N

N

From Informal Specifications to an ABV Framework for
Industrial Firmware Verification

Samuele Germiniani, Moreno Bragaglio, Graziano Pravadelli

» To cite this version:

Samuele Germiniani, Moreno Bragaglio, Graziano Pravadelli. From Informal Specifications to an ABV
Framework for Industrial Firmware Verification. 28th IFIP/IEEE International Conference on Very
Large Scale Integration - System on a Chip (VLSI-SoC), Oct 2020, Salt Lake City, UT, United States.
pp.179-204, 10.1007/978-3-030-81641-4_9 . hal-03759721

HAL Id: hal-03759721
https://inria.hal.science/hal-03759721

Submitted on 24 Aug 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

https://inria.hal.science/hal-03759721
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

~ederationforintor

This document is the original author manuscript of a paper submitted to an IFIP
conference proceedings or other IFIP publication by Springer Nature. As such, there
may be some differences in the official published version of the paper. Such
differences, if any, are usually due to reformatting during preparation for publication or

minor corrections made by the author(s) during final proofreading of the publication
manuscript.

From informal specifications to an ABV
framework for industrial firmware verification

Samuele Germiniani, Moreno Bragaglio, and Graziano Pravadelli

University of Verona, Department of computer science, Italy
name@surname@univr.it

Abstract. Firmware verification for small and medium industries is a
challenging task; as a matter of fact, they generally do not have per-
sonnel dedicated to such activity. In this context, verification is executed
very late in the design flow, and it is usually carried on by the same engi-
neers involved in coding and testing. The specifications initially discussed
with the customers are generally not formalised, leading to ambiguity in
the expected functionalities. The adoption of a more formal design flow
would require the recruitment of people with expertise in formal and
semi-formal verification, which is not often compatible with the budget
resources of small and medium industries. The alternative is helping the
existing engineers with tools and methodologies they can easily adopt
without being experts in formal methods.

The paper follows this direction by presenting MIST, a framework for
the automatic generation of an assertion-based verification environment
and its integrated execution inside an off-the-shelf industrial design tool.
In particular, MIST allows generating a complete environment to verify
C/C++ firmware starting from informal specifications.

Given a set of specifications written in natural language, the tool guides
the user in translating each specification into an XML formal description,
capturing a temporal behaviour that must hold in the design. Our XML
format guarantees the same expressiveness of linear temporal logic, but
it is designed to be used by designers that are not familiar with formal
methods. Once each behaviour is formalised, MIST automatically gen-
erates the corresponding testbench and checker to stimulate and verify
the design. To guide the verification process, MIST employs a cluster-
ing procedure that classifies the internal states of the firmware. Such
classification aims at finding an effective ordering to check the expected
behaviours and to advise for possible specification holes.

MIST has been fully integrated into the IAR System Embedded Work-
bench. Its effectiveness and efficiency have been evaluated to formalise
and check a complex test plan for industrial firmware.

Keywords: verification, testing, simulation, checker, PSL, LTL, specification

|

2 Germiniani et al.

1 Introduction

In the last few decades, verification has become one of the most crucial aspects
of developing embedded systems. Thoroughly verifying the correctness of a de-
sign often leads to identifying bugs and specification holes far earlier in the
deployment process, exempting the developing company from wasting resources
in costly maintenance.

Software bugs can become exceptionally expensive when they are intention-
ally used to exploit vulnerabilities [1] or when they cause accidental software
failures [2]. The cost worsens depending on how late the bug is discovered in the
developing process. The Systems Sciences Institute at IBM [3] reports that fix-
ing a bug discovered during the implementation phase is roughly six times more
costly than fixing a bug identified during requirements analysis; fixing an error
discovered after release is up to 100 times more expensive than one identified
during maintenance. To sum things up, the cost of bugs escalates exponentially
after each step of the developing cycle. The National Institute of Standards and
Technology (NIST) estimates that the US economy loses 60 billion annually in
costs associated with developing and distributing patches that fix software faults
and vulnerabilities [4].

However, our experience suggests that many companies have to cut down
the verification process due to the lack of time, tools and specialized engineers.
To make things worse, developing time is often hard to assess correctly [5],
while managers usually tend to underestimate it. As a result, engineers and
programmers are subject to very firm deadlines; hence they are mostly concerned
about conjuring functionalities instead of carefully verifying the design [6].

That is even more critical in the case of firmware verification, which requires
exceptional consideration to deal also with the underlying hardware. Complex
industrial designs usually include various firmware instances executed on differ-
ent target architectures, which need to be co-simulated. Furthermore, virtual
platforms and simulators are not available for each target architecture or they
are not equipped with the proper verification tools. Therefore, several companies
postpone firmware verification at the end of the design process, when the real
hardware is available, finally asking the verification engineers to manually check
if the firmware meets the specifications.

Indeed, one of the main problems that prevent an effective and efficient
firmware verification process is the incapability of formalizing the initial de-
sign specification, which is generally written in extremely long and ambigu-
ous natural-language descriptions. Such descriptions risk being differently inter-
preted by designers and verification engineers, as well as by the project’s cus-
tomers themselves, thus leading to the misalignment between the initial specifica-
tion and the final implementation [7]. Besides, the lack of formalisation prevents
the engineer from exploiting automatic tools for verification, with the consequent
adoption of ineffective and inefficient (semi-)manual approaches. In particular,
without a well-defined specification, it becomes impractical to define any formal
or semi-formal verification strategy. Generally, those strategies require describ-
ing the expected behaviours in terms of logic assertions unambiguously. In the

MIST 3

case of semi-formal approaches, the verification engineer has to define a set of
testbenches to stimulate the design under verification. To accomplish that, the
verification engineer must identify and learn additional tools, further increasing
the verification overhead.

To fill in the gap, we present MIST: an all-in-one tool capable of generat-
ing a complete environment to verify C/C++ firmware starting from informal
specifications. The tool provides a user-friendly interface to allow designers and
their customers, which are not familiar with temporal logic, to formalise the ini-
tial specifications into a set of non-ambiguous temporal behaviours. From those,
MIST generates a verification environment composed of monitors (checkers) and
testbenches to verify the correctness of the firmware implementation automati-
cally. Then, in order to guide the verification process, MIST employs a clustering
procedure that classifies the internal states of the firmware. Such classification
aims at finding an effective ordering to check the expected behaviours and to
advise for possible specification holes. The verification environment has been
fully integrated with the popular AR Embedded Workbench toolchain [8]. We
evaluated the tool by verifying the correctness of an already released industrial
firmware, allowing the discovery of bugs that were never detected previously.

The rest of the paper is organized as follows. Section [2] summarizes the state
of the art. Section [3] overviews the methodology. Sections [[5} [0} [7] explain in
detail the methodology implemented in MIST. Section [|reports the experimental
results. Finally, in [9] we draw our conclusions.

2 Background

Formalisation of specifications is the process of translating requirements of a
design into logic properties that can be used to verify its correctness automati-
cally. Usually, the procedure consists of two main steps. Firstly, the verification
engineer has to disambiguate the informal specifications written in natural lan-
guage. Secondly, a formal specification language must be adopted to formalise
the specifications into logical formulas that will be used to verify the design.

During the past decades, numerous approaches have been developed to per-
form verification with the above paradigm.

Moketar et al. [9] introduce an automated collaborative requirements engi-
neering tool, called TestMEReq, to promote effective communication and col-
laboration between client stakeholders and requirements engineers for better
requirements validation. The proposed tool is augmented with real time com-
munication and collaboration support to allow multiple stakeholders to collabo-
ratively validate the same set of requirements.

In [10] the authors describe a method to formalise specifications in a domain
specific language based on regular expressions. The approach mainly consists in
using a set of parallel non-deterministic Finite state machines to map formal
specifications into behavioural models.

Subramanyan et al. [11] propose an approach to verify firmware security
properties using symbolic execution. The paper introduces a property specifi-

4 Germiniani et al.

cation language for information flow properties, which intuitively captures the
requirements of confidentiality and integrity.

In |12], Buzhinsky presents a survey of the most popular existing approaches
to formalise discrete-time temporal behaviours.

All the above works either use a standardised (such as PSL [13], SVA [14]) or
a domain-specific formalisation language relying on temporal logic formalisms
such as LTL (linear temporal logic) and CTL (computation tree logic). The LTL
logic allows the formalisation of temporal behaviours unfolding on a single com-
putational path; CTL is an extension of LTL which additionally allows branching
time and quantifiers.

Once the informal specifications are thoroughly translated into logic formu-
las, automatic verification can be applied to the target design. The process of
verifying a design using a set of formalised behaviours is called assertion-based
verification (ABV); this technique aims at checking if the formalised behaviours
hold in the design. ABV can be performed using model checking tools; although
these procedures are capable either of proving that a property holds or gener-
ating a counterexample, they are not scalable, as they must explore the whole
state-space of the design. To address the scalability problem, simulation-based
approaches have been introduced to perform ABV. This techniques consist of
simulating a design with a limited set of stimuli and memory configurations;
therefore, they do not prove that properties hold for every possible computa-
tional path. To apply this verification model to a design, the verification engi-
neer needs two additional elements aside from the assertions: a set of meaningful
testbenches to stimulate and a virtual platform to simulate.

A set of significant testbenches is essential to thoroughly verify all function-
alities of a design, to maximize its statement/branch coverage, and if possible,
to discover hidden bugs.

Frattini et al. [15] address the topic of test-case generation by deepening into
the possibility of generating a much more complete minimum set of stimuli for
simulation-based verification.

In [16], the authors propose a self-tuning approach to guide the generation of
constrained random testbenches using a sat solver. They employ a greedy search
strategy to obtain a high-uniform distribution of stimuli.

Cadar et al. |[17] present KLEE, a symbolic simulation tool capable of auto-
matically generating tests that achieve high coverage for C/C++ programs.

In [18], the authors introduce a purely SAT-based semi-formal approach for
generating multiple heterogeneous test-cases for a propositional formula.

“A Virtual Platform is a software based system that can fully mirror the
functionality of a target System-on-Chip or board. These virtual platforms com-
bine high-speed processor simulators and high-level, fully functional models of
the hardware building blocks, to provide an abstract, executable representation
of the hardware to software developers and to system architects” [19]. With
a virtual platform, the DUV can be verified by injecting testbenches and by
checking if the assertions hold during simulation. In this work, we generated a
verification environment for the virtual platforms provided by IARSystem.

MIST 5
3 Methodology

As shown in Fig. [, the proposed methodology is composed of four main steps
executed sequentially. The input of MIST is a set of temporal behaviours gen-
erated in the first step of the methodology starting from informal specifications
written in natural language. The output is a collection of files that need to be
added to a target simulator to perform the verification of the design.

(1) Formalisation of specifications: The first step consists of translating
the informal requirements into logic formulas. Initially, the user has to reinterpret
the specifications into a set of cause/effect propositions, which naturally translate
to logic implications a — c¢. The user must fill in an XML scheme containing
the implications, where each antecedent/consequent pair (a,c) is still written in
natural language. After that, (a, ¢) pairs are formalised into formulas predicating
on inputs/outputs and internal variables of the design under verification (DUV).
To do so, the user uses an intuitive language of our craft to easily model complex
temporal behaviours.

(2) Checker synthesis: In the second step, the tool parses the formalised
specifications from the XML schema and generates a checker for each formula.
Firstly, each formula is translated into a Biichi automaton. Secondly, a C/C++
representation of a corresponding checker is obtained from the automaton.

Informal # /

Specifications

Formalization
of
specifications

Checker
synthesis

Generation
of
test-plan

Testing
files

Simulation
set-up

N

Fig. 1. Execution flow of MIST.

6 Germiniani et al.

(3) Generation of test plan: The third step of the methodology aims at
finding an effective verification order for the given specifications. Each behaviour
must be verified when the firmware reaches a specific memory state that we
call “precondition state”, otherwise the verification would be vacuous. In this
state, the behaviour can be verified by providing the proper stimuli. During
the verification of a behaviour, the firmware changes to a new memory state
that we call “postcondition state”. Considering these assumptions, we identify
a sorted list of behaviours that would connect each “postcondition state” to
the “precondition state” of the following behaviour in the list to guarantee an
effective verification process.

(4) Simulation set-up: In the last step, the tool generates all the files neces-
sary to set-up the verification environment. This phase handles the architecture-
dependent features of the employed simulator, such as time flow, interrupts and
breakpoints. The output files can be described as follows:

— A set C/C++ source files implementing the checkers;

— A set of testbenches to stimulate the design;

— An orchestration file to verify each behaviour in the optimal “pre/postcon-
dition” order;

— A set-up file to initialize the verification environment;

— A set of utility functions to handle the time flow and to manage the interrupts
(if present).

Details related to the four steps implemented by MIST are reported hereafter.

4 Formalisation of specifications

In this section, we describe in detail how to employ our approach to formalise
the specifications and to generate the testbenches. The process of formalisation
consists of two subsequent steps. Firstly, the specifications are partially disam-
biguated using a high-level formalism. After that, they are completely formalised
using our newly created language. If necessary, testbenches can be defined during
formalisation.

4.1 High-level Formalisation

To clarify the whole procedure, we refer to the formalisation of the following
example of specification:

“Firmware is in standard mode, boiler temperature is equal to 18°. Switches A
and B are pressed or auto mode is active for at least 2000 ms, after that the
boiler’s temperature starts rising, then the firmware enters in comfort mode

and sends an acknowledgment as output”

The user has to interpret the specification and translate it into a cause/effect
behavior, which is represented by a high-level XML file as follows.

MIST 7

<assertion 1i1d=66>
<precondition>
Firmware is in standard mode, boiler temperature is
equal to 18
</precondition>
<postcondition>
Firmware is in comfort mode
</postcondition>
<antecedent >
Switches A and B are pressed or auto mode is active
for at least 2000 ms, after that the boiler’s
temperature starts rising
</antecedent >
<consequent >
The firmware enters in comfort mode and sends an
acknowledgement as output
</consequent >
</assertion>

Listing 1.1. High-level specification
As depicted in the example, the high-level XML file consists of 5 tags:

— <assertion> contains the id attribute to uniquely identify the behavior;

— <antecedent> contains the antecedent part of the informal specification;

— <consequent> contains the consequent part of the informal specification;

— <precondition> contains the memory state the firmware must reach before
checking the antecedent;

— <postcondition> contains the memory state reached by the firmware after
the consequent has been successfully verified.

By performing this preliminary step, the user prepares the ground for the com-
plete formalisation. Furthermore, the semi-formal specifications allow a better
understanding of the quality of the informal specifications. Indeed, a specifica-
tion that can not be formalised with the above pattern is either a non-functional
specification or a poorly defined functional specification that must be clarified
with the customer. This formalisation model could be even used directly dur-
ing the initial interaction with the customer to guide the creation of a set of
well-formed specifications from the beginning.

4.2 Low-level Formalisation

When the high-level XML file is completed, the user fills in the low-level XML file
by adding unambiguous details to formalise the behaviors. To help non-expert in
formal logic and temporal methods during the formalisation process, we defined
a new language whose grammar is showed below.

8 Germiniani et al.

assertion : antecedent -> consequent | precondition
| postcondition

precondition : proposition

postcondition : proposition

antecedent : next_fragment

consequent : next_fragment

next_fragment : fragment | fragment; next_fragment

fragment : proposition [min, max, times, delay,
forced, man_forced, until]

proposition : c_boolean_expression

Through this language, the user can formalise the specifications in forms of
implications, where each antecedent/consequent is an ordered list of fragments.
Each fragment contains a proposition p and a set of attributes specifying the
temporal behavior of p. A proposition is a C/C++ boolean expression. From a
temporal perspective, the verification of a consequent starts in the same instant
in which the antecedent becomes true, and each fragment is evaluated one instant
after the evaluation of the previous fragment completes. For example, in the
implication a — ¢, where a contains the sequence of fragments [f1; f2; f3] and ¢
contains [fy; f5]: if f1 holds in the interval [to,t,], f2 evaluation starts at time
tnt1; on the contrary, if f3 holds in the interval [tg,#;], f4 evaluation starts at
t;, since t3 belongs to the antecedent while ¢4 to the consequent. A fragment
represents then a sequence of boolean events, similar to a PSL SERE [13]. Given
a fragment f with a set of attributes
[min, maz, times, delay, until] containing a proposition p, the semantics of
the evaluation of f at time ¢y can be described as follows:

— min = n with n > 0: f is true if p holds from ¢y to ¢,—1. In other words,
min attribute means that the proposition must remain true for a minimum
of n instants.

— max =n with n > 0: f is true if p becomes false before ¢,,. In other words,
max attribute means that the proposition must remain true for a maximum
of n instants.

— times = m with m > 0 and max = n with n > 0: f is true at time ¢, <=1,
if p holds for m (not necessarily consecutive) instants. If attribute times is
set, then maxz must be set, while min and until are ignored.

— delay = n with n > 0: f is true at time ¢,,_1.

— until = ¢ where ¢ is a proposition, and max = n with n > 0: f is true if
g holds at time t¢ with tp <ty < t,_; and p holds from time tg to t¢_;. If
attribute until is set then maz must be set, while min and times are ignored.

To exemplify the use of the proposed language, we report hereafter the low-
level XML resulting from the formalisation of the behavior previously used as a
running example.

MIST 9

<assertion id=66>
<precondition>
mode == 0 && DbTemp
</precondition>
<postcondition>
mode == 1
</postcondition>
<antecedent >
<fragment min=2000 >
(PO == 0 && P4 ==
</fragment >
<fragment until=bTmpRising max=9000>
true
</fragment >
</antecedent >
<consequent >
<fragment min=1>
mode == 1 && P16 =
</fragment >
<fragment min=1>
(P16 >> 1) == 1
</fragment >
</consequent >
</assertion>

1]
]
-
(¢}
(@]

16 && P12 == 4) || autoMode

1

Listing 1.2. Low-level specification

The precondition (postcondition) is represented as a proposition identify-
ing a concrete memory state that must be reached before (after) the verifi-
cation of the behavior. In this example, the memory configuration identified
by mode == 0 && bTemp == 18.0 is forced before checking the rest of the
behaviour. The antecedent contains two fragments that, according to the de-
scribed semantics, identify the following behavior: the first fragment is true if
PO == 0&& P4 == 16 && P12 == 4 || autoMode holds true for 2000 con-
secutive instants; after that, the second fragment is true if ¥T'mpRising becomes
true within 9000 instants. The consequent also contains two fragments. In the
first fragment the proposition mode == 1 && P16 == 1 must be true for
one instant. In the following instant, the second fragment is evaluated, and the
proposition (P16 >> 1) == 1 must be true. From a temporal perspective,
the antecedent is evaluated from time ¢y to t; with 2000 < & < 11000 while the
consequent is evaluated from ¢y to tgy1.

4.3 Type system

In addition to the features described above, the propositions used in each frag-
ment completely supports a C-compliant type system. In particular, variables
can be defined using the usual C-styled syntax to declare their type. Moreover,
the propositions support the explicit and implicit C type casting. Since the DUV

10 Germiniani et al.

already contains the required declarations in the source code, the user needs only
to spend few seconds to copy and paste them to the low-level XML file.

Furthermore, the user can declare debug variables to simplify the formali-
sation of complex behaviours. Debug variables are used during simulation but
are held in memory outside the firmware under verification. This feature can be
exceptionally useful to store intermediate values during the simulation of a be-
haviour. Listing [I.3] shows a possible declaration for the variables used in listing
1w

<declaration>
unsigned char PO;
unsigned char P4;
unsigned char P12;
unsigned char P16;
</declaration>
<assertion id=66>
<declaration>
int mode;
float bTemp;
bool bTmpRising;
bool autoMode;
</declaration>

</assertion>

Listing 1.3. Variables declaration

Note that we provide support for both global and local declarations. Local dec-
larations are valid only inside the assertion in which they are defined; global
declarations extend to all defined assertions.

4.4 Testbench generation

The formalisation language used in MIST provides three additional attributes:
“nTB”, “forced” and “manual_forced” to allow the generation of testbenches.
The attribute forced can be specified for a fragment f to guide the testbench
generator during the DUV simulation. If forced = n with n > 0, MIST calls a
SAT solver to generate a model for the proposition p that returns an assignment
var; = val; for each variable var; included in p. If f is evaluated at time tg, then
each var; is forced to value val; in the interval [tg,t,—1]. The attribute nT' B
specifies how many testbenches must be generated for the current behaviour. If
nT B is equal to p with p > 1, MIST generates p distinct test-vectors for the
current fragment. If the number of available distinct test-vectors is less than p,
MIST replicates the last generated test-vector to fill the empty spots.

<FRAGMENT forced="200" delay="200">
x |l y
</FRAGMENT >

MIST 11

Consider the example above, if nTB = 4 and z||y is the proposition defined
in the fragment, then there can exist only 3 distinct test-vector : (x = true,y =
false), (x = false, y = true), (x = true, y = true). In this scenario, MIST replicates
(x = true, y = true) to fill the fourth test-vector. Note that the attributes forced
is completely independent of the evaluation of the fragment. If forced is the only
attribute defined in the fragment, then the fragment is considered “empty”;
nonetheless, a test-vector is generated anyway, but the evaluation of the empty
fragment is skipped and the evaluation of the next fragment begins in the same
instant (and not one instant later).

The attribute manual_forced follows the same semantic described for forced,
except that the generated test-vector is manually provided by the user instead
of being generated automatically. This is exceptionally useful in cases where the
stimuli must vary in time or must follow a certain pattern. Moreover, the user
could exploit this feature to integrate testbenches generated with specialised
external tools, remarkably increasing the flexibility of MIST.

The syntax of manual _forced is slightly different: manual_forced = n, where
n is the id of a test-vector declared in the current assertion. Note that forced
and manual_forced are mutually exclusive, only one of them can be used in a
fragment at any time. A test-vector is defined with the following syntax:

<test_vector id="ulnt">
[vary,vars, ... ,var,] = {
tv_tby;
t’(),tbg;

£0_thyn;
}

</test_vector>

[vary,vars, ... ,vary] is the list of variables on which to apply the stimulus.
tv_th; is the ith test-vector to be injected in the fragment when the simulator
is stimulating the design with the ith testbench. Each tv_tb; follows the syntax
showed below.

tU,tbi S

(vari_valy, wvargwaly, ..., var,-valy, durationi),

(vari_vals, wvargvals, ..., var,-vals, durations),

(varivaly, varqwaly, ..., varp,-valg, duration,)
Each tuple (variwalj, varevalj, ..., varn-val;, duration;) identifies a piece
of test-vector where the variables vary, vars, ... ,var, are forced with the values
vari-val;, vargvalj, ..., var,_val; for duration; instants. Once the values are

injected for duration; instants, the following tuple (j + 1) is used to inject the
values.

In the example depicted in listing |1.2] we assumed that pressing the bottom
and rising the temperature were internal events of the firmware that did not re-
quire any external stimulus. However, in many cases this is not true; usually, the
user has to provide as input a sequence of stimuli to test the correct behaviour.

12 Germiniani et al.

In the example below, we propose again the same formalised behaviour where
the fragments of the antecedent are used to inject testbenches. Note that the
consequent is the same of listing |1.2

<assertion i1d=66 nTB=2>
<precondition>
mode == 0 && bTemp == 18.0
</precondition>
<postcondition>
mode == 1
</postcondition>
<antecedent >
<fragment forced=2000 delay=2000>
(PO == 0 && P4 == 16 && P12 == 4) || autoMode
</fragment >
<fragment man_forced=7 delay=1200/>
</antecedent >
<test_vector id=7>
[bTemp] ={
(18.0,200) ,(18.2,200) ,(18.4,200) ,(18.6,200)
,(18.8,200),(19.0,200); 1%
</test_vector>
</assertion>

Listing 1.4. Low-level specification with testbenches

In this example, there are both automatic and manual test-vectors.

Since nTB=2, MIST generates two testbenches.

In the first fragment of the antecedent, the generated test-vector is
(PO =0, P4 =16 , P12 = 4, autoMode = false) for the first testbench and
(PO =0, P4 =0, P12 = 0, autoMode = true) for the second testbench. The
second fragment contains a manual test-vector with ID equal to 7. We also
use the attribute “delay” to postpone the evaluation of the second fragment
after injecting the test-vector of the first fragment. Likewise, we put off the
evaluation of the consequent by delaying the second fragment. If we combine the
automatic test-vector of the first fragment with the manual test-vector of the
second fragment, MIST generates the following testbenches:

1. (PO =0,P4 =16, P12 = 4, autoMode = false) for 2000 instants, (bTemp
= 18.0) for 200 instants, (bTemp = 18.0) for 200 instants, (bTemp = 18.2)
for 200 instants, (bTemp = 18.4) for 200 instants, (bTemp = 18.6) for 200
instants, (bTemp = 18.8) for 200 instants, (bTemp = 19.0) for 200 instants

2. (P0=0,P4=0, P12 =0, autoMode = true) for 2000 instants, ... the rest
is the same of the previous testbench.

Note that in the second testbench, the test-vector for the second fragment is the
same used for the first. This happens because only one test-vector was defined for
the second fragment while 2 were needed to generate the required testbenches.

From a temporal point of view, the two tesbenches can be represented as in
figure 2] Both testbenches are injected from time ¢y to time t3199.

MIST 13

P12 | 4 |
@ P4 | 0]
PO | 16 J

bTemp m 18.4 18.6 m
P12 | 0 |
@ | 2)
PO | 0]

bTemp |18.0]182 [18.4 186 |188 [19.0 |

0 500 1000 1500 2000 2500 3000 3500

Fig. 2. Testbenches timeline

5 Checker synthesis

In the second step of the methodology, MIST parses the formalised specifications
in the low-level XML files and generates a C/C++ checker for each implication.
The process works in three main sub-steps. Firstly, the tool translates each XML
assertions to a PSL formula. Secondly, each PSL formulas is used to generate
its equivalent Biichi automaton. Finally, the Biichi automaton is translated to
C/C++.

We treat each implication as two independent formulas, one for the an-

tecedent and one for the consequent. This separation is necessary to pinpoint
scenarios where the implication is vacuously true. If we considered the implica-
tion as a whole, a true evaluation could either mean that the consequent was true
or the antecedent was false, we want to distinguish both cases to better warn
the user. To convert an XML assertion to PSL, each sequence of fragments is
treated as a PSL SERE. For example, the consequent of the specification used
in Section [] translates to the following PSL formula {mode == 1 && P16 ==
1; (P16 >> 1) == 1}.
Since the PSL syntax does not allow the use of many C operators such as the bit
shift operator (<<), we execute an intermediate step to provide support to all
C operators that can be used to form a boolean expression. In this step, the tool
substitutes each fragment’s proposition with a placeholder boolean variable rep-
resenting the proposition. For example, the above formula would be translated
to {phl; ph2} where phl is the placeholder for mode == 1 && P16 == 1 and
ph2 is the placeholder for (P16 >> 1) == 1; Once the translations above are
completed, we generate a Biichi automaton for each formula. To do so, we use
spotLTL , an external library capable of generating automata from LTL/PSL
formulas. Finally, the resulting automaton is visited to generate a C/C++ im-
plementation of the corresponding checker.

14 Germiniani et al.

<CONSEQUENT>

<FRAGMENT min=1>

g mode == 1 && P16 ==
</FRAGMENT>
<FRAGMENT min=1>

(P16 >> 1) ==

</FRAGMENT>

0 </CONSEQUENT>

"I { (mode == 1 8& P16 == 1); (P16 >> 1) == 1} |—>| { ph1; ph2 } |

g
1 int consequent_checker(int mode, int P16) {
e 2 static int state = 0;
3 switch (state) {
4 case 0:
5 state = (mode == 1 && P16 == 1) ? 1 : 3;
6 return (state == 1) ? -1 : 0;
- / case 1:
8 state = (P16 >> 1) ==1? 2 : 3;
9 return (state == 2) ? 1 : 0;
10 }
11}

Fig. 3. Example of checker synthesis.

Fig. [3| shows an example to clarify the process. In steps (1) and (1.5), the
fragment is converted to PSL, and its proposition is substituted with placeholders
according to the aforementioned procedure. In step (2), the LTL formula is
given as input to spotLTL to generate the depicted Biichi automaton. Before
synthesizing the C/C++ checker, each placeholder is substituted back to its
original proposition. In Fig. |3 placeholder phl and ph2 are substituted back to
mode == 1&& P16 ==1 and (P16 >> 1) == 1. In step (3), the automaton
is visited starting from the first state. For each state, the tool generates a case
of a C switch, for each edge the tool generates the next-state function in each
case. Note that the accepting (rejecting) state is optimized away. For example,
the generated checker contains a case in which state is equal to 0. In this case, if
the condition mode == 1 && P16 == 1 is satisfied then state is changed to 1,
otherwise it is changed to 3. In this scenario, states 2 and 3 are respectively the
accepting and rejecting states where the checker returns 1 (true) and 0 (false).
In all other states, the checker returns -1 (unknown).

MIST 15
6 Test plan generation

In the third step of the methodology, the low-level XML file is used to generate
an effective testing order. Such an order is intended for generating testbenches
that make the firmware evolve in the right memory state before the verification
of a behaviour is performed. Otherwise, the checker may pass vacuously or fail
due to a wrong precondition state reached by the firmware when the checker is
executed.

MIST can generate a test plan following two different strategies: a guided and
an unguided strategy. The unguided strategy does not leverage the information
provided by the posconditions to generate an effective testing order; therefore it
is more prone to errors. On the other hand, since it does not require the definition
of postconditions, it is easier to use. Inexperienced users should become confident
with this first strategy before exploring the more sophisticated second one. The
guided strategy makes full use of the postconditions to reduce unexpected failures
of checkers due to formalisation mistakes. Furthermore, it provides feedback on
the quality of the formalised specifications.

6.1 Unguided test plan generation

This procedure can be used to quickly generate a test plan without exploiting
the relation between preconditions and postconditions. Although it is less secure,
it might be more preferable for developers who do not want to put in the extra
effort of applying the guided approach.

First, the user has to define a safe condition and a set of behaviours. After
that, MIST automatically generates a test plan operating as follows. During the
simulation, the verification process waits until the safe condition is satisfied.
Then, the verification process stores the current firmware memory; this memory
state is called “safe state”. From there on, the following algorithm is executed:

1. Pick an untested behaviour (b;); if all behaviours are tested, this process
ends.

2. Load the safe state in the firmware’s memory.

3. Force the precondition pr; of b; to be true in the current simulation, if pr;
does not hold after being forced, prompt an error and return to 1.

4. Test b; using testbench tb; and dump the result of the test in the verification
report.

5. If j is the index of the last testbench of b;, then go to 1, else, increment j
and return to 2.

The safe condition is a non-temporal boolean expression following the same
semantics of a fragment proposition. If it becomes true during simulation, it
prompts the beginning of the verification process. Delaying the verification pro-
cess until the safe condition is satisfied allows the simulation to perform a proper
initialisation of the firmware; this step is mandatory for most implementations
before testing any functional behaviour. A precondition is forced following a

16 Germiniani et al.

similar procedure to the one used to force a proposition inside a fragment. Once
again, we use a sat solver to identify an assignment of variables that satisfies the
proposition, this assignment is then forced during the simulation.

Dumping and loading safe states are inexpensive procedures both compu-
tationally and memory wise. This is true because only a small writable part
of the firmware’s memory is dumped, as it is the only portion of memory that
could change during execution, the rest remains unchanged for all simulations.
Furthermore, only one safe state needs to be stored to make this approach work.

6.2 Guided test plan generation

The unguided test plan generation already provides a quick and simple approach
to enable verification using MIST. However, to apply that procedure correctly
without mistakes, the user would have to annotate each formalised behavior with
the eract memory state to be forced before starting the test. This process can
be extremely time-consuming and error-prone; as a matter of fact, to be sure of
reaching the correct memory configuration, the user might have to address in
the precondition the value of all variables used in the firmware, which could be
thousands of variables in most industrial firmware. In many cases, errors in this
procedure lead to a vacuous verification; the test is unable to fire the antecedent
of the target assertion, as the testbench is injected in the wrong memory config-
uration. In this situation, the verification engineer would have to go through an
excruciating process of trial and error to find the correct precondition.

To address this issue, we developed a guided test plan generation, to produce
an effective testing order. This procedure relies on the assumption that the
DUV was developed by following a coherent logic flow. The generated testing
order tries to mimic the behavior of a human that manually tests the DUV.
To check the correctness of a design, the human starts from the initial state
and provides a sequence of stimuli to the DUV. Each sequence of stimuli moves
the DUV from one configuration to the next in a coherent flow, such that the
ending configuration represents the starting precondition for effectively checking
the next behavior in a cause-effect cascade fashion. Through this approach, the
specifications are verified in the order intended by the designer, thus reducing
the necessity of forcing the memory state that represents the precondition of the
target behavior, since the DUV gets naturally brought to the proper state. In
other words, the verification engineer no longer has to regard the whole memory
of the firmware in the precondition; the correct memory configuration is partially
reached as a “side-effect” of the previously tested behaviours.

The guided test plan generation consists of two main procedures. Firstly, all
assertions formalised in the low-level XML file are divided into subsets through
a clustering procedure. Secondly, each subset is treated as a node of a multilevel
graph, and a verification order is defined by generating a path that connects all
nodes. Such a path is then traversed to generate an effective testing order.

In this procedure, we consider the precondition and postcondition tags of each
assertion. Each precondition/postcondition consists of a propositional formula
following the template variable; == constant1 & variables == constants & ... &

MIST 17

c=0
[pre,]

[poso]
[pres]

q is [prey: a=1 & d=0] -> [posy: a=1 & d=1] a, is [pre;: a=1 & d=1] -> [pos,: e=0]
a, is [pre,: a=0 & b=1 & c=0] -> [pos,: a=0 & b=1 & c=1] a5 is [pre;: f=0] -> [pos;: a=1]
a4 is [pre,: e=0] -> [pos,: e=0] as is [pres: a=0 & b=0] -> [pos;: a=0 & b=0]
g is [preg: a=0 & b=0] -> [pos,: a=0 & b=2] a;is [pre;: a=0 & b=2] -> [pos;: a=0 & b=2]

Fig. 4. Example of test plan generation

variable, == constant, that represents a concrete memory configuration. To
simplify the exposition, we will use the term “memory state” while referring to
a precondition/postcondition.

In the clustering phase, the goal is to divide the set of all memory states into
subsets. We will refer to the example depicted in Fig. 4] to clarify the procedure.
At the bottom of Fig. 4] we report the list of assertions used in the example.
For instance, the assertion described in Section 4] is represented in the example
as “ags is [press : mode = 0] — > [poses : mode = 1]”, where pre (pos)
is the precondition (postcondition) of the assertion with id equal to 66. The
clustering process starts by considering the whole set of memory states, and then
it is recursively repeated for each generated sub-set until no set can be further
divided. The process counts the occurrences of each variable in all memory states
in the current set; the variable with the highest count is used to perform the split.
In the example, the most frequent variable in the whole set is a. The current
set is split into as many sub-sets as the number of different assignments of the
most frequent variable. Also, we add an optional sub-set containing all memory
states that do not include the most frequent variable (do not care sub-set). In

18 Germiniani et al.

the example, the whole set is divided into three clusters, two clusters for a = 0
and a = 1 and one don’t care cluster a = —. The same process is repeated
until all sub-sets contain only memory states with equivalent assignments. In
the example, the cluster identified by a = 0 and b = 0 contains three equivalent
memory states [pres], [poss], [preg] that have the same assignments [a = 0 & b =
0]. This heuristic approach is intuitively justified by the assumption that the most
frequent variables represent better the whole state; therefore, it is reasonable
to make them represent wider clusters than those represented by less frequent
variables. The clustering procedure aims at making all similar memory states
“close” to each other.

In the second part of the approach, each sub-state is used to infer an effective
testing order. Starting from the precondition of an assertion chosen randomly
(or by the user), the tool finds a path that covers all the memory states. To move
from one memory state to the next, the procedure applies the following rules:

R1: Checking an assertion ¢ in memory state [pre;] moves the process to [pos;]
(solid red arrow);

R2: If the process can not find any other unused precondition in the current
state cluster, it must jump to its upper cluster and continue the search
(dotted black arrow);

R3: After a jump, the process searches for the first unused precondition [pre;]
in the current cluster. If it finds one, it continues the process from that state
(rounded white arrow).

To clarify the procedure, we explain the process by considering the example
of Fig. [d] In this example, the user chooses to start with assertion ag; therefore,
the starting state is [preg]. By applying rule R1, assertion ag is added to the test
plan, and the execution moves to state [posp]. In the destination cluster, we find
an unused precondition [pre;]. We apply again rule R1, assertion a; is added
to the test plan, and the execution is moved to pos;. We repeat the process for
assertion a4, and we reach the state poss. In this case, no more preconditions are
available in the current cluster; therefore, the execution must apply rule R2 and
jump to the upper cluster identified by a = —. By applying rule R3, the process
finds an unused precondition prez and continues from there. Again, we add
assertion as to the test plan, and we move the execution to poss. We apply rule
R2 as no other preconditions can be found in the current cluster, and we reach
cluster a = 1. We must apply rule R2 again for the same reason and jump to the
upper cluster. The procedure continues as described above until all assertions are
added to the test plan. The resulting test plan is [ag, a1, a4, a3, as, ag, ar, az].

Note that the ideal case, where all behaviors described by the initial specifi-
cation perfectly connect to form a coherent path, requires the user to completely
formalise the specifications such that all assertions belong to a unique cluster.
This requirement could be extremely tedious to achieve manually and could be
unfeasible for most large-scale designs. For this reason, each time we identify a
hole in the specification, such that the postcondition of an assertion does not
connect with the precondition of any other assertion, our heuristic approach
jumps to a similar close state and warn the verification engineer. To be clear, in

MIST 19

Table 1. Completeness analysis for example in Fig. E|

max applications of rule R2|completeness
0 times 62.5%
1 times 87.5%
2 times 100 %

the case of fully connected specifications, our approach uses only rule R1. Each
time rules R2 and R3 are used, we are approximating.

After generating the test plan, MIST informs the user of the completeness
of the given set of behaviors by comparing the total number of assertions with
the number of times rule R2 was applied to continue the clustering process. The
completeness index is calculated with the following formula:

(1 — exceeded_maxR2 applications | tot_assertions).

Where exceeded_max R2_applications represents the number of times the process
has to violate the maximum number of consecutive applications of rule R2.
Intuitively, the resulting completeness is an index describing how much the set
of behaviors is likely to cover all functionalities of the DUV without holes. Each
time a missing link is found, the completeness is reduced.

Table [I] shows the completeness for the running example. The first row of
the table shows the completeness when no approximation is allowed, or in other
words, when the process should not use rule R2 to continue. In the example,
rule R2 is used 3 times non-consecutively; therefore, the resulting completeness is
(1—3/8) = 0.625. In the example, the second (third) row shows the completeness
reachable by allowing the consecutive application of rule R2 at most once (twice).

The user can exploit this information to improve the set of formalised be-
haviors such that rule R2 is applied as less as possible while achieving high
completeness.

7 Simulation setup

7.1 Setup

In the last step of the methodology, the verification environment is set up. This
phase handles the architecture-dependent features of the target simulator. For
now, MIST is capable of generating a verification environment for the IARsystem
workbench, which is an industrial compiler and debugger toolchain for ARM-
based platforms. In particular, we exploit the provided breakpoint system to
evaluate the checkers and to handle the time flow.

Since our checkers provide support for temporal behaviors, we need a way
to sample the time flow. To accomplish that, we provide a debugging variable
sim_time that can be used by the user to simulate the advancement of time in
the DUV. To capture this event in the debugger, we place a breakpoint on that
variable to recognize write operations. Each time sim_time is incremented, the

20 Germiniani et al.

simulated time advances by one instant producing a re-evaluation of the active
checker. Usually, the best way to use sim_time is to place it in a timed interrupt
that keeps increasing it at a constant rate. Furthermore, we use breakpoints to
inject stimuli in the ports and variables of the fragments using the forced and
manual_forced attributes. Following the above mechanisms, MIST generates the
files to perform the verification of the DUV using TARsystem. The generated files
consist of an entry point to set up the verification environment, utility functions
to handle the time events, the orchestration file that executes each checker using
either a guided or unguided strategy and a set of files containing the checkers.
To integrate the generated verification environment with TARSystem, the user
only has to provide the MIST’s entry point file to the simulator; after that, the
verification process proceeds automatically until its completion.

7.2 Report
1 [CHECKER #66_al
2 FRAGMENT FALSE in Antecedent, Fragment 2
3 => Testbench none
4 — Proposition "true until bTmpRising, max = 9000" is false!
5 — Reason: timer ran out!
6
7 [CHECKER #66_b]
8 FRAGMENT FALSE in Consequent, Fragment 1
9 —> Testbench 2
10 — Proposition "mode == 1 && P16 == 1" is false!
11 — Reason: mode = 1, P16 = 4 after O instants of <min,1>
12

13 HERHHHHBRARHHHBRARHHHBHAHBHBBHHH

14 #######4##E SUMMARY #####S#H#H##H

15 HBHHAHHHBBARHHHBRARFHHBHAHHHBBHHH

16 — Number of tests: 10

17 — Test plan order [checker id, nTB]: [1, 1] [1, 2] [66_a, nonel
18 [66_b, 11 [66_b, 21 [2, 11 [3,1]1 [3,2]1 [3,3] [3,4]
19 — Verified : 8 [80%]

20 - Vacouse : 1 [10%]

21 - Failed : 1 [10%]

22

23

Fig. 5. Example of report

Once all behaviours are tested, the verification process provides a verification
report containing the results of the simulation. The report includes information
related to the coverage and failure of checkers, together with the applied test-
benches. Checkers whose antecedent was false are reported as vacuously satisfied;
otherwise, they are either reported as “verified” if the consequent was true, or
as “failed” if the consequent was false.

MIST 21

Since our formalisation language has a well-structured and simplified syntax,
failed checkers are also capable of reporting additional information about the
failure. Not only they can report exactly the location of the failure in the be-
haviour, but they can also infer its cause. We show an example of a verification
report in fig.

In this example, we show the result of two possible failures for the running
examples depicted in listing[L.2] (66_a) and [1.4] (66_b). In particular, 66_a is vacu-
ously verified, as the failure makes the antecedent false; 66_b fails on testbench 2,
as the failure occurred in the consequent. All other behaviours are correctly ver-
ified for all testbenches. The verification report is composed of two main parts,
the first part contains the details of the failures, while the second part contains
the summary of the whole simulation. For each failed test, the verification envi-
ronment is capable of reporting the exact location of the failure. For behaviour
66_b, it is reported that the failure occurred in the first fragment of the con-
sequent while injecting the second testbench. Thanks to the limited number of
temporal operators and a well-defined structure of the propositions, we can pro-
vide a custom message for each failure, greatly simplifying the understanding of
its cause. These messages usually contain the assignment of variables that made
the proposition fail together with additional remarks on the applied temporal
operator. By reading the message for behaviour 66_b, we can quickly understand
the cause of the failure: the assignment of variables mode = 1, P16 = 4 clearly
does not satisfy proposition mode == 1 && P16 == 1. In particular, variable
P16 is the cause of the failure. Furthermore, the message “after 0 instants of
(min,1)” warns the user when the proposition became false, that is, in the first
instant of evaluating a fragment annotated with the min attribute.

8 Experimental results

The experimental results have been carried out on a 2.9 GHz Intel Core i7
processor equipped with 16 GB of RAM and running Windows 10.

8.1 Case study

We evaluated the effectiveness of our tool to verify an industrial firmware com-
posed of over 10000 lines of C code. The analyzed case study is represented by
firmware implementing the controller of a boiler implant. The user can interact
with the firmware through an HMI (Human machine interface) composed of LCD
display and 4 alphanumeric digits, 7 keys, an RS485 connection and 1 TTL con-
nection (possibility of a second modbus with the addition of the ITRF14 inter-
face). Moreover, the firmware is connected to several external devices providing
inputs/outputs such as thermostats, boilers, clocks and an internet gateway. The
firmware runs on an RL78 microcontroller, allowing communications with the
external devices through Modbus and 12C protocols. Finally, the internal time
flow is handled using timed interrupts. The case study configuration is depicted

in fig. [0}

22 Germiniani et al.

Boiler

Peripheral
devices

Fig. 6. Case study

8.2 Results

We put emphasis on the timing results of the complete verification process, from
the formalisation of specifications to the simulation of the behaviours. Starting
from the informal specification of the firmware, we formalised 100 behaviours.
On average, each behaviour takes 30 seconds to be formalised into the high-level
XML format. The formalisation of the low-level XML format depends signif-
icantly on the skill of the verification engineer and his/her knowledge of the
underlying implementation details. After some practice, we were capable of for-
malizing a behaviour in less than three minutes. Overall, we formalised all 100
behaviours in less than 6 hours. After that, MIST generated the testing files and
produced an effective test plan in less than 10 seconds. We don’t report numer-
ical results proving the scalability of the tool in terms of time/memory as the
complexity of the approach is linear with respect to the number of formalised be-
haviours; therefore, the tool might take minutes at most to formalise thousands
of behaviours. Finally, we set-up the verification environment in the simulator
(TAR System Workbanch). The simulation took less than 40 minutes to verify
non-vacuously each behaviour and to produce a report of the verification.

The employment of our methodology to an industrial legacy firmware dis-
covered numerous bugs related to an inaccurate sampling of time. One notable
example concerns the usage of switches in the HMI. Many specifications implied
that some switches needed to be pressed for a certain amount of time to active
a functionality. However, during simulation, the correct behaviour did not occur
even when providing the correct stimuli. Using MIST for the verification of such
a firmware was considerably helpful in identifying a temporal inconsistency of
Modbus and I2C protocols that caused a delay in its execution.

MIST 23
Table 2. Completeness analysis for the considered case study.

max applications of rule R2|completeness
45.5%
72.73%
79.22%
81.82 %
97.73%
100%

Y x|l WD~ O

Table 3. Completeness analysis of the case study after the improvements.

max applications of rule 2|completeness
0 48.5%

1 75.73%

2 88.2%

3 100 %

Furthermore, the generation of the test plan for 100 behaviours suggested
a remarkable incompleteness in the firmware specifications. In table 2] we can
observe the completeness estimations produced for the case study by consid-
ering the approach proposed in Section [6] We used those statistics to improve
the completeness of the specifications by adjusting the behaviours underlining
the highest incompleteness and by adding 10 behaviours to cover some specifi-
cations holes. After completing this procedure, we achieved new completeness
estimations reported in Table |3] To achieve 100% completeness with the new
specifications, we needed to apply rule R2 only 3 times, while with the initial
specifications, it was used 5 times.

To test the effectiveness of the new language developed for MIST, we arranged
a 2-day workshop with the company that provided the industrial case study.
In this short time, the developers have been capable of quickly grasping the
fundamentals of the language, and before long, they have begun formalising
specifications and using the tool on their own.

9 Conclusions and future works

In this paper, we presented MIST, an all-in-one tool capable of generating a com-
plete environment to verify C/C++ firmwares starting from informal specifica-
tions. MIST reduces the verification effort by providing a user-friendly interface
to formalise specifications into assertions and to generate the verification envi-
ronment automatically. Furthermore, MIST employs a clustering procedure to
generate an effective test plan that reduces potential mistakes while formalizing
the specifications.

Collaborating with the industry gave us the opportunity to make the tool
go through a long tuning process. Moreover, the feedback received by experi-

24 Germiniani et al.

enced developers allowed us to thoroughly assess the potentials and limitations
of MIST. The majority of limitations were overcome during the tuning process;
however, there are still few issues that need to be addressed in future works.
Most drawbacks of the verification environment generated by MIST are related
to unjustified constraints imposed by C-Spy, which is the debugger used in the
TARSystem Workbench. Below, we report some of those constraints.

— No observability of non-static variables: we can not test the value or put
breakpoints on automatic variables, therefore, we can not write assertions
with those variables

— Macros declared with the “#define aliasName originalName” C statement
are not visible during simulation: the user is forced to use the right side of
the macro when writing propositions, as the debugger does not keep track
of aliasing. This limitation deeply affect the readability of the formalised
behaviours.

— Lack of strongly typed variables and complex C data structures in the C-
Spy language: this major constraint strongly affected the development of
MIST; furthermore, we believe that it will also heavily affect extensibility
and maintainability.

To avoid being dependent on the constraints imposed by a specific simulator,
we will modify the back-end of MIST to be easily extendable to other target
simulators.

Hereafter, we report some limitations of MIST that we would like to overcome
in future releases.

— No support to generate testbenches that affect only a portion of bits of a
target variable: consider the variable unsigned char PO, for now, the user
can not generate a testbench that, for instance, would modify the value of
the first bit of PO while keeping the other bits unchanged. We planned to
introduce a custom operator to overcome the above limitation.

— All behaviours are linked to the same temporal event: we would like to have
the user define what temporal event should produce the advancement of time
inside each behaviour.

MIST is an open source project (GNU license) freely available at https://
gitlab.com/SamueleGerminiani/mist|

References

1. P. K. Shamal, K. Rahamathulla, and A. Akbar, “A study on software vulnerability
prediction model,” in 2017 International Conference on Wireless Communications,
Signal Processing and Networking (WiSPNET), 2017, pp. 703-706.

2. N. Nagappan and T. Ball, “Static analysis tools as early indicators of pre-release
defect density,” 06 2005, pp. 580— 586.

3. M. Dawson, D. Burrell, E. Rahim, and S. Brewster, “Integrating software assurance
into the software development life cycle (sdlc),” Journal of Information Systems
Technology and Planning, vol. 3, pp. 49-53, 01 2010.

https://gitlab.com/SamueleGerminiani/mist
https://gitlab.com/SamueleGerminiani/mist

4.

5.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.
20.

MIST 25

M. Zhivich and R. K. Cunningham, “The real cost of software errors,” IEEE Se-
curity Privacy, vol. 7, no. 2, pp. 87-90, 2009.

M. Jgrgensen, K. Teigen, and K. Molgkken-@stvold, “Better sure than safe? over-
confidence in judgment based software development effort prediction intervals,”
Journal of Systems and Software, vol. 70, pp. 79-93, 02 2004.

T. D. Oyetoyan, B. Milosheska, M. Grini, and D. Cruzes, Myths and Facts About
Static Application Security Testing Tools: An Action Research at Telenor Digital,
05 2018, pp. 86-103.

M. H. Osman and M. F. Zaharin, “Ambiguous software requirement specification
detection: An automated approach,” in 2018 IEEE/ACM 5th International Work-
shop on Requirements Engineering and Testing (RET), 2018, pp. 33-40.

[Online]. Available: https://www.iar.com/iar-embedded-workbench

N. A. Moketar, M. Kamalrudin, S. Sidek, M. Robinson, and J. Grundy, “An auto-
mated collaborative requirements engineering tool for better validation of require-
ments,” in 2016 81st IEEE/ACM International Conference on Automated Software
Engineering (ASE), 2016, pp. 864-869.

Y. Kakiuchi, A. Kitajima, K. Hamaguchi, and T. Kashiwabara, “Automatic mon-
itor generation from regular expression based specifications for module interface
verification,” in 2005 IEEE International Symposium on Circuits and Systems,
2005, pp. 3555-3558 Vol. 4.

P. Subramanyan, S. Malik, H. Khattri, A. Maiti, and J. Fung, “Architecture of a
tool for automated testing the worst-case execution time of real-time embedded
systems firmware,” in 2016 Design, Automation & Test in Europe Conference €
Ezhibition (DATE), 2016, pp. 337-342.

I. Buzhinsky, “Formalization of natural language requirements into temporal logics:
a survey,” in 2019 IEEE 17th International Conference on Industrial Informatics
(INDIN), 2019, pp. 400—406.

“Ieee standard for property specification language (psl),” IEEE Std 1850-2010
(Revision of IEEE Std 1850-2005), pp. 1-182, 2010.

“Teee standard for systemverilog—unified hardware design, specification, and verifi-
cation language - redline,” IEEE Std 1800-2009 (Revision of IEEE Std1800-2005)
- Redline, pp. 1-1346, 2009.

S. Yang, R. Wille, and R. Drechsler, “Improving coverage of simulation-based ver-
ification by dedicated stimuli generation,” in Formal Methods in Computer Aided
Design, 2014, pp. 599-606.

Y. Zhao, J. Bian, S. Deng, and Z. Kong, “Random stimulus generation with self-
tuning,” in 13th International Conference on Computer Supported Cooperative
Work in Design, 2009, pp. 62-65.

C. Cadar, D. Dunbar, D. R. Engler et al., “Klee: Unassisted and automatic gener-
ation of high-coverage tests for complex systems programs.” in OSDI, vol. 8, 2008,
pp. 209-224.

S. Agbaria, D. Carmi, O. Cohen, D. Korchemny, M. Lifshits, and A. Nadel, “Sat-
based semiformal verification of hardware,” in Formal Methods in Computer Aided
Design, 2010, pp. 25-32.

[Online]. Available: https://www.esa.int

A. Duret-Lutz, A. Lewkowicz, A. Fauchille, T. Michaud, E. Renault, and L. Xu,
“Spot 2.0 — a framework for It]l and w - automata manipulation,” 10 2016, pp.
122-129.

https://www.iar.com/iar-embedded-workbench
https://www.esa.int

	From informal specifications to an ABV framework for industrial firmware verification

