N
N

N

HAL

open science

SAT-Based Mapping of Data-Flow Graphs onto

Coarse-Grained Reconfigurable Arrays
Yukio Miyasaka, Masahiro Fujita, Alan Mishchenko, John Wawrzynek

» To cite this version:

Yukio Miyasaka, Masahiro Fujita, Alan Mishchenko, John Wawrzynek. SAT-Based Mapping of Data-
Flow Graphs onto Coarse-Grained Reconfigurable Arrays. 28th IFIP/IEEE International Conference
on Very Large Scale Integration - System on a Chip (VLSI-SoC), Oct 2020, Salt Lake City, UT, United
States. pp.113-131, 10.1007/978-3-030-81641-4_6 . hal-03759734

HAL Id: hal-03759734
https://inria.hal.science/hal-03759734

Submitted on 24 Aug 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

https://inria.hal.science/hal-03759734
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

~ederationforintor

This document is the original author manuscript of a paper submitted to an IFIP
conference proceedings or other IFIP publication by Springer Nature. As such, there
may be some differences in the official published version of the paper. Such
differences, if any, are usually due to reformatting during preparation for publication or

minor corrections made by the author(s) during final proofreading of the publication
manuscript.

SAT-Based Mapping of Data-Flow Graphs onto
Coarse-Grained Reconfigurable Arrays

Yukio Miyasaka!, Masahiro Fujita?, Alan Mishchenko', and John Wawrzynek!

1 UC Berkeley, CA, USA,
yukio_miyasaka@berkeley.edu
2 The University of Tokyo, Tokyo, Japan

Abstract. Recently, it has been common to use parallel processing for
machine learning. CGRAs are drawing attention in terms of reconfig-
urability and high performance. We propose a method to map data-flow
graphs onto CGRAs by SAT solving. The proposed method can perform
the automatic transformation which changes the order of operations in
data-flow graphs to obtain more efficient schedules. It also accommo-
dates mapping of multi-node operations like MAC operation. We have
solved mapping problems of matrix-vector multiplication. In our exper-
iment, a SAT solver outperformed an ILP solver. Our method success-
fully processed a data-flow graph of more than a hundred nodes. The
automatic transformation under the associative and commutative laws
was not as much scalable but successfully reduced the number of cycles,
where the XBTree-based method worked faster than the enumeration-
based method. As another direction, we tried to optimize a CGRA archi-
tecture according to a data-flow graph and were able to reduce its PEs
and connections through incremental SAT solving.

Keywords: SAT problem, mapping, data-flow graph, CGRA

1 Introduction

Neural networks are used for machine learning in many fields including image
recognition [1]. The calculation of neural network involves numerous MAC op-
erations, and there have been many accelerators developed. For example, TPU
[2] has a square mesh of MAC operation units and efficiently performs matrix
multiplication in a pipelined manner.

On the other hand, fabricating an ASIC for each application is costly, and
reconfigurable devices such as FPGAs attract attention these days. A CGRA
(Coarse-Grained Reconfigurable Array) is a reconfigurable device that consists
of ALU-like units, whereas an FPGA consists of LUTs. It has been shown that
CGRAs achieve higher performance and better energy-efficiency than FPGAs
for domain-specific applications [3].

This paper proposes a SAT-based method for mapping data-flow graphs onto
CGRAs. The optimality of the obtained schedule in terms of the number of cycles
can be proved by checking the mapping problem with one less number of cycles

2 Yukio Miyasaka et al.

is unsatisfiable. The proposed method can apply transformations to data-flow
graphs during the mapping process by using XBTrees [4] that can implicitly
express all possible orders of operations under the associative and commutative
laws. Our method also supports mapping of multi-node operations.

In the experiments, we compared the XBTree-based transformation method
with the enumeration-based method on mapping problems of matrix-vector mul-
tiplication. The XBTree-based method was able to solve the problems that can-
not be solved in time by the enumeration-based method. Furthermore, as an
additional attempt, we tried to optimize a CGRA architecture according to a
data-flow graph. Through iterative synthesis with incremental SAT solving [5],
we were able to remove several PEs and connections in a 3 X 3 square mesh
architecture without degrading the performance for an AES data-flow graph.

This paper is organized as follows. Section 2 reviews related work and con-
trasts our approach. Section 3 explains the basics of SAT problem. Section
4 defines the mapping problem, explains the core of our SAT-based mapping
method, and compares a SAT solver and an ILP solver. Section 5 explains the
enumeration-based transformation methods proposed in our previous work and
shows mapping results for sparse matrix multiplication as an example. Section
6 proposes the XBTree-based transformation method and compares it with the
enumeration-based method on mapping of matrix vector multiplication. Section
7 explains a CGRA optimization method and shows a result for a mesh CGRA
and an AES data-flow graph. Section 8 concludes the paper.

2 Related work

There have been many studies on mapping onto CGRAs. A study [6] proposed
MRRG (Modulo Routing Resource Graph), where the computational resources
are duplicated by the number of cycles as the time-frame expansion, and per-
formed simulated annealing under the law of causality. Recent studies replaced
simulated annealing by ILP (Integer Linear Programming), which can prove the
possibility of mapping in the given number of cycles [7]. We use a SAT solver
instead of an ILP solver because the SAT solver worked faster than the ILP
solver as shown in our preliminary experiment.

The studies above and others, as far as we know, did not modify the data-
flow graphs generated by architecture-agnostic compilers. A study [8] proposed
an approach using an encoding like an SMT (Satisfiability Modulo Theories)
solver to map linear functions and optimize them during the mapping process,
but it was limited to linear functions. Our method can automatically optimize
data-flow graphs according to the architectures of CGRAs.

Some studies [9] mapped data-flow graphs at the level of assembly language,
but we target high-level data-flow graphs where nodes correspond to arithmetic
operations [10] or subroutines. Such a high-level description makes it easy for
the mapper to optimize the calculation by changing the order of operations.

Our previous work [11] used a table to enumerate all possible orders of oper-
ations for the automatic transformation. That caused a combinational explosion

SAT-Based Mapping 3

where the number of intermediate values increases exponentially over the num-
ber of contiguous associative (and commutative) operations. To improve the
scalability, this work adopts XBTrees and sorters. An XBTree is a binary tree
with exchangers and can implicitly express all possible structures of binary trees
with a specific number of leaf nodes. Besides, this paper extends the mapping
method to optimization of CGRA architectures.

3 SAT problem

A SAT (Satisfiability) problem is a problem to find an assignment to the vari-
ables that makes the given logic formula evaluate to true. If there is such an
assignment, the logic formula is satisfiable (SAT); otherwise, it is unsatisfiable
(UNSAT). The modern SAT solvers take a CNF (Conjunctive Normal Form)
formula as an input. A CNF formula is a conjunction of clauses, a clause is a
disjunction of literals, and a literal is a boolean variable or its negation.

For example, the CNF formula (1) consists of clauses a, (@Ve), and (@VbVc),
where a, @, b, ¢, and ¢ are the literals, and a, b, and ¢ are the variables. This
CNF formula is satisfiable with the assignment (a, b, ¢) = (true, true, false). If we
add a clause b to it as shown in the CNF formula (2), it becomes unsatisfiable.

In many applications, we need to impose a constraint that more than K of the
specified literals cannot be true at the same time. (3) is a typical representation
of the constraint on N literals {aog, a1, ..., ay—1} with integer addition (4), where
it is assumed that true is 1 and false is 0 as an integer. This constraint is called
an at most K constraint. In this paper, we used the bimander encoding [12]
(with two literals in each group) if K = 1, and the sequential unary counter
encoding [13] otherwise.

aN(@Vve)A(@vbVe) (1)
aN(@Ve)A@VbVe)Ab (2)
ap+ar+..+an_1 <K (3)

4 Mapping problem

4.1 Data-flow graph

A data-flow graph in this paper is a directed acyclic graph that represents cal-
culation as trees of operations. We call the leaf nodes as input-nodes as they
correspond to the input variables of the calculation. The internal nodes are
called operator-nodes, and each of them represents one operation. The edges
pass the values of nodes: the input variables of input-nodes, and the results
of the operations of operator-nodes. An operator-node uses the received values
as the operands of the operation. The incoming edges to an operator-node are

4 Yukio Miyasaka et al.

(a)
Fig. 1. Data-flow graphs for sum of four variables: A, B, C, and D.

External

Fig. 2. A CGRA consisting of four PEs connected in a one-way ring.

labeled to specify the order of the operands when the operation is not commu-
tative. The operator-nodes whose results are the outputs of the calculation are
also called as result-nodes.

A data-flow graph is not a canonical representation. For example, there are
multiple data-flow graphs for sum of four variables as shown in Fig. 1. The order
of the operations is fixed in a data-flow graph even if it is arbitrary in nature.
In this case, one can be transformed to the other under the associative law.

4.2 CGRA

We represent a CGRA as a directed graph. We call nodes and edges in CGRAs
as components and paths respectively to distinguish those from those in data-
flow graphs. There are three kinds of components: PE (Processing Element),
memory, and external memory. Each PE has a given number of operation-units
and registers. A memory holds the values received from other components, and
its size is unlimited unless specified. For each memory, a user can specify the
input variables that are stored in the memory in advance of the calculation, and
even use it as a ROM by removing its incoming edges. The external memory is
a memory that supplies the specified input variables and collects the outputs. It
can store and pass intermediate values by a user setting. Each path is labeled
by the number of values it can pass in one cycle. An example of CGRA is shown
at Fig. 2.

SAT-Based Mapping 5

PEO |2, PE1 : PEO PE1 : PEO PE1
c e=a+c
[a]b]p——[cld]| : |[a]lb] [cld]] : |[elb] [ad]
Communication step Operation step Storing step

Fig. 3. An example of cycle.

We assume that all components in a CGRA are synchronized. We divide one
cycle into three steps: communication step, operation step, and storing step as
shown in Fig. 3. First, some of the values in the registers in PEs and the values
in memories are passed to other components in the communication step. Next,
each operation-unit performs at most one operation in the operation step. An
operation-unit can use as the operands the values in the registers in the same PE
and the values communicated to that PE in that cycle. Finally, in the storing
step, the registers and memories store the values. A register stores one value
from the values in the registers in the same PE, the results of the operations
in that PE, and the values communicated to that PE in that cycle. A memory,
if the number of residing values exceeds a specified limit, selects the values to
discard.

4.3 SAT-based mapping

We create a CNF formula using three kinds of boolean variables shown below.
Let 4, j, k, and h be integers. We number (zero-based) the nodes in a data-flow
graph and the components and the paths in a CGRA. Let node ¢ denote the i-th
node, component j denote the j-th component, path i denote the h-th path,
and cycle k denote the k-th cycle. The range of k is from 0 to N — 1, where N is
the number of cycles. In the following, node i also means the value of the node.

— X jk .- node ¢ exists in component j at the end of cycle k
— Yink ... node 7 is communicated in path h at cycle &
— Zijk - node 1 is calculated in component j at cycle k

X5, means node 4 is stored (in the registers) in component j at cycle k.

The CNF is composed of the following clauses. Let H; denote the set of
incoming paths to component j, s, denote the component at the origin of path
h, component e denote the external memory, D; denote the set of the nodes
which are the operands (the nodes at the origins of the incoming edges) of node
1, and O denote the set of the result-nodes.

1. X, ;o for V(i, j) where component j is a memory or external memory storing
node 4, which is an input-node, in advance of the calculation

2. =X, ;o for V(i,7) where the condition above is not met

3. Xjen—1forViecO

6 Yukio Miyasaka et al.

4 XV Xijk—1V Vyen, Yink V Zijk for V(i j, k #0)

Y hk V Xi’sh,kfl for V('L, h7 k # O)

6. 7 ZijkV Xajr—1V VheHj Yuni for Vd € D;, for V(i,j) where node ¢ is an

operator-node and component j is a PE, for Vk # 0

—Z; j i for ¥(i,j) where the condition above is not met, for Vk # 0

At most K constraint on {X; ; for Vi} where K is the number of registers

in component j, for Vj where component j is a PE, for Vk

9. At most K constraint on {Y; s for Vi} where K is the label of path h, for

V(h,k #£0)

10. At most K constraint on {Z; ;j for Vi} where K is the number of operation-
units in component j, for Vj where component j is a PE, for Vk #£ 0

o

® N

The clauses 1 and 2 set the initial condition and the clause 3 sets the condition
at the end of the computation. The clause 4 imposes the constraints that the
existence of a node in a component infers its existence in the component at
the previous cycle, its communication to the component at the same cycle, or
its calculation in the component at the same cycle (if the node is an operator-
node and the component is a PE). The clause 5 imposes the constraint that
the communication of a node in a path infers its existence in the component
at the origin of the path. The clauses 6 and 7 impose the constraint that the
calculation of a node in a component infers that the node is an operator-node,
the component is a PE, and all of its operands are available there. The clause
8 limits the number of nodes in a PE to the number of registers in the PE,
the clause 9 limits the number of nodes communicated in a path to the label
of the path, and the clause 10 limits the number of the operations performed
simultaneously in a PE to the number of operation-units in the PE. Additional
clauses are necessary if a user limits the size of memories or forbids the external
memory to store and pass the intermediate values.

It is assumed that an operation-unit can process one operator-node in a cycle.
On condition that an operation-unit can process two or more operator-nodes at
the same time, MAC operation for example, we need to use a different formu-
lation. Fortunately, the formulation for the enumeration-based transformation
method also works for that purpose.

The formulation above does not consider pipelining. To be pipelined, a sched-
ule must not use the same resource in multiple cycles that are congruent modulo
T, where T is the number of contexts. This constraint can be imposed by mod-
ifying the clauses 8, 9, and 10. Let ¢ be an integer. The modification to the
clause 8 is shown below, where the changes are written in a bold font. The same
modification must be applied to the clauses 9 and 10.

8. At most K constraint on {Xj ; » for Vi, for Vk where k mod T = t} where
K is the number of the registers in component j, for Vj where component j
is a PE, for Vt € [0, T — 1]

4.4 Preliminary experiment

As a preliminary experiment, we compared a SAT solver (KISSAT) and an ILP
solver (CPLEX v20.1), each running in a single thread. In the ILP problems, the

SAT-Based Mapping 7

«))

L @ @
O—x 2

®
Oy

®
Oy

®
\-!-/‘
@

O
®

+

i WVs:
L0 /e
&)

Fig. 4. A data-flow graph of 4 x 4 matrix-vector multiplication.

at most K constraints were directly expressed without encoding. A parameter
“emphasis mip” was set at one for the ILP solver to focus on the satisfiability.

We mapped a data-flow graph of 4 x 4 matrix-vector multiplication shown at
Fig. 4 and a CGRA consisting of four PEs connected in a one-way ring shown
at Fig. 2. The number of operation-units and the number of registers in each PE
were set at 1 and 2 respectively. No pipelining was done. The external memory
was not allowed to store the intermediate values.

The runtime is shown in Table 1. The mapping problem was UNSAT when
the number of cycles was 9 and SAT when it was 10. It means that 10 is the
minimum possible number of cycles. The SAT solver solved the problems more
than a hundred times faster than the ILP solver. The runtime of ILP solver
is reasonable because several studies [7,14,15] showed that an ILP solver got
timeout (one day) just in mapping a data-flow graph consisting of dozens of
nodes.

8 Yukio Miyasaka et al.

Table 1. The results and runtime in seconds for mapping 4 x 4 matrix-vector multi-
plication onto the CGRA of four PEs in a one-way ring.

Cycle| Result Runtime
SAT solver|ILP solver
9 |UNSAT 8.9 3567.8
10 SAT 1.2 767.1

5 Enumeration-based transformation

5.1 CNF formulation

The enumeration-based automatic transformation method was proposed in our
previous work [11]. It enumerates all possible operations that calculate each
node and modifies the CNF formula so that the node can be calculated by any
of those operations. For example, the value A + B + C can be calculated as
(A+B)+C, (B+C)+A, or (C+A)+ B, but one data-flow graph can represent
only one of them. The method enumerates all of them from one data-flow graph
by traversing it and uses the modified CNF formula where any of them can be
used in mapping.

The enumeration of all possible operations under the associative and com-
mutative laws is performed as follows. First, we create cluster-nodes by merging
all contiguous operator-nodes of the same associative operator. An example is
shown at Fig. 5. Next, we enumerate all candidates for the last operation for
each cluster-node, taking the commutativity of the operator into account. For
example, for multiplication of four variables, there are seven candidates: four
candidates are the multiplication between one variable and the product of the
other three variables, and three candidates are the multiplication between the
product of two variables and the product of the other two variables. Finally,
for each intermediate value we encountered, we create a new node, called an
intermediate-node, and enumerate all candidates for its last operation. This fi-
nal step is recursively done until every intermediate value corresponds to one
intermediate-node. Intermediate-nodes are virtual and not located in data-flow
graphs. We create a table, as shown in Table 2 for example, to avoid duplication
of intermediate-nodes.

The CNF formula is modified to enable each node to be calculated by any of
the enumerated candidates. Here, the cluster-nodes and intermediate-nodes are
treated as operator-nodes. Let [be an integer, L; be the number of candidates
to calculate node ¢, and D, ; be the set of the nodes which are the operands in
the [-th candidate to calculate node i. We use a new kind of boolean variable,
Z;.5.k,1, which means all the operands in the /-th candidate to calculate node ¢
are available in component j at cycle k. The clause 6 is replaced by the following
clauses:

6.1. “Zz}j,k:,l \/Xd,j,kfl vvaHj Yd,h,lc for Vd € Di,h for VI € [0, L;— 1], for V(Z,])
where node 7 is an operator-node and component j is a PE, for Vk # 0

SAT-Based Mapping 9

Fig. 5. Creation of cluster-nodes by merging contiguous operator-nodes of the same
associative operator.

6.2. =Z;jrV \/le[o Lic1] Z; ik, for V(i,j) where node ¢ is an operator-node and
component j is a PE, for Vk # 0

This formulation also makes mapping of multi-node operations possible. A
multi-node operation is an operation that simultaneously processes multiple
nodes in data-flow graphs. For example, MAC operation, which processes con-
tiguous multiplication and addition, can be mapped as follows. For each node
1 that is an operator-node of addition, for each candidate to calculate node i,
let node a be the first operand and node b be the second operand. If node a is
an operator-node of multiplication, for each candidate D (a pair of operands)
to calculate node a, we add D U {b} to the candidates to calculate node i. The
same for node b. By doing this, we can map MAC operation using the same CNF
formula. Note that the addition of candidates is actually performed after all new
candidates are enumerated for all nodes and for all multi-node operations in
order to prevent the new candidates from interfering each other,

5.2 Example: sparse matrix multiplication

As an example, we synthesized sparse matrix multiplication algorithms based
on TPU [2] using our mapping method. We can obtain the fastest algorithm
exploiting the sparsity for each sparse matrix. Fig. 6 shows the original algorithm
for A=W X where W, X, and A are 3 x 3 matrices. Each element of W is

10 Yukio Miyasaka et al.

Table 2. A table from a node to its candidates after processing a cluster-node of
multiplication of four variables: A, B, C, and D.

Node Candidates
(AxBxC)xD,(Ax BxD)xC,
AxBxCxD (AxCxD)x B, (BxCxD)xA,
(Ax B) x (C x D), (A><C’) (B><D),(A><D)><(B><C)
AxBxC (AxB)xC,(AxC)xB,(BxC)x A
Ax BxD (AxB)x D, (Ax D)x B, (BxD)xA
AxCxD (AxC)x D, (Ax D)xC, (CxD)xA
BxCxD (BxC)x ,(B><D) C,(CxD)xB
AxB AxB
AxC AxC
Ax D Ax D
BxC BxC
B x D B x D
CxD CxD

assigned to one PE. The elements of X are passed to the right, and the partial
sums are passed down in the figure. Each PE multiplies a received element of X
and the assigned element of W and adds the result and a received partial sum. It
takes eight cycles to calculate A, where the number of contexts is 3. The figure
also shows the beginning of the next matrix multiplication B =W - Y.

We solved the problems mapping sparse matrix multiplication where some
elements of W are zero and the corresponding multiplications can be skipped. We
used a CGRA of the same topology with each path labeled by one. The number of
operation-units and the number of registers in each PE are 1 and 2 respectively,
and MAC operation was enabled. The inputs come from the external memory,
to which the outputs are returned. We put a ROM for each PE and connected
the ROM to the PE. At most one none-zero element of W can be assigned to
each ROM. Because of the automatic transformation, permutations of rows and
columns of W can be done automatically with swapping output-columns and
input-rows, so we only have to consider permutationally inequivalent matrices.
There are 36 permutationally inequivalent matrices in 3 x 3 matrices [16].

We tried to reduce the number of cycles and the number of contexts for
each matrix except an all zero matrix. We fixed the number of contexts at 3
when changing the number of cycles. On the other hand, we fixed the number
of cycles at 9 when changing the number of contexts. Note that there is one
extra cycle required for the initial condition. Table 3 shows the results. The
minimum possible number of cycles was reduced in proportion to the number of
zeros. Only when the number of zeros was 3 or 6, the number of required cycles
changed depending on the places of zeros. The number of required contexts
reduced by one for one matrix when the number of zeros was 5 or 6. For lager
number of zeros, the minimum possible number of contexts was 2 when it was
7, and 1 when it was 8.

SAT-Based Mapping 11

Matrix elements

P L rr e R R IR [
i . . DX13) X12 | X1 > W11 > W21 > W31 |

: : : : : : :) 2) 2 2 3
; ! ! =
! j 1 X23 | X22 | X21 | —> W12 > W22 > W32 =
: . : i . . : 5
: : I o L : ¢
: ' ' 5 . . 5 v v v

: X33 | X32 ! X31 —> W13 > W23 > w3z [VY

8 | | e
7 e Voam A2
6 | A | a2 | A
s w2 | a |
AR o |

Fig. 6. The algorithm for 3 x 3 matrix multiplication using nine PEs connected in a
3 X 3 square mesh.

6 XBTree-based transformation

6.1 CNF formulation

In this work, we implemented another transformation method based on XBTrees,
which is originally used for logic factoring of logic circuits [4]. This method
can perform the same transformation as the enumeration-based method if the
transformation is done for associative and commutative two-input operators.

An XBTree is a binary tree with exchangers that rotate the order of inputs
according to the control signals. It can efficiently enumerate all possible struc-
tures of binary trees with a specific number of leaf nodes. For an exchanger of
size S, let zg,...,x5—1 and yq, ..., ys—1 be the inputs and outputs respectively.
The control signal of the exchanger, ¢, is an integer in the range from 0 to S — 1.
The function of the exchanger is shown at (4). For example, an XBTree with four
leaf nodes is shown at Fig. 7. Depending on the control signal of the exchanger,
it is either Fig. 1 (a) or (b), assuming the internal nodes are operator-nodes of
addition.

vnyn = Tn+cmod S (4)

12 Yukio Miyasaka et al.

Table 3. The number of 3 X 3 sparse matrices successfully mapped onto the CGRA
of nine PEs in a 3 x 3 square mesh for each number of cycles (when the number of
contexts was 3) and for each number of contexts (when the number of cycles was 9).

Zero Cycle Context

4]5][6]7[8]9][1]2]3
0 0(0|0}j0O|0Of1]/O|0O]|1
1]/0oj0o|0|O|1|1|O0]|0O|1
2 [|0|0|0]|0[3]3]||0|0]3
3 0(0|0]1]|6(|6]/0|0]|6
4 1|0|0|0|7|7|7]|0[0]|7
5 110100 |7|7|7||0|1]7
6 0(0|1]6]|6[|6]/0|1]|6
7 110{0]|3|3|3|3(/0|3|3
8 Of1|1j1{1f1}j1|1]1

Fig. 7. An XBTree with four leaf nodes: A, B, C, and D.

We can apply the XBTree-based transformation to two-input operators that
are both associative and commutative. We create cluster-nodes as described in
the previous section and replace each cluster-node by an XBTree and a sorter
instead of enumerating all possible orders of operations. For example, a cluster
node of multiplication of four variables is replaced by the data-flow graph shown
at Fig. 8. The XBTree has as many leaf nodes as the number of inputs to the
cluster-node, while the leaf nodes are the outputs of the sorter that reorders the
inputs to the order designated by its control signal. The sorter is required to
fully search the variants under the commutative law. We implement a sorter as
a set of one-output multiplexers, where each multiplexer exclusively selects one
from the inputs of the sorter.

The CNF formula needs to be modified to accommodate exchangers and
sorters, which are called blocks and not treated as nodes. We introduce new
kinds of boolean variables shown below. Let p, ¢, and r be integers. We number
the blocks in a data-flow graph and denote the p-th block by block p and its size
(the number of its inputs) by S,.

SAT-Based Mapping 13

2999

Sorter ‘

Exchanger

Fig. 8. A data-flow graph implicitly enumerating all possible orders of operations for
multiplication of four variables: A, B, C, and D.

— Pp.q.jk --- the g-th output of block p exists in component j at cycle k (¢ €
0.5, ~ 1))

— Pp.grjk --- the g-th output is the r-th input in block p, and the r-th input
of block p exists in component j at cycle k (g, € [0,.S, — 1])

— Qpq Or Qpq.r ... control signal of block p (¢,r € [0,5, —1])

We adopt the one-hot encoding for control signals. The variables {Q,, 4 for Vg €
[0,S, — 1]} are used as a control signal for block p that is an exchanger, and
the variables {Q, 4, for Vg € [0,S, — 1]} are used as a control signal for the
multiplexer generating the r-th output of block p that is a sorter.

We add the following four types of clauses to the CNF. Let d,, denote
the r-th input of block p. It can be a node or an output of another block. In
the latter case, where it is the ¢’-th output of block p/, dp,, is a pair (p/,q’).
For simplicity, when d is (p’,¢"), Xa jx—1 is regarded as Py o j, and Ygp 1 is
constant-false (excluded from clauses). The same applies for the elements in D,
a set of operands, used in the clause 6, and the elements in D;; in the clause
6.1. A one-hot constraint is a combination of an at most 1 constraint and a large
clause containing all literals in the set to make at least one of them true.

11. =Py grjk V Qpr—gmod s, for V(g,r) € 0,5, — 1)?, for Vp where block p is
an exchanger, for Vj where component j is a PE, for Vk # 0

12. =Py gk V Qpqr for ¥(g,r) € 0,5, — 1]?, for Vp where block p is a sorter,
for Vj where component j is a PE, for Vk # 0

13. =Py grjkVXd, , jk-1 \/\/heHj Ya, . nk for V(g,r) € [0, S, —1]?, for Vj where
component j is a PE, for V(p, k # 0)

14. =Py gk V \/re[o,sp—l] P, gk for Vg € [0,S, — 1], for Vj where component
j is a PE, for ¥(p, k # 0)

15. One-hot constraint on {Q,, 4 for Vg € [0, S, — 1]}, for Vp where block p is an
exchanger

14 Yukio Miyasaka et al.

16. One-hot constraint on {Q, 4, for Yq € [0, S, — 1]}, for ¥r € [0, S, — 1], for
Vp where block p is a sorter

17. At most 1 constraint on {Q) 4, for Vr € [0, S, — 1]}, for V¢ € [0, S, — 1], for
Vp where block p is a sorter

The clauses 11 and 12 make P, 4., j i false when the g-th output is not the r-th
input in block p according to the control signal. The clause 13 then ensures that
the r-th input of block p is available in component j at cycle k. The clause 14
finally determines the presence of the ¢g-th output of block p in each component
at each cycle. Note that we do not care the cases where component j is not a
PE because such P, ; will never be used (especially in the clause 6 or 6.1).
The clauses 15 and 16 make the control signals one-hot. The clause 17 prohibits
any two multiplexers in a sorter from selecting the same input.

A minor difference from the enumeration-based method is that intermediate
values cannot be shared. For example, when we calculate A+B+C and A+B+D,
it might be good to calculate A + B and use it to calculate both (A + B) + C
and (A + B) + D. The enumeration-based method can do that by sharing a
table among the cluster-nodes, but the XBTree-based method cannot because it
creates an XBTree separately for each cluster-node.

The multi-node operation can be supported by using the clauses 6.1 and 6.2
even if we use the XBTree-based method. After inserting XBTrees, we traverse
the data-flow graph to find nodes that match a multi-node operation. During
this process, we may encounter the places where nodes are separated by blocks
but match a multi-node operation if the control signals for the blocks take a
particular value. In this case, we create R;;, a set of control signal variables
(Qp,q and Qp 4,) that are true when the control signals take that particular
value, while adding the set of operands as a new (I-th) candidate to calculate
node i. Then, we disable that candidate unless the control signals take that
value by adding the following clause. Note that we do not care the control signal
variables that are false because the control signals are one-hot encoded.

6.3. =Z; k1 V Q for VQ € Ry, for VI € [0, L; — 1] where R;; exists, for V(i, j)
where node 7 is an operator-node and component j is a PE, for Vk # 0

6.2 Comparison: matrix-vector multiplication

We solved the same problem as in the preliminary experiment in Section 3 to
compare the automatic transformation methods. We enabled MAC operation in
this comparison. We also changed the size of the problem (the size of matrix and
the number of PEs) to see the scalability of the methods. We used KISSAT.
The results and runtime are shown at Table 4. TO (Timeout) was set at three
hours. When the problem size was 4, the minimum possible number of cycles
was 8 (two cycles reduced) just by using MAC operation. This number cannot
be more than the number of cycles required to map the data-flow graph where
each set of addition and multiplication is manually converted into a three-input
operator-node of MAC operation. When the automatic transformation under the

SAT-Based Mapping 15

Table 4. The results and runtime in seconds for mapping matrix-vector multiplication
using MAC operation with or without the automatic transformation under the asso-
ciative and commutative laws which was performed by the enumeration-based method
(Enum) or the XBTree-based method (XBTree).

Size Node(Block) Cycle Result(Runtime)
w/o |Enum|XBTree w/o Enum XBTree
6 |UNSAT(<0.1)|UNSAT(0.2)| UNSAT(0.1)
4 | 48(0) | 80(0) | 48(8) [7 | UNSAT(0.5) | SAT(1.2) | SAT (0.8)
8 | SAT(0.1) | SAT(0.3) SAT(0.5)
7 | UNSAT(0.2) |[UNSAT(3.7)| UNSAT(0.8)
5 | 75(0) [185(0)| 75(12) [8 | UNSAT(2.8) | SAT(761.1) | SAT(109.8)
9 | SAT(1.8) | SAT(61.0) | SAT(4.2)
8 | UNSAT(0.3) |TO(>10800)[UNSAT(2879.8)
6 |108(0)[420(0)|108(16)[9 |UNSAT(45.7) |TO(>10800)| SAT(3284.0)
10 | SAT(54.0) |SAT(42482)] SAT(92.8)

associative and commutative laws was done, the minimum possible number of
cycles became 7. It spends one cycle for the initial condition, one cycle just load-
ing inputs, another cycle loading inputs and calculating initial products, three
cycles loading inputs and performing MAC operations, and one cycle storing the
outputs. The number of cycles also reduced by 1 for the problems of size 5 and
6 by the automatic transformation.

Regarding the comparison between the enumeration-based method and the
XBTree-based method, some problems ended up in TO in the enumeration-
based method when the problem size was 6 probably because of the exponential
increase in the number of intermediate-nodes. On the other hand, the XBTree-
based method was able to solve those problems and worked faster than the
enumeration-based method for most of the other problems.

7 CGRA optimization

We conducted another experiment to optimize an architecture of CGRA with
incremental SAT solving [5]. Up to here, we have considered the methods to
adapt data-flow graphs to CGRAs, but we can also optimize CGRAs through
iterative synthesis. After getting a minimum cycle schedule, we try to reduce
the components and paths one by one without increasing the number of cycles.
In this process, we utilize incremental SAT solving, which can reuse the clauses
added and learned in the previous calls. Specifically, we solve the CNF, where we
obtained a minimum cycle schedule, again with the assumptions (a set of literals
that are forced to be true) to disable one component or path. If it is SAT, we
add those assumptions to the CNF as clauses, then the component or path will
never be used in mapping. Otherwise, we give up removing that component or
path. We repeat this for each component and path in the CGRA.

We targeted a data-flow graph generated for AES [17] shown at Fig. 9. It
consists of 138 nodes where each operator-node corresponds to a subroutine. We

16 Yukio Miyasaka et al.

&)
0

®

6w
@)
()

Fig. 9. A data-flow graph for AES.

used a CGRA of 3 x 3 square mesh PEs shown at Fig. 10. Each PE has one
operation-unit and two registers. The mapping was done with no pipelining and
no transformation. We used another SAT solver, Glucose v4.1, which supports
incremental SAT solving.

The original mapping problem was solved with 52 cycles in 0.5 seconds. It
is the theoretical minimum number of cycles because the data-flow graph has
50 levels of operator-nodes and we need one cycle for the initial condition and
another cycle for storing the result. Compared to the mapping problem of matrix
vector multiplication onto a ring architecture, this problem was solved very fast
even though the data-flow graph has more than a hundred nodes. It means that
the mapping difficulty comes from not only the number of nodes but also the
capacity of the architecture.

Next, we ran incremental SAT solving to optimize the CGRA. We first re-
moved as many PEs as possible, and then removed as many paths as possible.
The result is shown at Fig. 11. The optimization took only 1.8 seconds. It turned
out that we can sequentially map the data-flow graph onto four PEs connected
in a ring, where some PEs are connected in two-way, but others are in one-way.
Note that we checked redundancy of PEs (and paths) in a specific order, and it
may be better to explore different orders.

8 Conclusion

We proposed a SAT-based data-flow graph mapping method for CGRAs. It
performs the automatic transformation under the associative and commutative

SAT-Based Mapping 17

I

F‘ External memory
1

Fig. 10. A CGRA consisting of nine PEs connected in a 3 x 3 square mesh.

F‘ External memory ‘

Fig.11. The CGRA optimized through incremental SAT solving.

laws using XBTrees and sorters. We compared the XBTree-based transformation
method with the enumeration-based method, and the XBTree-based method
worked faster and solved more problems than the enumeration-based method. In
another experiment, we optimized an architecture of CGRA through incremental
SAT solving.

Regarding the ILP solver, it was slower than the SAT solver probably because
the mapping problem contained few at most K constraints and K was small. If
K is large (each PE has a large number of registers for example), the ILP solver
might work faster than the SAT solver. Also, we used incremental SAT solving
for optimization, but one can use the ILP solver instead.

Our method using SAT solver is not as scalable as the heuristic methods
like simulated annealing. We are considering decomposing a data-flow graph or
imposing some heuristic constraints by generalizing small mapping results. We
are currently working on a hierarchical mapping method, which maps nodes
while partitioning the array.

We are also considering adopting a rule base transformation, where a rule is
a possible transformation defined by a user, to deal with other than the associa-

18

Yukio Miyasaka et al.

tive and commutative laws. For CGRA architecture optimization, it might be
good to further explore the search space: the topology of CGRA, the number of
operation-units, the number of registers, and the bandwidth of paths.

The source code of our program is available at [18].

References

10.

11.

12.

Krizhevsky, A., Sutskever, I., Hinton, G.E.: ImageNet Classification with Deep
Convolutional Neural Networks. In: Proceedings of International Conference on
Neural Information Processing Systems, pp. 1097-1105 (2012)

Jouppi, N.P.; et al.: In-Datacenter Performance Analysis of a Tensor Processing
Unit. ACM SIGARCH Computer Architecture News 45(2), 1-12 (2017). DOI

10.1145/3140659.3080246

Liu, L., Zhu, J., Li, Z., Lu, Y., Deng, Y., Han, J., Yin, S., Wei, S.: A Survey of
Coarse-Grained Reconfigurable Architecture and Design. ACM Computing Sur-
veys (CSUR) 52(6), 1-39 (2020). DOI 10.1145/3357375

Yoshida, H., Fujita, M.: Exact Minimum Factoring of Incompletely Specified Logic
Functions via Quantified Boolean Satisfiability. IPSJ Transactions on System LSI
Design Methodology 4, 70-79 (2011). DOI 10.2197/ipsjtsldm.4.70

Audemard, G., Lagniez, J.M., Simon, L.: Improving Glucose for Incremental SAT
Solving with Assumptions: Application to MUS Extraction. In: Lecture Notes in
Computer Science (including subseries Lecture Notes in Artificial Intelligence and
Lecture Notes in Bioinformatics), vol. 7962 LNCS, pp. 309-317. Springer, Berlin,
Heidelberg (2013). DOI 10.1007/978-3-642-39071-5_23

Mei, B., Vernalde, S., Verkest, D., De Man, H., Lauwereins, R.: Exploiting
loop-level parallelism on coarse-grained reconfigurable architectures using mod-
ulo scheduling. TEE Proceedings - Computers and Digital Techniques 150(5), 255
(2003). DOI 10.1049/ip-cdt:20030833

Chin, S.A., Anderson, J.H.: An architecture-agnostic integer linear programming
approach to CGRA mapping. In: Proceedings of Design Automation Conference
(DAC), pp. 1-6 (2018). DOI 10.1145/3195970.3195986

Greene, J.W.: Exact mapping of rewritten linear functions to configurable logic.
In: Proceedings of International Workshop on FPGAs for Software Programmers
(FSP), pp. 11-18 (2019)

Chin, S.A., Sakamoto, N.; Rui, A., Zhao, J., Kim, J.H., Hara-Azumi, Y., Ander-
son, J.: CGRA-ME: A unified framework for CGRA modelling and exploration.
In: Proceedings of International Conference on Application-specific Systems, Ar-
chitectures and Processors (ASAP), pp. 184-189 (2017). DOI 10.1109/ASAP.2017.
7995277

Flynn, M.J., Pell, O., Mencer, O.: Dataflow supercomputing. In: Proceedings of
International Conference on Field Programmable Logic and Applications (FPL),
pp. 1-3 (2012). DOT 10.1109/FPL.2012.6339170

Miyasaka, Y., Fujita, M.: Sat-based mapping of data-flow onto array processor. In:
2020 IFIP/IEEE International Conference on Very Large Scale Integration (VLSI-
SoC) (2020)

Nguyen, V.H., Mai, S.T.: A New Method to Encode the At-Most-One Con-
straint into SAT. In: Proceedings of International Symposium on Information
and Communication Technology (SoICT), vol. 03-04-Dece, pp. 1-8 (2015). DOI

10.1145/2833258.2833293

13.

14.

15.

16.

17.

18.

SAT-Based Mapping 19

Sinz, C.: Towards an Optimal CNF Encoding of Boolean Cardinality Constraints.
In: Lecture Notes in Computer Science (including subseries Lecture Notes in Ar-
tificial Intelligence and Lecture Notes in Bioinformatics), vol. 3709 LNCS, pp.
827-831. Springer, Berlin, Heidelberg (2005). DOI 10.1007/11564751_73

Lee, G., Choi, K., Dutt, N.D.: Mapping Multi-Domain Applications Onto Coarse-
Grained Reconfigurable Architectures. IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems 30(5), 637-650 (2011). DOI 10.1109/
TCAD.2010.2098571

Yoon, J., Shrivastava, A., Sanghyun Park, Minwook Ahn, Yunheung Paek: A Graph
Drawing Based Spatial Mapping Algorithm for Coarse-Grained Reconfigurable Ar-
chitectures. IEEE Transactions on Very Large Scale Integration (VLSI) Systems
17(11), 1565-1578 (2009). DOI 10.1109/TVLSI.2008.2001746

Zivkovié, M.: Classification of small (0,1) matrices. Linear Algebra and its Appli-
cations 414(1), 310-346 (2006). DOI 10.1016/j.1aa.2005.10.010

Liu, B., Baas, B.M.: Parallel AES Encryption Engines for Many-Core Processor
Arrays. IEEE Transactions on Computers 62(3), 536-547 (2013). DOI 10.1109/
TC.2011.251

URL https://github.com/MyskYko/dfgmap

