems with complex geometries and various boundary conditions. Large-scale
LBM simulations with increasing resolution and extending temporal range re-
quire massive high performance computing resources. It is therefore essential and
practical to port LBM codes onto modern supercomputers, often featuring many-
core accelerators/coprocessors (GPU, Intel MIC, or specialized ones).These het-
erogeneous processors can dramatically enhance the overall performance of HPC
systems with remarkably low total cost of ownership and power consumption, but
the development and optimization of large-scale applications are also becoming
exceptionally difficult. Accelerator programming models such as OpenMP4.X [2],
OpenACC and Intel Offload aim to provide performant and productive hetero-
geneous computing through simple compiler directives. Among them, OpenM-
P4.X is especially attractive since it incorporates accelerator programming with

* Supported by NSFC under Grant No. 61772542.



2 Chuanfu Xu, Xi Wang, Dali Li, Yonggang Che, and Zhenghua Wang

traditional shared memory multithreading into a unified high-level model, and
supports major languages (C++, C and Fortran...) and devices (CPU, GPU,
MIC, ARM, DSP...).

In this paper, we parallelize an LBM code openlbmflow and highlight the use
of OpenMP4.5 for large-scale CPU-MIC collaboration on the Tianhe-2 super-
computer [3]. A load balance model with heterogeneous domain decomposition
is proposed for CPU-MIC task allocation. We use asynchronous offloading to
minimize the cost of halo exchanges and significantly overlap CPU-MIC compu-
tation/communication. Our collaborative approach achieves a speedup of up to
5.0X compared to the CPU-only approach. Tests for 3D multi-phase (liquid and
gases) problem (about 100 Billion lattices) simulating drop impact with gravity
effect using D3Q19 Lattice Boltzmann discretization and Shan-Chen BGK single
relaxation time collision model are presented, achieving a weak scaling efficiency
of above 80% in going from 128 to 2048 compute nodes.

1: #pragma omp declare target

2:  /ldeclare variables and functions on MICs

3: #pragma omp end declare target

4: initialization on CPUs

5: for (n=0;n<mic_num;n++) /for multiple MICs

6: {

7. llpre-allocate and initialize variables on MICs

8: #pragma omp target device(mic_num) data map(alloc...)
9: #pragma omp target device(mic_num) data map(to...)
1
1

1: for (iter=1;iter<max_iter;iter++)//time-marching loop
-

R
13: for (n=0;n<mic_num;n++) //for multiple MICs

14:

15: //gather boundary lattices into the Inbuffer (CPU)

16: #pragma omp target device(mic_num) map(to...) map(from...) nowait
17: JIH2D the Inbuffer

18: //scatter the Inbuffer and update halo lattices (MIC)
19: //MIC caltulation

20: //gather boundary lattices into the Outbuffer (MIC)
21: //D2H the Outbuffer

2}

23: //caltulation on CPUs

24: #pragma omp taskwait //synchronization

25: for (n=0;n<mic_num;n++) //for multiple MICs

26: |

27: //scatter the Outbuffer and update halo lattices (CPU)
28:

29: //boundary conditions

30: //MPI communication

31}

Fig. 1. Code skeleton for CPU-MIC collaboration with asynchronous offloading and
overlapping of CPU-MIC computation/communication using OpenMP directives.

2 CPU-MIC collaboration and performance results

openlbmflow is an LBM code written in C that can simulate both 2D /3D single-
phase or multi-phase flow problems with periodic and/or bounce-back boundary
conditions. It mainly consists of three phases: initialization, time iteration, and
post-processing. During the initialization phase, the geometry of the flow field,
flow density and the distribution function are initialized. The time iteration



Collaborating CPUs and MICs for Large-scale LBM Flow Simulations 3

phase includes three important procedures: inter-particle force calculation (as
well as velocity and density), collision and streaming. In the post-processing
phase, simulation results are collected and saved according to a user-specified
iteration interval.

We decompose the original computational domain along the three dimension-
s evenly into many blocks and distribute them among MPI processes. On each
compute node, each block is divided into 4 sub-blocks with one calculated by
CPUs and the other three offloaded to the three coprocessors. Fig[l] illustrates
the intra-node collaborative programming approach. Before time-marching loop-
s, we use omp declare target directive to declare variables or functions which
are both available on CPU and MIC (line 1-3). We use omp target data direc-
tive with map clause to pre-allocate device memory and perform initialization of
global flow variables and data transfer buffers on each MIC (line 5-10). We de-
sign a unified In/Out-buffer for PCl-e data transfer among intra-node CPUs and
coprocessors. In each iteration, boundary lattices on CPUs are gathered into the
Inbuffer, and transferred to different MICs using map clause with array section
syntax (line 15-17). Before MIC calculation, we scatter boundary lattices from
the Inbuffer and update halo lattices on MICs (line 18). After MIC calculation,
boundary lattices on MICs will be gathered into the Outbuffer and transferred
back to CPUs (line 20-21). We use OpenMP nowait to asynchronously dispatch
kernels on MIC and overlap CPU-MIC computation/communication. We syn-
chronize CPU-MIC computation using the taskwait directive to ensure that
both sides have finished their computations before updating halo lattices on C-
PUs and MPI communications. We use a parameter r to represent the workload
ratio on CPU side and r can be configured by profiling openlbmflow’s sustainable
performance on both sides.

1o
m— Gather(CPU)
18— ————— . « Calculation 7 64 ——————— Gather((_:PU)
164 - — Synch/taskwait | e Calculation(CPU) L
1 m— Scatter(CPU) - Synch/taskwait
B 7i7 - - 24 —————— = Scatter(CPU)
12 WS )
° 2104 ————— — — — — — — — — — -
‘104 —— - ——— — — — Q
S & §0.8 -, — — — — -
S TN M mm e W
06 -+ — — — — —
s — o T EresEEE
j B B I B Eu | (FIE SR SR B A e B =
. || = 0 A AN EEN
o M W HM m u
2CPUs  1MIC ~ r=01  r=015 r=02 =025 2CPUs 2MICs r=0.08 r=0.09 r=0.1 r=0.11 r=0.12

Fig. 2. Performance of CPU+1MIC (left) and 2MICs (right) with problem size 256 X
256 x 256.

We use icc 17.0.1 from Intel composer 2017.1.132 in out tests. Our hetero-
geneous code was compiled in double precision with option ”-qopenmp -O3 -
fno-alias -restrict -xAVX”. MPICH2-GLEX was used for MPI communications.



4 Chuanfu Xu, Xi Wang, Dali Li, Yonggang Che, and Zhenghua Wang

Figleft) demonstrates the performance of CPU+1MIC with overlapping of
both CPU/MIC computation and PClI-e data transfer. We decompose the costs
into CPU gather/scater, CPU calculation and CPU-MIC synchronization. Due
to overlapping, the synchronization cost decreases with increasing workloads on
CPUs, and disappears when r = 0.2, indicating a perfect overlapping. After-
wards further increasing r will improve the cost of CPU calculation and degrade
the overall performance. The maximum speedup was improved to about 2.5 due
to the enhanced overlapping. For CPU+2MICs (Fig(right)), the maximum
speedup is about 2.88 (r = 0.09), only about 15.2% enhancement compared
to the CPU4+1MIC simulation. This is mainly due to a relatively small total
workload, and the collaborative overhead exceeds more than half of the whole
execution time.

I Computation
Communication
—O— Weak scalability  100%

J Calculation(CPU)
PY- IR — Synchitaskwait
: ‘— Scatter(CPU)

96%

92%

88%

Efficiency

84%

80%
2CPUs 3MICs r=0.06 r=0.07 r=0.08 r=0.09 r=0.1 128 256 512 1024 2048
#Node

Fig. 3. Performance of CPU+3MICs with problem size of 512 x 256 x 256 (left) and
large-scale weak scalability on CPU+MIC nodes (right).

In Fig[3|(left), the maximum speedups are 3.93 (r = 0.08) and 4.81 (r = 0.07)
for the problem set 512 x 256 x 256 with CPU+3MICs. Because the sustain-
able performance of openlbmflow on a MIC outperforms much of that on two
CPUs, only less than 10% of the whole workload is allocated to CPUs for col-
laborative simulations with multiple MICs. Due to the limited device memory
capacity (8GB) on Xeon Phi 31S1P, the maximum problem size for each MIC
is about 256 x 256 x 256. As a result, we couldn’t achieve ideal load balance in
heterogeneous simulations. Figright) reports the weak scalability results for
CPU+MIC collaborative simulations. Although large-scale heterogeneous simu-
lations involve quite complicated interactions, efficiencies stay well above 80%.
This is comparable to that of large-scale CPU-only simulations and demonstrates
the effectiveness of the overlapping optimization.

3 Related work

Few researches about parallelizing scientific codes using the new OpenMP4.X
accelerator programming model on heterogeneous supercomputers are report-



Collaborating CPUs and MICs for Large-scale LBM Flow Simulations 5

ed, but many researchers have shown the experiences of porting LBM codes
onto GPUs or MICs using other programming models. Paper [4] ported a GPU-
accelerated 2D LBM code onto Xeon Phi, and compared with previous imple-
mentations on state-of-the-art GPUs and CPUs. Paper [5] implemented a LBM
program using the portable programming model OpenCL, and evaluated its per-
formance on multi-core CPUs, NVIDIA GPUs as well as Intel Xeon Phi. In [6],
researchers have also parallelized openlbmflow on the Tianhe-2 supercomputer
and collaborate CPUs and MICs using Intel Offload programming model. The
performance was preliminary evaluated in single precision. To summarize, cur-
rent reports only involve simple LBM models on small MIC clusters. Paper [7]
Collaborated CPU and GPU for large-scale high-order CFD simulations with
complex grids on the TianHe-1A supercomputer. This is the first paper, to our
best knowledge, reporting CPU-MIC collaborative LBM simulations using com-
plex 3D multi-phase flow models with OpenMP4.5.

4 Conclusions

In this paper, we developed a CPU+MIC collaborative software openlbmflow for
3D Lattice Boltzmann multiphase flow simulations on the Tianhe-2 supercom-
puter based on the new OpenMP accelerator programming model. The software
successfully simulated a 3D multi-phase (liquid and gases) problem (100 billion
lattices) using D3Q19 and Shan-Chen BGK models on 2048 Tianhe-2 nodes,
demonstrating a highly efficient and scalable CPU+MIC collaborative LBM sim-
ulation with a weak scaling efficiency of above 80%. For future work, besides fine
tuning of the software, we are planning to port openlbmflow onto China’s self-
developed many-core processors/coprocessors based on the power-efficient high
performance ARM architecture.

References

1. Succi, S., Benzi, R., et al: The lattice Boltzmann equation: A new tool for compu-
tational fluid-dynamics. Physica D: Nonlinear Phenomena 47, 219-230 (1991)

2. Martineau, M., Price, J., et al: Pragmatic Performance Portability with OpenMP
4.x. In: 12th International Workshop on OpenMP, pp. 253-267 (2016)

3. Xiangke, L., Liquan, X., Canqun, Y.: MilkyWay-2 supercomputer: system and ap-
plication. Front. Comput. Sci. 8(3), 345-356 (2014)

4. Crimi, G., Mantovani, F., Pivanti, M., Schifano, S. F., Tripiccione, R.: Early ex-
perience on porting and running a Lattice Boltzmann code on the Xeon-Phi co-
processor. Procedia Computer Science 18, 551-560 (2013)

5. McIntosh-Smith, S., Curran, D.: Evaluation of a performance portable lattice Boltz-
mann code using OpenCL. In: International Workshop on OpenCL, pp. 1-12 (2014)

6. Dali, L., Chuanfu, X., Yongxian, W., Zhifang, S., et al: Parallelizing and optimiz-
ing large-scale 3D multi-phase flow simulations on the Tianhe-2 supercomputer.
Concurrency and Computation: Practice and Experience 28, 1678-169 (2015)

7. Chuanfu, X., Xiaogang, D., Lilun, Z., et al: Collaborating CPU and GPU for large-
scale high-order CFD simulations with complex grids on the TianHe-1A supercom-
puter. Journal of Computational Physics 278, 275-C297 (2014).



	Collaborating CPUs and MICs for Large-scale LBM Multiphase Flow Simulations 

