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Abstract. As the application scenarios of convolutional neural net-
work(CNN) become more and more complex, the general CNN accel-
erator based on matrix multiplication has become a new research focus.
The existing mapping methods for converting convolution calculation
into matrix multiplication need to be improved. This paper proposes a
new dynamic mapping model to improve the flexibility and versatility
of matrix multiplication. The dynamic mapping model implements two
algorithms: dynamic residue processing mapping algorithm(DRPMA)
and dilated convolution mapping algorithm(DCMA). The former can
dynamically adjust the mapping method according to the number of
output channels of the convolution layer, improve the utilization of the
multiply-accumulate(MAC) array. The latter extends the efficient sup-
port for Dilated CNNs. For demonstration, we implement an accelerator
with Verilog on Xilinx VC709 FPGA board and test some typical CNN
models. Experimental results show that the general accelerator achieves
high performance and energy efficiency.

Keywords: CNN · Matrix multiplication · Dynamic mapping model ·
FPGA.

1 Introduction

In recent years, CNNs have become one of the most popular models in the
artificial intelligence and shown excellent results in many fields including im-
age classification [6, 15], object recognition [3, 13], video analysis [14, 19], voice
recognition [4, 1]. With the widespread application of CNNs, FPGA-based CNN
accelerators [10, 12, 16, 21, 8, 20, 11, 17, 7, 9, 5, 18, 2]have become a new research
focus. However, the application scenarios of CNNs have become more and more
complex. Deep CNNs have appeared to improve the inference accuracy, Dilated
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CNNs have been used in image segmentation, semantic segmentation to enlarger
the receptive field. Three-dimensional CNNs have been applied to video analysis.
Researchers need to balance the versatility and performance of accelerators to
adapt to complex application scenarios. The increase of CNN parameters and
intermediate results will exceed the storage capacity on the FPGA chip, mak-
ing the accelerator design lose the task-level and layer-level parallelism. It is
necessary to improve the loop-level and operation-level parallelism to increase
accelerator performance. And the application of dilated CNNs requires a more
flexible accelerator architecture to support dilated convolution. In order to en-
able the CNN accelerator to be applied to more scenarios, we need a flexible data
buffering scheme. The data buffering scheme should handle networks with dif-
ferent parameters, support more convolution types, and can dynamically adjust
the data mapping method according network parameters to improve accelerator
performance. In this work, we are motivated to present a new dynamic mapping
model based on general matrix multiplication. Our contributions are shown as
follows:

1. We propose a new dynamic mapping model, combining the DRPMA and
DCMA, which greatly improves the flexibility and versatility of general matrix
multiplication.

2. We provide a uniform general accelerator architecture for two-dimensional,
three-dimensional and dilated CNNs with dynamic mapping model. The accel-
erator can dynamically adapt to different computing modes without reconfig-
uration. The convolutional layer segmentation strategy is introduced to enable
the accelerator to handle CNN-base AI applications of large-scale dimensions.
It achieves high performance with smaller storage and bandwidth resources and
can be ASIC.

3. We implement a RISC-V+CNN heterogeneous system based on the FPGA
platform, Experiments show that the utilization of the MAC array is significantly
improved, the dilated convolution can be performed efficiently, and achieves
an overall throughput of 329.3 GFLOP/s on VGG16 and 354.4GFLOP/s on
Resnet18 respectively.

2 Related Work

At present, CNN accelerators based on FPGA are mainly divided into the follow-
ing four types according to the acceleration methods. The first type is general ma-
trix multiplication CNN accelerators [10, 12, 16]. [10]designed a 2D/3D general
reconfigurable convolutional neural network accelerator. [12]designed a maxi-
mize resource utilization CNN accelerator.The second type is Fast Fourier Trans-
form(FFT) CNN accelerator [21, 8, 20]. [21] designed a highly parallel 2D FFT
CNN accelerator using FFT and Concatenate-and-Pad technique to reduce con-
volutional redundancy calculations. [8]designed a deep CNN accelerator using
embedded FFT. The third type is Winograd CNN accelerator [11, 17, 7].Wino-
grad fast algorithm maps feature to specific domains to reduce the complexity
of the algorithm. [11]designed a sparse and effective Winograd CNN Accelera-
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tor. [17]designed a Winograd CNN accelerator that adapts to large steps. The
fourth type is operator customized CNN accelerator [9, 5, 18]. [9]designed a layer
pipeline optimized CNN accelerator. [5]designed a zero weight/activation-aware
CNN accelerator. To summarize, the general matrix multiplication accelerator
mapping convolutions to matrix multiplications, which has a good versatility.
The FFT acceleration method transforms spatial domain convolution operation
into frequency domain multiplication operation, which reduces the complexity of
the algorithm and is proved to be more effective for the large convolution kernel.
The Winograd acceleration method uses the addition operation to replace the
multiplication operation through the linear mapping, which reduces the complex-
ity of the algorithm, and is mainly suitable for the convolution stride is 1 and the
transform matrices vary with the size of convolution kernels. The customized op-
erator accelerator is optimized according to the algorithm characteristics, which
fully exploits the parallelism of algorithms and has high performance.

These four types of CNN accelerators reflect different design ideas, each has
its own advantages and complements each other. To summarize, there is still a
large space for exploration in the design of accelerators for CNN. Different design
concepts make designers adopt different acceleration methods. Aims to quickly
respond to the changes in the CNN structures and the iterative speed of artificial
intelligence algorithms. We adopt general matrix multiplication method with a
new dynamic mapping model, which fully explores the loop levels parallelism
and support for dilated convolution.

3 CNN Basics and Matrix Multiplication

This section will introduce the operation characteristics of different convolution
types, the method of mapping convolution to matrix multiplication, and analyze
their common characteristics and the existing optimization space.

3.1 2D and 3D Convolution

Figure 1a illustrates the process of 2D convolution. The convolution window
slides along the column and row directions of the image to extract the spatial
information of the image. The input and output feature usually contains multiple
channels. The convolution results of each input channel are then accumulated
resulting in one channel of the output feature. And the process of calculating
other output channels is similar. Figure 1b shows the process of 3D convolution.
Compared with the process of 2D convolution, in addition to sliding along the
row and column directions, 3D convolution also slides along the temporal direc-
tion. In the 3D CNN adds a dimension of L, which represents the convolution
depth in the temporal dimension. [10]indicate that 3D convolutions can be com-
puted in the same way as 2D convolutions by combining the accumulation of the
channel loop and the temporal loop. We also adopt this method in our imple-
mentation. Figure 1c-e illustrate how the convolution window slides across rows
of the input feature. The pixels in gray are involved in convolutions along rows
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Fig. 1. 2D and 3D convolution operations.

are shown as figure 1f. Accordingly, the first row appears in the input feature
1 time, the second row appears in the input feature 2 times, and the third row
appears in the input feature 3 times. The re-usability in the row direction of the
sliding window can be used to improve the parallelism of matrix multiplication.

3.2 Dilated Convolution

a b c

Fig. 2. Dilated convolution operations.

Figure 2 illustrates the process of the dilated convolution. The kernel size
is 3x3 and the rate is 2. Figure 2a to figure 2b illustrate how the convolution
window slides across column of the input feature. Figure 2a to figure 2c illustrate
how the convolution window slides across row of the input feature. Compared to
convolution, the dilated convolution changes the features covered by the convo-
lution window. As shown in the shaded part of figure 2, the feature extraction is
separated by rate-1 in both the row and column directions. We only need to load
the feature according to this pattern, and then dilated convolution and 2D/3D
convolution can use the same computing architecture.
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Fig. 3. Mapping convolutions to matrix multiplication operations.

3.3 Mapping convolutions to Matrix Multiplications

Mapping convolution to matrix multiplication is an efficient implementation on
FPGA. As illustrated in Figure 3, the kernel of the convolutional layer is W
with dimensions of m × c × k × k, the input feature of X with dimensions of
c × h × w, and W and X are convolved to obtain the output feature Y with
dimensions of m × h1 × w1. Where m is the size of output channels, c is the
size of input channels, k is the size of the convolution kernel, h is the size of
input feature height, w is the size of input feature width, h1 is the size of
output feature height, w1 is the size of the output feature width. The matrix
multiplication method of convolution operation compresses the weight W into a
weight matrix Wm, compresses and reorganizes the feature map X into a feature
map matrix Xm. The result of the matrix multiplication is an output matrix Ym
with dimensions of m × (h1 × w1), which is the flattened format of the output
feature. Generally, h is equal to h1 and w is equal to w1, but dilated convolution
combines convolution and downsampling, thus h1 and w1 will become smaller
than h and w. In addition, Xm is almost (k × k)-fold of X because of data
replications during mapping. It can be avoided by reusing the overlapped data
during the sliding of convolutional windows.

4 Accelerator Architecture Design

As illustrated in figure 4, the accelerator architecture has two-level on-chip caches
for the dynamic mapping model. The first level cache is Feature Buffer, Kernel
Buffer and Output Buffer. The second level cache is Feature FIFO and Kernel
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FIFO. The dynamic mapping model includes three sub-mapping models: Feature
Mapping Module, Kernel Mapping Module, and Output Mapping Module. The
following of this section will introduce the MAC Array and Buffer setting and
the detailed mapping process of dynamic mapping model.
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Fig. 4. Accelerator architecture with dynamic mapping model.

4.1 MAC Array and Buffer Setting

The MAC array is computing resource for matrix multiplication. As shown in
figure 4, the MAC array includes mr ×mc MAC units, where mr and mc are
the size MAC array row and column respectively. The MAC unit consists of a
multiplier, an adder, and a register. The register is used to store intermediate
result. The MAC array taps the two loop parallelism of the output channel and
the output feature column direction. Each MAC unit is responsible for calcu-
lating the matrix multiplication result of the corresponding position. Therefore,
the MAC array can calculate mr ×mc elements in parallel. When the feature
matrix and the kernel matrix is relatively large, the matrix can be divided into
blocks. The kernel matrix is divided into d m

mr
e blocks and the feature matrix is

divided intodh1×w1
mc
e blocks.

Limited by the chip area, the depth of the Kernel Buffer is limited. The Kernel
Buffer depth required to load a complete convolutional layer is d×c×k×k. When
the input channel or the convolution kernel is large, or the temporal dimension
parameter of the 3D network is large, the storage space that the layer needs
will exceed the depth of the Kernel Buffer. We need to split a large convolution
layer into the sum of multiple small convolution layers. Similarly, the depth of
the Feature Buffer is also limited. The Feature Buffer depth required to load
k + stride rows feature is d× c× (k + stride)× d w

mc
e, When the convolutional
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layer parameters are too large, it is also necessary to load features in blocks.
Although the additional summation operation to be introduced may affect the
performance of the accelerator, it ensures the versatility of the accelerator.

4.2 Dynamic Mapping Model

DRPMA Matrix multiplication exploits the two loop level parallelism of output
channel and output feature column direction. In CNN, the numbers of output
channels of different convolutional layers vary greatly. For example, the output
channel numbers of VGG16 are 64, 128, 256, 512. When the MAC array are de-
signed with the dimensions of 256 × 32, the residue between the output channels
and the MAC rows are 64, 128, 0 and 0. We cannot make full use of the MAC
array with residue of 64 and 128. Through analysis, we find that the reusability
in the row direction of the sliding window can be used to improve the parallelism
of matrix multiplication when a residue is generated. As the residue changes dy-
namically with the number of output channels of the convolutional layer. We
name the method of dynamic mapping based on residue as DRPMA. Assuming
the residue is R, the parallelism of matrix multiplication can be improved by
DRPMA is n, then the parallelism can be defined by the following formula:

as
mr

R
≥ 2, n = bmr

R
c, 1 ≤ n ≤ k (1)

as 1 ≤ mr

R
≤ 2, n = 1 (2)

DCMA Dilated convolution extract the feature separated by rate− 1 in both
the row and column directions that the reusability in row direction has lost,
which means n = 1. The data reuse of dilated convolution in the column direc-
tion is presented every rate − 1, It is same as convolution when rate = 1. We
can load the feature step by rate − 1 offset, the reusability of convolution and
dilated convolution in the column direction can be utilized through a consistent
pattern. we name the mapping method of reuse data in the column direction
both for convolution and dilated convolution as DCMA. With the two algo-
rithms of DRPMA and DCMA, We can efficiently map convolution and dilated
to matrix multiplication. The following of this section will introduce the details
of mapping methods.

As shown in figure 4, the Feature Mapping Module is connected to the Feature
Buffer and Feature FIFO, and is used to map the feature in the 2 × pad + mc

Block RAMs to mc feature FIFOs. In order to save on-chip memory, the Feature
Buffer only stores the k+stride rows data of the input feature. When performing
matrix multiplication, the Feature Buffer will prefetch the stride rows data from
the external chip. The complete mapping process is as algorithm 1.

As shown in figure 4, the Kernel Mapping Module is connected to the Kernel
Buffer and the Kernel FIFO, and is used to map the kernel from the mr kernel
Block RAMs to the mr kernel FIFOs. In order to save on-chip memory, the
Kernel Buffer only stores the mr rows data in the kernel matrix. The complete
mapping process is as algorithm 2.
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As shown in figure 4, the Output Mapping Module is connected to the MAC
array and Output Buffer, and is used to control the way of convolution results
to Output Buffer. The Output Buffer adopts the Ping-Pong mechanism. The
complete mapping process is as algorithm 3.

Algorithm 1 Generate Feature Matrix

Input: X
Output: Xm

for i = 1, 2, . . . , k + stride
for j = 1, 2, . . . , d× c

for t = 1, 2, . . . , w
do store in 2× pad + mc feature buffer

for i = 1, 2, . . . , k × d× c
for j = 0, rate, . . . , (k − 1)× rate

do send to mc feature fifo

Algorithm 2 Generate Kernel Matrix

Input: W
Output: Wm

for i = 1, 2, . . . ,mr

for j = 1, 2, . . . , k
for t = 1, 2, . . . , d× c

for q = 1, 2, . . . , k
do store in the ith kernel buffer

if n == 1
for i = 1, 2, . . . , k

do store in the ith kernel fifo
else

for j = 1, 2, . . . , n
for t = 1, 2, . . . ,m

do store in the (n×m + t)th kernel fifo

Algorithm 3 Dynamic output mapping algorithm

Input: Yi, The ith results of themc columns
Output: Ym

if n == 1
for i = 1, 2, . . . ,mr

do store theith Yi in the mc column output buffer
else

for j = 1, 2, . . . , n
for i = 1, 2, . . . ,m

do store the tth Yi in the mc column output buffer
wait k × d× c cycles
do store the (n×m + t)th Yi in the mc column output buffer
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5 Evaluation

5.1 Experimental Setup

We evaluate the effectiveness of the dynamic mapping model by implementing
a RISC-V+CNN heterogeneous system prototype on the Xilinx VC709 FPGA
platform with 3600 DSP, 1470 BRAM, and two on-chip DDR. We assign 128 rows
and 16 columns for the MAC array. Accordingly, the kernel buffer has 128 Block
RAMs with depth of 1024, the feature buffer has 26 Block RAMs with depth of
4096, and the Ping-Pong output buffer has 32 Block RAMs with depth of 1024.
The kernel FIFO and feature FIFO have 144 Block RAMs with depth of 512.
Three typical CNNs: VGG16, C3D, and Resnet18 are tested on heterogeneous
system. The CNN parameters and feature are 16-bit floating point. The software
versions are implemented with Caffe on Intel Core i7-4790K CPU@ 4.0GHz.
The clock frequencies of the RISC-V CPU and CNN are 20MHz and 100MHz
respectively.

5.2 Experimental Results

Table 1 reports the hardware resource utilization of our heterogeneous system.
The RISC-V and CNN accelerator consume most of the hardware resources.
RISC-V uses 290 Block RAMs to support for large-capacity data cache and
instruction cache, which can adapt to complex application scenarios. The CNN
accelerator consumes 382 Block RAMs for data buffering, and the heterogeneous
system uses 676 Block RAMs totally. The MAC array consumes 2048 of the 2080
DSP slices for computing matrix multiplications and the other 32 DSP slices are
used for building floating-point arithmetic units.

Table 1. Heterogeneous system resource utilization.

Module DSP BRAM LUT

RISC-V 32 0.8% 290 19.7% 57078 13%
CNN 2048 56.9% 382 26.0% 232752 54%
Sum 2080 57.7% 676 46.0% 307572 71%

The experiment selects VGG16 to test the effectiveness of the DRPMA. Ta-
ble 2 presents the evaluation results of three layers in VGG16. The residues of
conv1a, conv1b, conv2a are 64, 64, and 0 respectively. The MAC array utiliza-
tion and throughput are 83.7% and 342.8GFLOP/s on conv1a and 95.3% and
390.3GFLOP/s on conv1b with DRPMA. Without the DRPMA, the MAC array
utilization and throughput are 42.5% on conv1a and 48.1% and on conv1b. The
MAC array utilization and throughput are the same on conv2a as the R is 0. We
can conclude that the DRPMA almost increases 2x utilization of MAC array.
Additionally, we can reduce MAC array column width to reduce the memory
access bandwidth with DRPMA.
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Table 2. DRPMA performance.

Layer conv1a conv1b conv2a

R 64 64 0
DRPMA 83.7% 342.8 95.3% 390.3 94.2% 385.8

No 42.5% 174.1 48.1% 197.0 94.2% 385.8

The experiment also selects VGG16 to test the performance of the DCMA.
We uses the Hybrid Dilated Convolution method from [1] to set rate group as 1,
2, 5. Table 3 presents the evaluation results. When the rate is 1, the throughput
remains unchanged. When the rate is 2, the MAC array utilization is 89.7%,
a decrease of 5%. This is caused by the load feature time increase and the
idle state of the MAC array increase. When the rate is 5, the utilization of
the MAC array is reduced by 23%. The main reason is that the feature Block
RAMs we set is 26. And the Block RAMs used for padding is 10, which supports
the maximum convolution kernel of the same size output is 11. The dilated
convolution with a rate of 5 is essentially equivalent to the standard convolution
with a convolution kernel of 14. This means that only the first 13 columns of the
MAC array can be used. Therefore, the utilization rate of MAC array decreases
sharply. In conclusion, the DCMA can efficiently support dilated convolution.

Table 3. DCMA performance.

rate 1 2 5

Utilization(%) 94.2% 89.7% 71.6%
Throughput(GFLOP/S) 385.8 367.4 293.3

Table 4 lists the comparisons between the CPU and heterogeneous system.
The heterogeneous system achieves a 5.1x and 5.3x and 24.2x and 32.6x improve-
ment than CPU in VGG16 and Resnet18 in terms of throughput and energy
efficiency respectively. After ASIC, the energy efficiency advantage will be more
obvious.

Table 4. Evaluation results on the CPU and our accelerator.

CNN Model
VGG16 Resnet18

CPU FPGA CPU FPGA

Power(W) 88 13.6 88 13.6
ThroughputGFLOP/S 63.9 329.3 66.5 354.4

Energy Efficiency(GFLOP/s/W) 0.7 24.2 0.8 26.1

Table 5 shows the comparisons with other FPGA platforms. Our heteroge-
neous system achieves an overall throughput of 329.3 GFLOP/s on VGG16 and
310.2GFLOP/s on Resnet18 respectively. The throughput of the heterogeneous
system is better than [16] on VGG16 and lower than [10] on C3D. The usage of
DSP slices determines the throughput to a certain extent. [10] high throughput
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is based on larger MAC array, high on-chip buffering and high bandwidth. When
heterogeneous system runs C3D, the convolutional layer will be split which af-
fects the performance. Our throughput will increase 4x after ASIC which is the
best. It needs to be emphasized that our heterogeneous system is a better choice
after balancing price, versatility and performance.

Table 5. Comparisons with previous accelerator implementations.

[16] [10] ours

FPGA Altera StratixV Xilinx VX690T Xilinx VX690T
Precision fixed fixed float16

CNN Model VGG16 C3D VGG16 C3D
Clock(MHz) 120 120 100

DSPs 727 3595 2080
Throughput(GOP/S) 118 667.7 329.3 310.2

6 Conclusions

This paper studies the mapping methods that convert convolution into matrix
multiplication, and proposes a new dynamic mapping model, which improves the
flexibility and versatility of matrix multiplication. The heterogeneous system
prototype based on FPGA platform verifies the performance of the dynamic
mapping model. And it can be applied to more complex artificial intelligence
scenarios without reconfiguring the FPGA. Future work include demonstrations
on dilated Resnet applications and efficient support of transposed convolution.
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