N
N

N

HAL

open science

ODCP: Optimizing Data Caching and Placement in
Distributed File System Using Erasure Coding

Shuhan Wu, Yunchun Li, Hailong Yang, Zerong Luan, Wei Li

» To cite this version:

Shuhan Wu, Yunchun Li, Hailong Yang, Zerong Luan, Wei Li. ODCP: Optimizing Data Caching and
Placement in Distributed File System Using Erasure Coding. 17th IFIP International Conference on
Network and Parallel Computing (NPC), Sep 2020, Zhengzhou, China. pp.452-464, 10.1007/978-3-
030-79478-1_38 . hal-03768742

HAL Id: hal-03768742
https://inria.hal.science/hal-03768742

Submitted on 4 Sep 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

https://inria.hal.science/hal-03768742
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

~ederationforintor

This document is the original author manuscript of a paper submitted to an IFIP
conference proceedings or other IFIP publication by Springer Nature. As such, there
may be some differences in the official published version of the paper. Such
differences, if any, are usually due to reformatting during preparation for publication or

minor corrections made by the author(s) during final proofreading of the publication
manuscript.

ODCP: Optimizing Data Caching and Placement
in Distributed File System using Erasure Coding

Shuhan Wuf, Yunchun Lif, Hailong Yang!¥*, Zerong Luan®, and Wei Lif

School of Computer Science and Engineering',
Beihang University, Beijing, China, 1001917
College of Life Sciences and Bioengineering?,
Beijing University of Technology, Beijing, China, 100083°
State Key Laboratory of Mathematical Engineering and Advanced Computing, Wuxi,
China, 2141259

Abstract. Many current distributed file systems use erasure-coding based
data redundancy techniques to improve the reliability of data storage.
Such techniques can significantly improve the effective storage utiliza-
tion. However, there are several drawbacks to the above techniques.
Firstly, they introduce non-negligible computation overhead for decod-
ing. Secondly, traditional data caching and placement strategies become
less effective in such cases. To solve the above drawbacks, this paper
proposes a new data cache allocation mechanism based on simulated an-
nealing and a new data placement strategy based on convex optimization,
which effectively reduces data block transmission delay and decoding de-
lay. We have implemented the proposed data placement strategy in the
real-world distributed file system Alluzio, and evaluated the performance
of our strategy. Experiment results show that our strategy can signifi-
cantly reduce the file read delay compared to traditional data placement
strategies.

Keywords: Distributed File System - Erasure Coding - Decoding La-
tency - Data Placement Strategy - Cache Allocation Strategy

1 Introduction

The distributed file system provides an excellent solution for storing and process-
ing large scale data. However, the unbalanced accesses for hot data in distributed
file system often cause severe performance degradation. For instance, studies [11]
have shown that in a Facebook cluster, for more than 50% of the time, the fre-
quency of visits to the most popular links exceeds 4.5x than the average visits of
ordinary links. Such a phenomenon of extremely unbalanced data accesses often
leads to overwhelmed load on storage nodes and causes the slowdown of the entire
distributed file system [8,15]. The widely adopted method to address the load
unbalance problem is to cache data and optimize data placement. Particularly,
erasure-coding based techniques have been proposed to reduce the storage cost

* Corresponding author, hailong.yang@buaa.edu.cn

2 Wu, Li et al.

of keeping multiple data copies in the distributed file system for reliability [11,
6], such as Ceph [2] and HDFS [12]. However, erasure-coding based techniques
have their own drawbacks [6,9]. Firstly, the decoding process introduces extra
computation overhead and thus leads to longer data access delay. Secondly, the
decoding overhead cannot be addressed by traditional data caching and place-
ment strategies, because the overhead highly depends on the data block to be
decoded. Therefore, a new approach needs to be designed to optimize the data
caching and data placement targeting the distributed file system with erasure-
coding.

To solve the above challenge, we propose a data cache allocation mechanism
based on simulated annealing and a data placement strategy based on convex
optimization. Evaluate results on real-world distributed file system Alluzio with
erasure coding shows that our approach can significantly reduce file access delay.

Specifically, the main contributions of this paper are as follows:

— We propose a new data placement strategy that decomposes data placement
problem into two stages of sub-optimization problems, and solves them us-
ing simulated annealing algorithm and convex optimization method, which
dramatically reduces the complexity for computing the optimization results.

— We propose a new data cache allocation mechanism based on simulated
annealing algorithm, which identifies the most profitable file blocks and al-
locates them in the data cache to achieve low read latency.

— We build a file read delay model that incorporates the decoding delay model
and data transmission delay model. This model can effectively guide the
design of data placement strategy for optimizing the file read latency.

— We implement the proposed approaches in real-world distributed file system
Alluzio, and demonstrate the effectiveness of our approaches for reducing file
read latency by comparing with traditional data placement approaches.

The rest of this paper is organized as follows. Section 2 introduces the back-
ground of data caching and data placement as well as the motivation of this
paper. We present the design and implementation of our ODCP in Section 3.
We evaluate the effectiveness of ODCP in Section 4. Section 5 presents the re-
lated work on the data caching and placement, and we conclude this paper in
Section 6.

2 Background and Motivation

2.1 Erasure coding

The most commonly used Erasure Code is RS code, which divides the original
file into k file blocks, and then generate r redundant blocks through the encoding
matrix. k plus r equals n, which is denoted as (n, k) coding. It is an MDS code [5]
(maximum distance separable code), which means that for (n, k) encoding, any
subset with k blocks is obtained from the set of n blocks, the original file can be
recovered.

Optimizing Data Caching and Placement using Erasure Coding 3

2.2 Data cache allocation

In the erasure-coded scenario, due to the MDS code’s characteristics, the read
delay of the entire file is determined by the k-th arriving file block. Therefore,
when the current k-1 block contains a cached block, the traditional backup cache
mechanism can not accelerate file access. To solve this problem, Aggarwal V et
al. proposed a functional caching mechanism in [1]. In this caching mechanism,
the cache area stores the re-encoded blocks that still satisfy the MDS code’s
characteristics. With this caching mechanism, the cache block can always speed
up file access. Therefore, based on functional caching, this paper proposes a new
caching strategy for decoding delay optimization.

2.3 File read probability

Unlike traditional file access, for erasure-encoded files, the read request is un-
certain, because of the characteristics of its MDS code, not every block must
respond to the read request [10]. Therefore, we set a probability value for each
block to represent its response probability when the read-write agent sends re-
quests for a file. If the sum of all block probabilities is k, then there are k file
block responses per access on average. The file access frequency and file block
read probability are directly related to the storage node load. Therefore, this
paper takes the read probability distribution as the optimization variables and
converts it into a file placement strategy.

2.4 Motivation

In the distributed file system, due to the uneven frequency of data access, there
are often severe data hot spots. For erasure-encoded files, because of its MDS
code character and decoding overhead, traditional optimization techniques are
not sufficient [3]. Secondly, many optimizations for erasure codes tend to pay
more attention to the transmission delay, while the decoding delay is less stud-
ied or ignored. However, Figure 1(a) shows that the decoding delay is signifi-
cant compared to the transmission delay. And the results in Figure 1(b) show
a strong linear relationship between the decoding delay and the number of re-
dundant blocks, which indicates there is room for optimization of the decoding
delay. In order to maintain data consistency and high performance, many cur-
rent distributed file systems such as HDFS use write-once design, in which the
read operations are much more popular than write. Therefore, our work mainly
focuses on the read operations.

3 Design and Implementation

3.1 Data cache allocation using simulated annealing

There are two problems with the functional cache [1]: first, the re-encode process
increases the encoding workload and write delay. Second, it does not have any

4 Wu, Li et al.

600 B transmission 2900
-~ N decoding § §/88
£400 = 600
% £
8= 9
< 200 l l : i

o =B I t ﬁ 1 2 3 4
100 200 .
filesize(MB) decoding number

(a) transmission and decoding delay ~ (b) decoding delay and number
Fig. 1. Early experiment results

optimization in terms of decoding delay. Placing the re-encoded block in the
cache area increases the probability that it participates in decoding greatly.
Therefore, we limit the file blocks stored in the cache area to the original blocks.
For the allocation of the cache area, we define the selection matrix mtz, which
indicates which file blocks are selected to enter the cache area, where the elements
can only take 0 or 1. The elements with value of 1 represent the file block where
file 4 can be placed on node j. To search for the optimal selection matrix miz, we
continuously reducing the cost C' as shown in Equation 1, where « is scale factor,
P is the read probability distribution, indicating the probability of sending a file
block read request for file 7 on node j, A is the read frequency of each file.

C=a- mean(Zpij -mtxig - X))+ (1 —a) - std(Zpij ST - As) (1)
=1 =1

Then we use the search algorithm based on simulated annealing to find a
near-optimal cache allocation scheme. The algorithm has a chance to accept
a worse solution than the current optimal solution, which can prevent it from
falling into the local optimal. Simultaneously, the algorithm’s random factors
will gradually decrease with the increase of the number of iterations to ensure

the final convergence of the algorithm.

3.2 Building file read delay model

When accessing erasure-coded files, the read-write agent reads a file in two steps:
transmission and decoding. The decoding process starts only after the transmis-
sion of the k-th block is completed. Therefore, this paper will model the two
processes and combine them as the read delay model.

The upper limit O of the weighted average read delay of all files is as shown
in Equation 2, where U; and T} represent transmission delay and decoding delay.

m)\7{ B B
0= 2_; ST N (Ui +Ty) (2)

Transmission delay model This paper cites a read latency estimation formula
based on queuing theory proposed in [13], which has been mentioned and verified
in many works [1, 13, 14]. But in order to combine it with the decoding delay, we

Optimizing Data Caching and Placement using Erasure Coding 5

added a subscript k to represent the difference between the original block and
the redundant block.

First the statistics required in the model need to be calculated as follows. the
average value of each node’s transmission time E[X;] in Equation 3, variance
o? in Equation 4, the total request amount of node j A; in Equation 5, the
second-order origin moment I’ j2 in Equation 7, the third-order origin moment
r f’ in Equation 8. And p; represents the service rate of node j. p; in Equation

6 representing the request strength.

_1
E[X;] = o 3)
o} = E[X]] - E[X,]? (4)
A; = i(Pijl + Pjj2) A (5)
pi = Aju (6)
I'? = E[X]] (7)
I} = EB[x3 (8)

Where X is the transmission delay of a single file block, A; is the file access
rate. The optimization variable P;;;, represents the probability of sending a read
request to file ¢ on node j, where k represents the block type (k = 1 represents
the original block, and k = 2 represents redundant block). m represents the total
number of files, and n represents the total number of nodes.The transmission
delay Uj; is as shown in Equation 9:

- —~ Pij1 + Py —~ Pij1 + Py
Oi= 2t) —r5 =2 (EQ] -2+) =52 V(EIQ)] - =) + VarlQ)] ©)
=1 j=1
Where z; is an auxiliary variable. Besides, Q); represents the total transmis-
sion delay of reading file blocks on node j. The form of E[Q,] and Var[Q;] is as
defined in Equation 10 and 11:
1 A T?
EQ,]= — + _)7y
@] wio 2(1—p;)
Aij A?(FJ'Q)Q
3(L=p;) 41 —p;)?

(10)

Var(Q;] = o + (11)

Decoding delay model The encoding and decoding process of the erasure code
is essentially matrix multiplication operation. The coding matriz is composed of
an identity matrix and a redundant matriz. After multiplying with the data
matriz, the original blocks and the redundant blocks are obtained. Pick any k
blocks from them, and then take the corresponding rows from the coding matriz
to form a residual matriz, and inverse it to get the recovery matriz. Use the
recovery matrix to recover the original data matriz. However, the original blocks
do not need to be calculated during the recovery process, and other lost blocks
need to be calculated. So there is a linear relationship between the number of

6 Wu, Li et al.

redundant blocks and the decoding delay. A mathematical model is established
to estimate the decoding delay T; and its form is as defined in Equation 12:

_ S; Ui n
Ti :nk+r Z)‘i(l'ri,Cached+ZPij2) (12)
¢ bi=1

j=1
The decoding time is positively correlated with the load of the agent, the
file block size, the number of redundant blocks participating in decoding. For
file 4, the redundant blocks in cache will certainly participate in decoding, other
redundant blocks of this file will participate in decoding according to probability.
Where 7 is the scale factor, S is the file size, k; and r; are the original and
redundant blocks of file . To minimize decoding delay, let r; cqched = 0. Then
the form of T; turns into Equation 13.
Ti:Ukiilm > lpm) (13)

i=1 j=

3.3 Formulating the optimization problem

In order to find the probability distribution under which the lowest average read
delay can be achieved, a convex optimization problem needs to be formulated.
We use Equation 2 as the objective function. Read probability distribution P
and the auxiliary variable z are used as optimization variables. And constraints
are added as follows.

Pij1-Pij2 =0 (14)
ddi<cC (15)
i—1
Z Pij1- Pijo=ki —d; +1 (16)
j=1
ceil(P.1+ P.2) = ~-mtx)

To minimize the read delay and reduce the complexity of the transmission
delay model, we use Equation 14 to ensure that a node can only store one block
of a file at most. Inequality 15 ensures the sum of the number of blocks of all
files in the cache cannot be greater than the capacity of the cache area, where d;
is the number of blocks of file ¢ in the cache, and C' is the capacity of the cache.
Equation 16 ensures the sum of the read probability of each file on all nodes plus
the number of blocks already in the cache minus redundant request equals to k.
Add an additional redundant read request is to reduce the influence of straggler.
Equation 17 ensures that the read probability distribution obtained must meet
the premise of the previous cache allocation. The convex optimization problem
is defined as 18.

(18)
s.t. 14,15,16,17

var. Pijk, Z4

Optimizing Data Caching and Placement using Erasure Coding 7

3.4 Solving the convex optimization problem

This subsection introduces the challenges of this optimization problem and the
solutions we proposed. First of all, the constraints of the real number range and
the integer constraint d; coexist in the constraint conditions, which belong to
the mixed-integer constraint problem. Usually, it is difficult to find the optimal
solution for this type of problem directly. Secondly, the optimization problem has
two sets of variables, reading probability distribution P and auxiliary variable
z. It is difficult to optimize both at the same time.

Our solution to the integer mixed constraint problem is to decompose the
originally unified problem into two stages: cache allocation and storage node
data placement. When the cache allocation strategy is determined, the variable
d; becomes a constant, Equation 15 will be satisfied, and Equation 16 becomes
a real range constraint. Therefore, there is no integer constraint.

And inspired by other work [1,13,14], this paper uses a method called al-
ternate optimization to solve the two sets of variable problem. It alternately
optimizes two sets of variables until the objective function converges.

Then the mapping relationship between the optimal solution and the data
placement strategy must be established. First, according to the variable d;, the
corresponding number of blocks of each file are put into the cache area. The
original blocks are placed preferentially. Secondly, if the block probability of
requesting a file to a node is not 0, the corresponding block must be prepared.
In sum, our approach optimizes reading delay by placing data according to the
data placement strategy and initiating file requests based on the solution of
Equation 18.

4 Evaluation

4.1 Experimental Setup

We evaluate the distributed file system Alluxio with our proposed approaches on
a cluster of 10 nodes. The cluster contains one Master node, one Client node (as a
read-write agent), and eight Slave nodes. There are 3 types of configuration of the
slave nodes, including one modell (Intel Xeon Phi 7210, 200GB Memory, 12TB
HDD), four model2 (Intel Xeon E5-2620 V4, 12GB Memory, 100GB HDD), and
three model3 (Intel Xeon E5-2620 V2, 8GB Memory, 200GB HDD). The network
bandwidth is 1gbps between all nodes.

4.2 File read latency optimization

We test and analyze the overall file access latency and the latency of the two
stages it contains. We test and compare common random strategies, round-robin
strategies, the optimization strategy sprout proposed in [1], and our optimization
strategy. They are written down as random, round, sprout, opt, respectively.
According to our cluster size, we set the standard parameters of erasure coding
in the experiment to (k, n)=(4, 8). The reading probability A of each file are

8 Wu, Li et al.

taken as 0.009, 0.011, 0.01, 0.012, 0.014, 0.013. The capacity of the cache area is
8 file blocks. The file sizes are randomly selected between 25MB and 250 MB. For
smaller files, they are usually merged into bigger files in distributed file systems
to achieve better performance.

Average block transmission delay Accessing a file requires obtaining a suffi-
cient number of file blocks before entering the next stage of the decoding process.
Therefore, the read delay of a file block dramatically affects the entire file’s over-
all access delay. As shown in Figure 2(a), we evaluate the file block access delay
under different data access patterns.

500 —— opt // opt I 2000 opt i
-==-= random , 100 random ! === random //
400 ——- round /’ / —— round i —— round /
sprout / //’, sprout ! 1500 sprout /
. i 80 /'/ . o
) / —~ J) P
g 2z / g
R=2 S 60 = =
E g [T 2000
- 40 . -
v
vl 500
20
e
0 0
100 200 100 200 100 200
filesize(MB) filesize(MB) filesize(MB)
(a) blockfetching (b) decode delay (c) file read delay

delay
Fig. 2. Different types of delays under four different data access patterns.

The results show that the round-robin strategy has the longest block read
delay among all strategies. This is because under the round-robin strategy, the
density of access requests received by a single slave node fluctuates periodically.
Therefore, when the slave node is busy, it will slow down the transmission process
of a series of file blocks. The random strategy alleviates this periodicity, so the
block read delay decreases.

The opt strategy reaches the best of all strategies. The reasons are as follows.
In the sprout strategy, cache allocation and transmission delay optimization
problems are simultaneously modeled in an optimization problem. But in this
article, these two problems are divided into two steps. This method significantly
reduces the complex constraints in the optimization problem and the difficulty
of solving. And a more reasonable cache allocation scheme makes the file block
read delay have a better optimization effect. Compared with the other three
strategies, the opt strategy reduces the average block read latency by 36.9%,
45.6%, and 27.9%, respectively.

We also evaluate and analyze the change in the average read latency of file
blocks for each strategy with different cache sizes, as is shown in Figure 3.

We use ms/MB to express the average block read delay to eliminate the im-
pact of the delay change caused by the file block size. It can be seen that, overall,

Optimizing Data Caching and Placement using Erasure Coding 9

opt random round sprout

2
0
8 10 8 10 8 10 8 10

cache size cache size cache size cache size

ms/MB
ms/MB
ms/MB
ms/MB

Fig. 3. Impact of data cache capacity on block read delay.

the increased capacity of the cache area under each strategy will reduce the av-
erage read latency of the file block. The average decline rate of each strategy are
10.3%, 5.5%, 6.5%, 6.9%, indicating that opt strategy reaches the highest cache
utilization efficiency.

Decoding delay We count the decoding delays of the four strategies under
various file sizes and express them through the cumulative decoding delay of the
entire test process.

As shown in Figure 2(b), decoding delay of random and round-robin strate-
gies increase rapidly with the size of the files. The decoding delay of the round-
robin strategy is the longest, and the frequency of occurrence of redundant blocks
during reading is periodic. When the read-write agent is busy at decoding, the
decoding process of each file is slowed down; when it is idle, the decoding ca-
pability is wasted. Therefore, the total decoding delay is greatly increased. The
random strategy eases this periodicity. The optimization of the request queue by
the sprout strategy further eases the periodicity mentioned above. At the same
time, because we place redundant blocks on nodes with lower IO bandwidth, the
optimization process reduces the probability of requests on low IO bandwidth
nodes, which indirectly reduces the number of redundant blocks, which also
reduces decoding delay. But because there is no specialized optimization for de-
coding delay, there is still optimization space. Opt strategy has been specifically
optimized for decoding delay. While ensuring the request queue’s optimization
effect, it also greatly reduces the number of redundant blocks. So opt strategy
achieves the lowest decoding delay among the four strategies. Compared with
the other three strategies, opt strategy reduces the decoding delay by 36.1%,
46.3%, and 30.9%, respectively.

Average file read delay The average file reading delay is a comprehensive
reflection of the strategy optimization effect. It is the composite result of the
previous average block read delay and decoding delay.

As shown in Figure 2(c), due to the disadvantages of the previous average
block read delay and decoding delay, the round-robin strategy has the longest file
access delay among all four strategies. The random strategy is slightly lower than
the round-robin strategy. The sprout strategy optimizes the request queue to re-
duce the average file read delay significantly. Finally, due to the more detailed
optimization of opt strategy, including cache allocation, file block transmission
delay optimization, and decoding delay optimization, we obtain the lowest file

10 Wu, Li et al.

read delay among all strategies. After standardizing the file read latency accord-
ing to file size, opt strategy reduces the file read latency on average of 29.8%,
32.6%, and 19.9% compared to the other three strategies.

4.3 Parameter sensitivity analysis

Redundancy Higher redundancy has better reliability, but it is usually inferior
in decoding delay and file size. During the experiment, we found that redundancy
is an important factor that affects the decoding delay optimization effect. We

redundancy=5/8 redundancy=4/8 redundancy=3/8

ms/MB
ms/MB

0

opt randomround sprout opt randomround sprout opt randomround sprout

Fig. 4. Decoding delay under different settings of parameter k.

use the form of decoding delay at different k values in Figure 4 to show the effect
of varying redundancy on the optimization effect of decoding delay. The redun-
dancy is 5/8, 4/8, 3/8. As the redundancy reducing, the gap between various
strategies is decreasing. That is because as the proportion of redundant blocks
decreases, the optimization for redundant blocks in the optimization strategy

gradually disappears. Finally, the decoding delay approaches the unoptimized
strategy.

Straggler The straggler is a widespread problem in distributed file systems
and distributed computing frameworks. Once a straggler appears in the system,
the entire task is often slowed down due to the bucket effect. Opt optimization
strategy uses redundant read requests to reduce the impact of a straggler.We
artificially restrict slave2. Its network bandwidth was limited to 100mbps to
simulate the situation of a straggler.

4000 S==
— opt 7
—~ -=-- random /_,,;:",
é) —— round //"’
E{ZOOO sprf;_u};//
0 100 200
filesize(MB)

Fig. 5. File read delay when encountering straggler.

As shown in Figure 5, in the case of a straggler, the file read delay of each
strategy increases. But opt strategy initializes a redundant read request before

Optimizing Data Caching and Placement using Erasure Coding 11

the end of the transmission process. Before the last file block arrives, it can enter
the decoding stage, greatly reducing the straggler impact. Therefore, in this
particular case, compared to the other three strategies, opt strategy decreases
the file read delay by 67.5%, 66.9%, 48.0%.

5 Related Work

Liao et al. proposed a data layout strategy for distributed file systems based on
data access frequency in [7]. This method first analyzes the history information
of block access sequence of a specific application, and then uses the k partition
algorithm to divide the files into multiple groups according to the frequency of
data access. Afterward, the data is distributed in groups. In short, this newly
proposed data placement strategy makes the data evenly distributed, and the
data block access rate tends to be balanced.

Vaneet Aggarwal et al. proposed a functional caching method to minimize
service delay in erasure code storage clusters in [1]. This paper optimizes the
caching mechanism in the erasure code storage system. Making the cache blocks
in the cache and the data blocks in the cluster constitute a decoding combination
that conforms to the MDS code. And optimizing the data placement according
to the file access delay.

HE and others investigated the redundancy setting of the Hadoop cluster
in [4]. The default number of backups used in HDFS is 3. That is, each file
block must be stored three times. A higher number of backups means higher
storage resource consumption, but it also brings higher data availability and
data locality. Therefore, a backup method is proposed in the article to backup
more frequently accessed files to improve the performance of data access.

6 Conclusion

To address the long file read delay in distributed file system using erasure-coding
based redundancy policy, we propose a new data cache allocation mechanism and
data placement strategy using simulated annealing and convex optimization, re-
spectively. In addition, we implement our approach in real-world distributed file
system Alluxio. The experiment results show that our approach can effectively
reduce the file read delay by an average of 29.8%, 32.6%, and 19.9%, compared
to traditional random, round and sprout data placement strategies.

Acknowledgements

This work is supported by National Key Research and Development Program
of China (Grant No.2016YFB1000304), National Natural Science Foundation of
China (Grant No. 61502019), and the Open Project Program of the State Key
Laboratory of Mathematical Engineering and Advanced Computing (Grant No.
2019A12). Hailong Yang is the corresponding author.

12 Wu, Li et al.
References
1. Aggarwal, V., Chen, Y.F.R., Lan, T., Xiang, Y.: Sprout: A functional caching

10.

11.

12.

13.

14.

15.

approach to minimize service latency in erasure-coded storage. IEEE/ACM Trans-
actions on Networking 25(6), 3683-3694 (2017)

Aghayev, A., Weil, S.; Kuchnik, M., Nelson, M., Ganger, G.R., Amvrosiadis, G.:
File systems unfit as distributed storage backends: lessons from 10 years of ceph
evolution. In: Proceedings of the 27th ACM Symposium on Operating Systems
Principles. pp. 353-369 (2019)

Bao, H., Wang, Y., Xu, F.: An adaptive erasure code for jointcloud storage of
internet of things big data. IEEE Internet of Things Journal 7(3), 1613-1624 (2019)
Ciritoglu, H.E., Batista de Almeida, L., Cunha de Almeida, E., Buda, T.S., Mur-
phy, J., Thorpe, C.: Investigation of replication factor for performance enhance-
ment in the hadoop distributed file system. In: Companion of the 2018 ACM/SPEC
International Conference on Performance Engineering. pp. 135-140 (2018)

Ding, C., Tang, C.: Infinite families of near mds codes holding t-designs. IEEE
Transactions on Information Theory (2020)

Li, Z., Lv, M., Xu, Y., Li, Y., Xu, L.: D3: Deterministic data distribution for
efficient data reconstruction in erasure-coded distributed storage systems. In: 2019
IEEE International Parallel and Distributed Processing Symposium (IPDPS). pp.
545-556. IEEE (2019)

Liao, J., Cai, Z., Trahay, F., Peng, X.: Block placement in distributed file systems
based on block access frequency. IEEE Access 6, 38411-38420 (2018)

Mazumdar, S., Seybold, D., Kritikos, K., Verginadis, Y.: A survey on data storage
and placement methodologies for cloud-big data ecosystem. Journal of Big Data
6(1), 15 (2019)

Mohan, L.J., Rajawat, K., Parampalli, U., Harwood, A.: Optimal placement for
repair-efficient erasure codes in geo-diverse storage centres. Journal of Parallel and
Distributed Computing 135, 101-113 (2020)

Nicolaou, N., Cadambe, V., Prakash, N., Konwar, K., Medard, M., Lynch, N.:
Ares: Adaptive, reconfigurable, erasure coded, atomic storage. In: 2019 IEEE 39th
International Conference on Distributed Computing Systems (ICDCS). pp. 2195—
2205. IEEE (2019)

Rashmi, K., Chowdhury, M., Kosaian, J., Stoica, 1., Ramchandran, K.: Ec-
cache: Load-balanced, low-latency cluster caching with online erasure coding. In:
12th {USENIX} Symposium on Operating Systems Design and Implementation
({OSDI} 16). pp. 401-417 (2016)

Veeraiah, D., Rao, J.N.: An efficient data duplication system based on hadoop dis-
tributed file system. In: 2020 International Conference on Inventive Computation
Technologies (ICICT). pp. 197-200. IEEE (2020)

Xiang, Y., Lan, T., Aggarwal, V., Chen, Y.F.R.: Joint latency and cost optimiza-
tion for erasure-coded data center storage. IEEE/ACM Transactions on Network-
ing 24(4), 2443-2457 (2015)

Yu, Y., Huang, R., Wang, W., Zhang, J., Letaief, K.B.: Sp-cache: load-balanced,
redundancy-free cluster caching with selective partition. In: SC18: International
Conference for High Performance Computing, Networking, Storage and Analysis.
pp. 1-13. IEEE (2018)

Zhang, X., Cai, Y., Liu, Y., Xu, Z., Dong, X.: Nade: nodes performance awareness
and accurate distance evaluation for degraded read in heterogeneous distributed
erasure code-based storage. The Journal of Supercomputing pp. 1-30 (2019)

