
HAL Id: hal-03764372
https://inria.hal.science/hal-03764372

Submitted on 31 Aug 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Evaluation of network traffic analysis using approximate
matching algorithms

Thomas Göbel, Frieder Uhlig, Harald Baier

To cite this version:
Thomas Göbel, Frieder Uhlig, Harald Baier. Evaluation of network traffic analysis using approximate
matching algorithms. 17th IFIP International Conference on Digital Forensics (DigitalForensics), Feb
2021, Virtual, China. pp.89-108, �10.1007/978-3-030-88381-2_5�. �hal-03764372�

https://inria.hal.science/hal-03764372
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

This document is the original author manuscript of a paper submitted to an IFIP
conference proceedings or other IFIP publication by Springer Nature. As such, there
may be some differences in the official published version of the paper. Such
differences, if any, are usually due to reformatting during preparation for publication or
minor corrections made by the author(s) during final proofreading of the publication
manuscript.

Chapter 5

EVALUATION OF NETWORK TRAFFIC
ANALYSIS USING APPROXIMATE
MATCHING ALGORITHMS

Thomas Göbel, Frieder Uhlig and Harald Baier

Abstract Approximate matching has become indispensable in digital forensics as
practitioners often have to search for relevant files in massive digital
corpora. The research community has developed a variety of approx-
imate matching algorithms. However, not only data at rest, but also
data in motion can benefit from approximate matching. Examining net-
work traffic flows in modern networks, firewalls and data loss prevention
systems are key to preventing security compromises.

This chapter discusses the current state of research, use cases, valida-
tions and optimizations related to applications of approximate matching
algorithms to network traffic analysis. For the first time, the efficacy of
prominent approximate matching algorithms at detecting files in net-
work packet payloads is evaluated, and the best candidates, namely
TLSH, ssdeep, mrsh-net and mrsh-cf, are adapted to this task. The
individual algorithms are compared, strengths and weaknesses high-
lighted, and detection rates evaluated in gigabit-range, real-world sce-
narios. The results are very promising, including a detection rate of
97% while maintaining a throughput of 4 Gbps when processing a large
forensic file corpus. An additional contribution is the public sharing of
optimized prototypes of the most promising algorithms.

Keywords: Network traffic analysis, approximate matching, similarity hashing

1. Introduction

Data loss prevention systems protect enterprises from intellectual prop-
erty and sensitive data theft. They have become almost indispensable as
legal requirements like the General Data Protection Regulation (GDPR)
in the European Union levy high fines when consumer data is accessed
by unauthorized parties.

90 ADVANCES IN DIGITAL FORENSICS XVII

In October 2020, the German software company Software AG was hit
with a ransom demand of 23 million euros in exchange for the decryption
password and the promise not to disclose 1 TB of internal company docu-
ments and customer data [19]. Software AG products are used by 70%
of Fortune 1,000 companies. In addition to the ransom, recovery costs
and loss of reputation incurred by Software AG, the damage extended
to the enterprise environments of hundreds of its customers.

In June 2016, Russian hackers using the Guccifer 2.0 pseudonym stole
tens of thousands of email and documents, including 8,000 attachments
from the U.S. Democratic National Committee. The public release of
the stolen documents on WikiLeaks constituted an attempt to actively
influence the 2016 U.S. presidential election [16].

The two incidents demonstrate the costs of data protection failures.
Also, they underscore the importance of checking data flows at transition
points in networks. Whether this is accomplished using intrusion detec-
tion/prevention systems or data loss prevention systems, transparency
at network transition points is vital to protecting sensitive data. En-
terprise networks host a variety of platforms for data and file exchange.
Emerging technologies, such as cloud platforms and workstream collab-
oration platforms (e.g., Slack and Mattermost), simplify data exchange
in enterprises. However, they increase the risk of sensitive data leaving
the premises of controlled networks and falling into the wrong hands.

To reduce the risk of data leakage, data loss prevention solutions must
be implemented in networks, at network endpoints and in the cloud. A
single data loss protection solution is ineffective; rather, a multi-tiered
approach is needed to protect an enterprise infrastructure from unautho-
rized data access. Indeed, an orchestrated solution involving endpoints,
storage and networks is advised [1]. Such a solution filters data at rest,
data in use and data in motion to prevent the data from leaving the vir-
tual premises of an enterprise. Since most data loss prevention systems
are closed-source solutions, without internal knowledge of these prod-
ucts, it is difficult to judge their protection scopes and effectiveness.

Most commercial data loss protection solutions fall into one or com-
binations of three categories:

Endpoint Protection: These solutions involve desktop and/or
server agents that enable security teams to monitor data at end-
points. Predefined rules and blacklists prevent users from copying
data (in use) to removable devices or transferring data to unau-
thorized web destinations.

Storage Protection: These solutions focus on securing data at
rest. Several cloud-based solutions fall in this category. Many

Göbel, Uhlig & Baier 91

of them protect intellectual property on Amazon AWS or Google
Cloud platforms. They achieve their goals in part through access
restrictions and blacklisting.

Network Protection: These solutions protect data in motion,
specifically at the ingress and egress points of enterprise networks.
Many solutions prevent leakage by analyzing network packet meta-
data. Although network packet content analysis is hindered by
encryption (approximately 80% of traffic is currently encrypted
and the trend is towards total encryption), it is feasible for en-
terprises to place these solutions in-line with their network ap-
pliances. Products such as Sophos XG Firewall, Symantec Data
Loss Prevention and Fortinet’s Fortigate DLP integrate decryption
functionality of TLS 1.3 communications. These are the network
points at which the research discussed in this chapter is directly
applicable. Decryption is necessary because encrypted packets are
uniformly distributed and lack the recognizable features needed to
leverage approximate matching.

This research focuses on preventing data loss in network environments.
Approximate matching can be used to identify files in unencrypted net-
work packet payloads. The goal is to transform theoretical concepts into
reality and craft feasible solutions for identifying files with high accu-
racy while maintaining low failure rates at gigabit throughputs. Note
that the approach does not involve prior inspection of unencrypted pay-
loads to determine relationships between packets via string matching.
Deep packet inspection methods can detect the transmission of sensi-
tive content hidden in files. Since the majority of data loss occurs not
via complete files but through portions of files being reformatted within
another file or context (e.g., the Open Document Format compresses
the actual contents), deep packet inspection aids data loss prevention
via pattern matching and may find compressed portions of mixed files.
However, these measures are not employed in this work.

This research demonstrates how file recognition in network traffic can
be improved via approximate matching. The performance of prominent
approximate matching algorithms is evaluated. First, file detection rates
in an idealized setting are assessed without added noise from live traffic.
The detection rates and maximum throughputs of the algorithms are
measured. The best-performing algorithm is subsequently applied to live
traffic and its performance is examined in detail. All the algorithms were
adapted for packet filtering in that they were connected to a network
interface and invoked whenever a packet was picked up by the interface.

92 ADVANCES IN DIGITAL FORENSICS XVII

Reasons for the variations in the true positive and false positive detec-
tion rates between the approximate matching algorithms are discussed.
In fact, this work is the first to use prominent approximate matching
algorithms to match files in real-world network traffic. Additionally, the
two best approximate matching algorithms are adapted for efficient and
effective real-time filtering of network traffic.

2. Foundations and Related Work

Approximate matching was first employed in digital forensics in the
mid-2000s. The U.S. National Institute of Standards and Technology
(NIST) [8] defines approximate matching as “a promising technology
designed to identify similarities between two digital artifacts ... to find
objects that resemble each other or to find objects that are contained
in another object.” Approximate matching algorithms achieve this goal
using three approaches [23]:

Bytewise Matching: This type of matching, referred to as fuzzy
hashing or similarity hashing, operates at the byte level and only
takes byte sequences as inputs.

Syntactic Matching: This type of matching takes bytes as in-
puts but also relies on internal structure information of the sub-
jects that are intended to be matched (e.g., header information in
packets may be ignored).

Semantic Matching: This type of matching, which focuses on
content-visual differences, resembles human recognition. For ex-
ample, JPG and PNG images may have similar content (i.e., pic-
tures), but their filetypes and byte streams are different.

Four types of approximate matching approaches are relevant to this
work [25]:

Context-Triggered Piecewise Hashing (CTPH): This ap-
proach locates content markers (contexts) in binary data. It com-
putes the hash of each document fragment delimited by contexts
and stores the resulting sequence of hashes. In 2006, Kornblum [24]
created ssdeep, one of the first algorithms that computed context-
triggered piecewise signatures. The algorithm produces a match
score from 0 to 100 that is interpreted as a weighted measure of
file similarity, where a higher score implies greater similarity.

Block-Based Hashing (BBH): This approach generates and
stores cryptographic hashes of fixed-size blocks (e.g., 512 bytes).

Göbel, Uhlig & Baier 93

The block-level hashes of two inputs are compared by counting the
number of common blocks and computing a measure of similarity.
An example implementation is dcfldd [22], which divides input
data into blocks and computes their cryptographic hash values.
The approach is computationally efficient but it is highly unstable
because adding or deleting even a single byte at the beginning of
a file changes all the block hashes.

Statistically-Improbable Features (SIF): This approach iden-
tifies a set of features in each examined object and compares the
features; a feature in this context is a sequence of consecutive
bytes selected according to some criteria from the file in which the
object is stored. Roussev [30] used entropy to find statistically-
improbable features. His sdhash algorithm [31] generates a score
between 0 and 100 to express the confidence that two data objects
have commonalities.

Block-Based Rebuilding (BBR): This approach uses external
auxiliary data corresponding to randomly-, uniformly- or fixed-
selected blocks (e.g., binary blocks) of a file, to reconstruct the
file. It compares the bytes in the original file with those in the se-
lected blocks and computes the differences between them using the
Hamming distance or another metric. The differences are used to
find similar data objects. Two well-known block-based rebuilding
algorithms are bbHash [5] and SimHash [34].

Locality-Sensitive Hashing (LSH): This approach from the
data mining field is technically not an approximate matching ap-
proach. It is considered because it is often employed in a similar
context as approximate matching.

Locality-sensitive hashing is a general mechanism for nearest neigh-
bor search and data clustering whose performance strongly relies
on the hashing method. An example is the TLSH algorithm [26],
which processes an input byte sequence using a sliding window to
populate an array of bucket counts and determines the quartile
points of the bucket counts. A fixed-length digest is constructed,
which comprises a header with the quartile points, input length and
checksum, and a body comprising a sequence of bit pairs that de-
pend on each bucket’s value in relation to the quartile points. The
distance between two digest headers is determined by the differ-
ences in file lengths and quartile ratios. The bodies are compared
using their approximate Hamming distance. The similarity score

94 ADVANCES IN DIGITAL FORENSICS XVII

is computed based on the distances between the two headers and
the two bodies.

2.1 Current State of Approximate Matching

In 2014, Breitinger and Baggili [4] proposed an approximate matching
algorithm for filtering relevant files in network packets. The algorithm
divides input files into 1,460 byte sequences, which simulates packets
with maximum transmission units of 1,500 bytes less 20 bytes each for
the IP and TCP headers. It achieved false positive rates between 10−4

and 10−5 for throughputs exceeding 650 Mbps.
The algorithm of Breitinger and Baggili was evaluated using simu-

lated network traffic [4]. In contrast, this research has tested algorithms
using real network traffic to understand their real-world applicability;
additionally, this work has conducted experiments with variable packet
sizes. Another key issue is that the throughput of 650 Mbps reported
by Breitinger and Baggili was achieved without parallelization. In fact,
they noted that parallelization could increase the speed significantly be-
cause hashing packets and performing comparisons with a Bloom filter
can be done in an unsynchronized manner [10].

Since 2014, there has been little progress in advancing approximate
matching in the network context. This is largely due to the encryption
of network traffic payloads, which prevents file detection.

However, significant improvements have been made to approximate
matching algorithms. Cuckoo filters, which are more practical than
Bloom filters [17], have been adapted to approximate matching in digital
forensic applications [21]. Researchers have also proposed improvements
to Bloom and cuckoo filters such as XOR filters that are faster and
smaller than Bloom filters [20], Morton filters that are faster, compressed
cuckoo filters [11] and hierarchical Bloom filter trees that are improved
Bloom filter trees [28]. However, it remains to be seen if the application
of these improved filters to approximate matching will provide better file
recognition performance.

2.2 Approximate Matching Algorithms

Filters are constantly being improved by the research community.
However, approximate matching algorithms that employ filters and un-
derlying matching methods advance more slowly. The following approx-
imate matching algorithms are used frequently:

MRSH: Algorithms in the multi-resolution similarity hash (MRSH)
family are based on ssdeep and, thus, employ context-triggered
piecewise hashing. Roussev et al. [33] created the original mrshash

Göbel, Uhlig & Baier 95

algorithm, which was subsequently improved to MRSH-v2, a faster
version [6]. The algorithm also provides a fragment detection mode
and the ability to compute file similarity.

Most relevant to this research are two variants of MRSH-v2. The
mrsh-net algorithm [4] is a special version of MRSH-v2 created for
network packet filtering; it is also the first approximate matching
algorithm to be evaluated in a network context. The mrsh-cf

algorithm [21] is a special version of mrsh-net that replaces the
Bloom filter with a cuckoo filter, providing runtime improvements
and much better false positive rates.

The latest variant of the MRSH family, mrsh-hbft, uses hierarchical
Bloom filter trees instead of conventional Bloom filters. Lillis et
al. [28] have demonstrated that the hierarchical Bloom filter trees
used in mrsh-hbft improve on the original MRSH-v2 algorithm,
which uses a standard Bloom filter. However, as discussed later,
the mrsh-cf algorithm is still unmatched in terms of speed and
accuracy, which is especially important in network applications.

mvHash-B: The mvHash-B algorithm [3] employs block-based and
similarity-preserving hashing, but also relies on majority voting
and Bloom filters. It is highly efficient with very low runtime com-
plexity and small digest size. The algorithm exhibits weaknesses
to active adversaries [13], but these issues are now addressed [13].
A caveat is that the algorithm must be adjusted for every filetype.
The original algorithm only applied to JPG and DOC files.

FbHash: The FbHash algorithm [12] builds on the mvHash-B algo-
rithm. However, its source code is not published, so the algorithm
cannot be adapted to network traffic analysis. Moreover, the algo-
rithm is limited to a small set of filetypes.

sdhash: Roussev [31] developed the sdhash algorithm four years
after the release of ssdeep. The sdhash algorithm uses hashed
similarity digests as a means of comparison. A similarity digest
contains statistically-improbable features in a file. The sdhash

algorithm has been thoroughly evaluated against its predecessor
ssdeep [7]. It detects correlations with finer granularity than
ssdeep, which makes it a viable candidate [27]. However, a run-
time comparison by Breitinger et al. [9] has demonstrated that
MRSH-v2 outperforms sdhash by a factor of eight. MRSH-v2 is cho-
sen over sdhash in this research because of its superior runtime
performance and similar ability to correlate small fragments.

96 ADVANCES IN DIGITAL FORENSICS XVII

TLSH: TLSH developed by Oliver et al. [26] is an adaptation of the
Nilsimsa hash [15] used for spam detection. As mentioned above,
TLSH is not an approximate matching algorithm because it is based
on locality-sensitive hashing that does not conform to the approx-
imate matching definition [8]. TLSH uses the Hamming distance
between Bloom filters to compare hashes and provides similarity
scores ranging from 0 to 1,000. TLSH has worse performance than
ssdeep and sdhash, with sdhash consistently recognizing files at
the smallest granularity. TLSH is extremely robust to random ma-
nipulations such as insertions and deletions in a file. However,
it produces high false positive rates and is slightly slower than
mrsh-net.

ssdeep: The ssdeep algorithm is commonly used in digital foren-
sics. It is implemented on several platforms [35] and is the de
facto standard in some cyber security areas [29]. Applications
such as VirusTotal are based on ssdeep. The algorithm generates
a signature file that depends on the actual file content. It is used
to compare two signature files or a signature file against a data
file; the results are the same in both cases and the use of one or
other method depends on the available data. Although ssdeep is
a key achievement in similarity detection and is still relatively up-
to-date, some limitations have been identified recently, for which
certain enhancements and alternative theoretical approaches have
been suggested [2].

Table 1 presents a detailed evaluation of approximate matching algo-
rithms for network traffic analysis. Note that the mrsh-cf algorithm is
the 2020 version with a newer cuckoo filter.

3. Controlled Study

As discussed in Section 2.2, based on their reliability and performance,
three algorithms are best suited to network traffic analysis: (i) ssdeep,
(ii) TLSH and (iii) MRSH (mrsh-net and mrsh-cf variants). The perfor-
mance, speed and applicability of the algorithms were first evaluated
with respect to data at rest. Next, the three algorithms were evaluated
on their ability to deal with live network packets. In the case of the
MRSH family, the mrsh-net variant was evaluated as the first algorithm
capable of filtering network traffic whereas the mrsh-cf was evaluated
as a faster and more reliable version of mrsh-net.

The algorithms were evaluated using the well-known t5-corpus, which
contains 4,457 files with a total size of 1.8 GB [32]. The average file size
is almost 420 KiB. Table 2 shows the composition of the t5-corpus. Note

Göbel, Uhlig & Baier 97

T
a
bl

e
1
.

E
va

lu
a
ti

o
n
s

o
f

a
p
p
ro

x
im

a
te

m
a
tc

h
in

g
a
lg

o
ri

th
m

s.

m
rs
h
-c
f

m
rs
h
-n

e
t

m
v
H
a
sh

-B
sd

h
a
sh

T
L
S
H

ss
d
e
e
p

F
b
H
a
sh

m
rs
h
-h

b
ft

S
p
e
e
d

3
7
%

ru
n
ti

m
e

F
a
st

er
th

a
n

L
ow

es
t

N
o

cu
rr

en
t

N
o

cu
rr

en
t

T
w

ic
e

a
s

fa
st

N
o

cu
rr

en
t

N
o

cu
rr

en
t

im
p
ro

v
em

en
t

m
r
s
h
-
v
2

ru
n
ti

m
e

b
en

ch
m

a
rk

s
b

en
ch

m
a
rk

s
a
s
T
L
S
H

(2
0
1
7

b
en

ch
m

a
rk

s
b

en
ch

m
a
rk

s
ov

er
m
r
s
h
-
n
e
t

co
m

p
le

x
it

y
v
er

si
o
n
)

F
ra

g
m
e
n
t

S
m

a
ll

S
m

a
ll

N
A

5
%

S
m

a
ll

2
0

to
5
0
%

1
%

N
A

D
e
te

c
ti
o
n

o
f

o
ri

g
in

a
l

R
e
m
a
rk

s
F

a
st

es
t
M
R
S
H

S
p

ec
ia

l
L

im
it

ed
to

M
R
S
H

a
lg

o
ri

th
m

s
U

se
d

fo
r

fi
le

C
a
n
n
o
t

h
a
sh

U
n
p
u
b
li
sh

ed
P

re
fe

ra
b
le

a
lg

o
ri

th
m

v
er

si
o
n

o
f

a
fe

w
fi
le

a
re

m
o
re

si
m

il
a
ri

ty
fi
le

s
ov

er
co

d
e

a
n
d

in
ca

se
s

m
r
s
h
-
v
2

ty
p

es
eff

ec
ti

v
e,

b
u
t

in
st

ea
d

o
f

2
G

B
li
m

it
ed

to
w

it
h

fo
r

n
et

w
o
rk

s
d
h
a
s
h

is
fi
le

id
en

ti
-

D
O

C
fi
le

m
em

o
ry

tr
a
ffi

c
sl

ig
h
tl

y
fi
ca

ti
o
n

ty
p

es
li
m

it
a
ti

o
n
s

m
o
re

a
cc

u
ra

te

B
a
si
s

C
o
n
te

x
t-

C
o
n
te

x
t-

B
lo

ck
-b

a
se

d
S
ta

ti
st

ic
a
ll
y
-

L
o
ca

li
ty

-
C

o
n
te

x
t-

T
er

m
fr

eq
u
en

cy
C

o
n
te

x
t-

tr
ig

g
er

ed
tr

ig
g
er

ed
h
a
sh

in
g

im
p
ro

b
a
b
le

se
n
si

ti
v
e

tr
ig

g
er

ed
in

v
er

se
tr

ig
g
er

ed
p
ie

ce
w

is
e

p
ie

ce
w

is
e

fe
a
tu

re
s

h
a
sh

in
g

p
ie

ce
w

is
e

d
o
cu

m
en

t
p
ie

ce
w

is
e

h
a
sh

in
g
,

h
a
sh

in
g
,

h
a
sh

in
g

fr
eq

u
en

cy
,

h
a
sh

in
g
,

C
u
ck

o
o

fi
lt

er
B

lo
o
m

fi
lt

er
si

m
il
a
r

to
H

ie
ra

rc
h
ic

a
l

m
v
H
a
s
h
-
B

B
lo

o
m

fi
lt

er

L
a
te

st
2
0
2
0

2
0
1
5

2
0
1
2

2
0
1
3

2
0
2
0

2
0
1
7

2
0
1
8

2
0
1
8

V
e
rs
io
n

98 ADVANCES IN DIGITAL FORENSICS XVII

Table 2. t5-corpus composition.

JPG GIF DOC XLS PPT PDF TXT HTML

362 67 533 250 368 1,073 711 1,093

that the t5-corpus is a subset of the GovDocs corpus, which was created
by crawling U.S. Government websites [18]. Due to the data collection
process, it is assumed that the corpus has multiple related files.

Table 3. Time requirements for filter generation and application.

mrsh-cf mrsh-net ssdeep TLSH mrsh-hbft

Filter Generation 12.51 s 32.90 s 14.90 s 17.18 s 274 s
All vs. All 12.94 s 67.84 s 27.37 s 78.29 s 300 s

3.1 All vs. All Evaluation

The All vs. All evaluation sets algorithm performance baselines us-
ing data at rest. Each algorithm first generated a filter of the t5-
corpus. Next, each algorithm with its filter was given the entire t5-
corpus (1.8 GB) to process. Table 3 shows the time requirements for the
algorithms to generate the filter and apply it to every file in the corpus.

Speed is a key indicator of the suitability of an algorithm for detecting
files in network traffic. This is why the performance of each algorithm
was evaluated when matching the t5-corpus with itself. Three of the
algorithms are capable of performing small fragment detection, which
is important for file matching in network packets. ssdeep is limited in
this regard, but it has a well-maintained code base [35] and is claimed
to be twice as fast as TLSH, which is why it is considered in the eval-
uation. Variants of ssdeep [25] have addressed the problem related to
small fragment detection, so the ssdeep the algorithm can no longer be
excluded on this basis. For reference, the mrsh-hbft algorithm is very
slow compared with the other algorithms; it would be much too slow for
network traffic analysis.

3.2 Evaluation Methodology

Since it is difficult to evaluate algorithm performance in a real net-
work with high precision, a controlled evaluation environment was cre-

Göbel, Uhlig & Baier 99

ated. The environment incorporated a network interface that listened to
traffic coming in from a virtual server and destined to a virtual client.
Only unencrypted TCP packets were transmitted because they led to
the HTTP and FTP network packets that were dominant in file trans-
mission. As mentioned earlier, dealing with encrypted traffic is outside
the scope of this research.

In the experiments, each packet was stripped off its header and its
payload was compared against the target hash. Since none of the selected
algorithms had a built-in live filtering function for network traffic, this
feature was added to each algorithm. The loopback interface was used
to pass unencrypted TCP packets to each algorithm, which reported
whether or not the payloads were recognized.

Most approximate matching algorithms only confirm how many chunks
of a target hash are found in input data. Therefore, if the hashes of
multiple files are compared against a single file, an algorithm can only
tell if a file is present, not which file from among all the others. When
filtering packet payloads, this means that an algorithm can tell if a packet
contains a hash, but not which file is contained when multiple files are
identified. This means that packet payloads matched by an algorithm
have to be verified later.

When a packet payload is matched as belonging to a file, the payload
is concatenated with all the other matched payloads and fed back to the
algorithm after passing through the network filtering component. Since
the order in which the randomly-chosen files were sent and their sizes
were recorded, a second comparison of the packet payloads against the
corpus of all possible files was performed to reveal whether each algo-
rithm correctly identified the files transferred over the network interface.
The only alternative would be to modify each algorithm to concretely
identify one file out of many, but this could degrade the performance of
the algorithm in a manner that was not intended by its developers.

Each algorithm essentially has a filter of the entire t5-corpus that it
compares against each packet and, thus, identifies the files that were
transmitted. A curl job on the client side pulled random files with ad-
justable throughputs over the loopback interface. The files were recorded
along with whether or not they were recognized by the algorithm. The
bandwidth of the algorithm was limited by its ability to recognize a pay-
load before the next payload arrived. If the algorithm was still handling
a payload when a new payload arrived on the network interface, then the
new payload was lost. Thus, the algorithm could not recognize all the
files that passed through. As the throughput increased, the file detection
rate decreased.

100 ADVANCES IN DIGITAL FORENSICS XVII

0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
0

10

20

30

40

50

60

70

80

90

100

Throughput (Gbps)

F
il
e

R
e
c
o

g
n

it
io

n
(%

)

mrsh-cf

mrsh-net

TLSH

ssdeep

Figure 1. Initial throughput evaluations using the t5-corpus.

Figure 1 presents the results of initial evaluations of all the algorithms.
The evaluations were performed on a workstation with a 3.5 GHz Intel
Core i7-7500U mobile CPU (single-threaded). The throughput was in-
cremented in steps of 250 Mbps and runs were performed ten times for
each algorithm. The results show the efficacy of the algorithms at recog-
nizing the randomized t5-corpus transferred over the loopback interface
at various throughputs. Note that the non-optimized evaluations com-
pared packet payloads against the algorithm hashes. The deviations over
several runs were negligible. The evaluations demonstrate the ability of
the algorithms to filter files correctly. Only true positives were consid-
ered, no false positives. Note that the filter performance of most of the
algorithms decreased rapidly as the throughput increased.

The following statements can be made about the algorithms:

The TLSH algorithm can detect finer-grained similarities compared
with ssdeep, but it is more focused on differentiation than iden-
tification. TLSH returns a score for each comparison, where zero
indicates a perfect match and higher scores indicate that the files
are less similar. Only scores below 300 were accepted because they
were either true or false positives. If the scoring threshold is set to
a number below 300, there is a risk of not recognizing all the files.
The 300 score appears to be the right threshold; if distances be-
yond this score are accepted, then the false positive rate becomes
too high and would include true positives by accident. TLSH, which
is best suited to evaluate the degree of similarity between two files,
is used by VirusTotal to determine the similarities between mal-
ware variants. When TLSH was used to identify a single file in the

Göbel, Uhlig & Baier 101

t5-corpus (with no time constraints and counting all files below
300 as positives), up to 100 false positives were recorded depend-
ing on the filetype. Not visible in this evaluation, but nevertheless
noteworthy, is that TLSH had a high false positive rate.

The ssdeep algorithm was only able to detect file fragments con-
taining 25-50% of the original files [27]. This issue may have been
addressed in later versions of the algorithm. The evaluation used
the standard version of ssdeep [35], which struggled to identify
small fragments. With regard to the visibility of files on a per-
payload basis, this means that smaller payloads cannot be matched
correctly. The results show that ssdeep can filter some files at high
throughputs that the other algorithms cannot handle. This is seen
in Figure 1 as the long flattening curve that reaches 3.25 Gbps
on the x-axis. The inability of ssdeep to match small fragments
contained in payloads leads to poor detection rates.

The evaluations reveal that mrsh-cf is by far the most powerful al-
gorithm. Its superior cuckoo filter yields much better results than
its predecessor mrsh-net. Further improvements were obtained
because the mrsh-cf version used in this research incorporated
an improved cuckoo filter compared with the original version. In
the original mrsh-net evaluation [4], input packets had a uniform
size of 18 chunks, and if 12 out of 18 chunks were found by the
filter, then the packet was considered a match. As explained in
Section 2.1, the evaluations conducted in this research employed
variable-size payloads to better simulate real-world network sce-
narios.

The mrsh-net algorithm was the only one originally intended for a
network traffic matching scenario. The high discrepancy between
the maximum throughput of 650 Mbps with a 99.6% true positive
rate reported by the algorithm developers [4] and the results ob-
tained in this research is probably due to the network scenarios
being very different. Specifically, the developers of mrsh-net eval-
uated it in a simulated network scenario in which the t5-corpus
was divided into equal-sized chunks (average TCP payload size of
1,460 bytes) that were input to the algorithm. The algorithm per-
formed rather poorly in this evaluation due to the reduced runtime
efficiency in a real network environment.

A closer investigation was conducted on the two best performing al-
gorithms, TLSH and mrsh-cf. The interesting result is that the certainty
with which the algorithms identified positives differed considerably. The

102 ADVANCES IN DIGITAL FORENSICS XVII

Table 4. mrsh-cf error rates for various throughputs.

Throughput (Mbps)
Measure 500 1,000 1,500 2,000 2,500

True Positives 2,000 2,000 2,000 1,997 1,891
False Positives 1,904 1,764 1,703 1,205 1,002
Average False Positive Size (%) 2.41 3.77 6.03 8.25 9.00
Average True Positive Size (%) 83.0 79.5 64.9 59.5 49.5

mrsh-cf algorithm found most chunks to be true positives and the false
positives were mostly due to less than 10% matches of a file. Further
filtering of false positives could be accomplished by applying a thresh-
old. For example, if a file is identified with less then 10% of its chunks,
then it is most likely a false positive and may be ignored. However, this
applies only when a file is transferred in its entirety. When portions of
a file are transferred, this heuristic might lead to false negatives.

In contrast, the TLSH algorithm identified true and false positives with
the same certainty when the threshold for a positive was set below 300 (of
1,000). Positives were all identified as being 80% identical to the input
file. Unlike, the mrsh-cf algorithm, a true positive is indistinguishable
from among all the positives found by TLSH. This makes mrsh-cf the
preferred algorithm for detecting unmanipulated files.

4. Experimental Results and Optimizations

In the evaluations, the mrsh-cf algorithm consistently achieved the
highest detection rates of all algorithms. Using mrsh-cf as an exemplar,
experiments were conducted to demonstrate the significance of the false
positive rate and how an algorithm can be optimized using a heuristic.
In the case of an approximate matching algorithm, a false positive cor-
responds to a file that was falsely matched. If an approximate matching
algorithm is used to blacklist files in network traffic, then a high false
positive rate can significantly reduce its utility.

Table 4 shows the number of false positives obtained for various
throughputs. The main observation is that the number of false posi-
tives decreases with higher throughputs. This is because there are too
many packets at higher throughputs and the mrsh-cf algorithm is un-
able to keep up and match all the data against the filter. Nevertheless,
the ratio of true positives to false positives remains around 1/3.

The mrsh-cf algorithm is impractical as a packet filter because it
drops too much traffic. In fact, it drops a packet as soon as it recognizes

Göbel, Uhlig & Baier 103

a file in its filter; this is the most aggressive form of payload filtering.
However, the experiments show that this can be adjusted to increase ac-
curacy while decreasing speed. The average false positive size shows how
much of a false positive file was recognized on average. The algorithm
can be adjusted based on this value to reduce its false positive rate, for
example, by requiring at least x% of a file to be found before it is con-
sidered a match. With this threshold, the algorithm can be adjusted to
mark files as positive only if a certain percentage of the target hash has
been recognized. A suitable threshold enabled the false positive rate of
the algorithm to be reduced by approximately 90%.

As mentioned above, in its fastest “mode,” mrsh-cf can only deter-
mine the presence of a filter file in a payload. It can reveal how many
chunks in the filter match the input payload, but not the exact file that
matched because the filter does not hold this information. Only through
exclusion – comparing file after file with the payload — can the algorithm
narrow down the exact matching file.

The algorithm detection rate could be improved by chaining multiple
instances of the algorithm that run in different modes. Harichandran
et al. [23] have hinted at this possibility. First, a rapid (rough) pre-
selection is performed using an instance of the algorithm that compares
payloads against the filter. Next, all the positives are compared by
individual instances of the algorithm that compare them against every
file in the filter. As Breitinger and Baggili [4] have remarked, hashing
algorithms can greatly benefit from parallelization by using multiple
threads to compare hashes. As discussed below, the behavior of each
of the selected algorithms was evaluated under multi-threading. The
results for mrsh-cf, the fastest adapted algorithm, are presented.

Figure 2 shows that delegating the comparison task to two threads
that do not require synchronization increased the throughput at which
all the files were detected correctly by 100%. Specifically, the single
threaded version attributed files 100% correctly at a maximum through-
put of 1.5 Gbps whereas adding a second thread increased the through-
put at which all files were detected correctly to 3 Gbps. Triple threading
increased the throughput even further to 4 Gbps with a recognition rate
of 97%. It can be assumed that adding more threads, which is not a
problem with modern hardware, would increase the throughput even
more while keeping the recognition rate constant.

However, the robustness of the algorithm may become an issue. At
this time, noise and entangled files encountered in live traffic scenarios
negatively impact robustness. Breitinger and Baggili [4] have demon-
strated that pre-sorting the files using common substring filtering and

104 ADVANCES IN DIGITAL FORENSICS XVII

2.0 2.25 2.5 2.75 3.0 3.25 3.5 3.75 4.0 4.25 4.5 4.75 5.0 5.25 5.5
0

10

20

30

40

50

60

70

80

90

100

Throughput (Gbps)

F
il
e

R
e
c
o

g
n

it
io

n
(%

)

mrsh-cf

with (2 threads)

with (3 threads)

Figure 2. Throughput evaluations using the t5-corpus (threaded and normal).

measures of anti-randomness greatly benefit the application of the algo-
rithm in live traffic scenarios.

5. Conclusions

This research has investigated the ability of prominent approximate
matching algorithms to detect files in network traffic for purposes of
data loss protection. In modern gigabit environments, network-focused
data loss prevention solutions must be fast and reliable. For the first
time, an effort has been made to adjust approximate matching algo-
rithms to reliably recognize files at throughputs in the gigabit range.
Optimizations have been introduced to render the algorithms more vi-
able for live traffic detection. Indeed, the best algorithm, mrsh-cf, de-
tects 97% of all files at a throughput of 4 Gbps in an idealized scenario.
Open-source technology has been employed throughout this research
and the algorithms are available to the digital forensics community at
github.com/dasec/approx-network-traffic.

Future research will investigate techniques to reduce the false posi-
tive rates encountered when applying approximate matching algorithms
in real-world network environments. The potential of matching several
packets simultaneously to increase precision and incorporating multi-
threading to enhance file detection and throughput will be examined
and the results integrated in the algorithms. Another problem involves
reducing the bottleneck during payload inspection. Future work will also
explore other promising approximate matching algorithms for file match-
ing in network traffic; for example, Charyyev and Gunes [14] have shown
that Nilsimsa hashes of Internet of Things traffic can be used as means

Göbel, Uhlig & Baier 105

for identification. A compelling problem is to perform holistic filtering
of network traffic that would enable entire sets of network communica-
tions to be filtered by approximate matching techniques and matched
by content and/or origin. This would address the challenges that en-
cryption imposes on visibility in modern networks while refraining from
TLS inspection.

Acknowledgement

This research was supported by the German Federal Ministry of Edu-
cation and Research under Forschung an Fachhochschulen (Contract no.
13FH019IB6) and the Hessian Ministry of Higher Education, Research,
Science and the Arts via their joint support of the National Research
Center for Applied Cybersecurity ATHENE.

References

[1] S. Alneyadi, E. Sithirasenan and V. Muthukkumarasamy, A survey
of data leakage prevention systems, Journal of Network and Com-
puter Applications, vol. 62, pp. 137–152, 2016.

[2] H. Baier and F. Breitinger, Security aspects of piecewise hashing
in computer forensics, Proceedings of the Sixth International Con-
ference on IT Security Incident Management and IT Forensics, pp.
21–36, 2011.

[3] F. Breitinger, K. Astebol, H. Baier and C. Busch, mvHash-B – A
new approach for similarity-preserving hashing, Proceedings of the
Seventh International Conference on IT Security Incident Manage-
ment and IT Forensics, pp. 33–44, 2013.

[4] F. Breitinger and I. Baggili, File detection in network traffic using
approximate matching, Journal of Digital Forensics, Security and
Law, vol. 9(2), pp. 23–36, 2014.

[5] F. Breitinger and H. Baier, A fuzzy hashing approach based on
random sequences and Hamming distance, Proceedings of the An-
nual ADFSL Conference on Digital Forensics, Security and Law,
pp. 89–100, 2012.

[6] F. Breitinger and H. Baier, Similarity-preserving hashing: Eligible
properties and a new algorithm MRSH-v2, in Digital Forensics and
Cyber Crime, M. Rogers and K. Seigfried-Spellar (Eds.), Springer,
Berlin Heidelberg, Germany, pp. 167–182, 2013.

106 ADVANCES IN DIGITAL FORENSICS XVII

[7] F. Breitinger, H. Baier and J. Beckingham, Security and imple-
mentation analysis of the similarity digest sdhash, Proceedings of
the First International Baltic Conference on Network Security and
Forensics, 2012.

[8] F. Breitinger, B. Guttman, M. McCarrin, V. Roussev and D. White,
Approximate Matching: Definition and Terminology, NIST Special
Publication 800-168, National Institute of Standards and Technolo-
gies, Gaithersburg, Maryland, 2014.

[9] F. Breitinger, H. Liu, C. Winter, H. Baier, A. Rybalchenko and M.
Steinebach, Towards a process model for hash functions in digital
forensics, in Digital Forensics and Cyber Crime, P. Gladyshev, A.
Marrington and I. Baggili (Eds.), Springer, Cham, Switzerland, pp.
170–186, 2014.

[10] F. Breitinger and K. Petrov, Reducing the time required for hashing
operations, in Advances in Digital Forensics IX, G. Peterson and S.
Shenoi (Eds.), Springer, Heidelberg, Germany, pp. 101–117, 2013.

[11] A. Breslow and N. Jayasena, Morton filters: Fast, compressed sparse
cuckoo filters, The VLDB Journal, vol. 29(2-3), pp. 731–754, 2020.

[12] D. Chang, M. Ghosh, S. Sanadhya, M. Singh and D. White, FbHash:
A new similarity hashing scheme for digital forensics, Digital Inves-
tigation, vol. 29(S), pp. S113–S123, 2019.

[13] D. Chang, S. Sanadhya and M. Singh, Security analysis of MVhash-B
similarity hashing, Journal of Digital Forensics, Security and Law,
vol. 11(2), pp. 22–34, 2016.

[14] B. Charyyev and M. Gunes, IoT traffic flow identification us-
ing locality-sensitive hashes, Proceedings of the IEEE International
Conference on Communications, 2020.

[15] E. Damiani, S. De Capitani di Vimercati, S. Paraboschi and P.
Samarati, An open digest-based technique for spam detection, Pro-
ceedings of the ICSA Seventeenth International Conference on Par-
allel and Distributed Computing Systems, pp. 559–564, 2004.

[16] Editorial Team, Our work with the DNC: Setting the record
straight, CrowdStrike Blog, June 5, 2020.

[17] B. Fan, D. Andersen, M. Kaminsky and M. Mitzenmacher, Cuckoo
filter: Practically better than Bloom, Proceedings of the Tenth ACM
International Conference on Emerging Networking Experiments and
Technologies, pp. 75–88, 2014.

[18] S. Garfinkel, P. Farrell, V. Roussev and G. Dinolt, Bringing sci-
ence to digital forensics with standardized forensic corpora, Digital
Investigation, vol. 6(S), pp. S2–S11, 2009.

Göbel, Uhlig & Baier 107

[19] S. Gatlan, Software AG, IT giant, hit with $23 million ransom by
Clop ransomware, BleepingComputer, October 9, 2020.

[20] T. Graf and D. Lemire, XOR filters: Faster and smaller than Bloom
and cuckoo filters, ACM Journal of Experimental Algorithmics, vol.
25(1), article no. 5, 2020.

[21] V. Gupta and F. Breitinger, How cuckoo filters can improve ex-
isting approximate matching techniques, in Digital Forensics and
Cyber Crime, J. James and F. Breitinger (Eds.), Springer, Cham,
Switzerland, pp. 39–52, 2015.

[22] N. Harbour, dcfldd version 1.3.4-1 (dcfldd.sourceforge.net),
2006.

[23] V. Harichandran, F. Breitinger and I. Baggili, Bytewise approxi-
mate matching: The good, the bad and the unknown, Journal of
Digital Forensics, Security and Law, vol. 11(2), pp. 59–78, 2016.

[24] J. Kornblum, Identifying almost identical files using context-
triggered piecewise hashing, Digital Investigation, vol. 3(S), pp. 91–
97, 2006.

[25] V. Martinez, F. Hernandez-Alvarez and L. Encinas, An improved
bytewise approximate matching algorithm suitable for files of dis-
similar sizes, Mathematics, vol. 8(4), article no. 503, 2020.

[26] J. Oliver, C. Cheng and Y. Chen, TLSH – A locality-sensitive hash,
Proceedings of the Fourth Cybercrime and Trustworthy Computing
Workshop, pp. 7–13, 2013.

[27] A. Lee and T. Atkison, A comparison of fuzzy hashes: Evaluation,
guidelines and future suggestions, Proceedings of the ACM South-
East Conference, pp. 18–25, 2017.

[28] D. Lillis, F. Breitinger and M. Scanlon, Expediting MRSH-v2 ap-
proximate matching with hierarchical Bloom filter trees, in Digi-
tal Forensics and Cyber Crime, P. Matousek and M. Schmiedecker
(Eds.), Springer, Cham, Switzerland, pp. 144–157, 2018.

[29] F. Pagani, M. Dell’Amico and D. Balzarotti, Beyond precision and
recall: Understanding uses (and misuses) of similarity hashes in bi-
nary analysis, Proceedings of the Eighth ACM Conference on Data
and Application Security and Privacy, pp. 354–365, 2018.

[30] V. Roussev, Building a better similarity trap with statistically-
improbable features, Proceedings of the Forty-Second Hawaii In-
ternational Conference on System Sciences, 2009.

[31] V. Roussev, Data fingerprinting with similarity digests, in Advances
in Digital Forensics VI, K. Chow and S. Shenoi (Eds.), Springer,
Heidelberg, Germany, pp. 207–226, 2010.

108 ADVANCES IN DIGITAL FORENSICS XVII

[32] V. Roussev, An evaluation of forensic similarity hashes, Digital In-
vestigation, vol. 8(S), pp. S34–S41, 2011.

[33] V. Roussev, G. Richard and L. Marziale, Multi-resolution similarity
hashing, Digital Investigation, vol. 4(S), pp. S105–S113, 2007.

[34] C. Sadowski and G. Levin, SimHash: Hash-Based Similarity Detec-
tion, Technical Report, Department of Computer Science, Univer-
sity of California Santa Cruz, Santa Cruz, California, 2007.

[35] ssdeep Project, ssdeep – Fuzzy Hashing Program, GitHub
(ssdeep-project.github.io/ssdeep), April 11, 2018.

