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Abstract. Increasing product complexity and the growing importance
of software components poses challenges for PLM systems in modern
companies and extended enterprises. Today product behavior and its
processes drive product value, so companies use sophisticated software
to accurately predict it before its manufacture. In this work we argue that
states are a natural atomic part of any product, system or process. Then
we briefly review and compare current methods for behavior and state
representations in domain engineering and systems engineering practices.
‘We show that the support provided to the engineer by PLM systems in
managing and sharing behavioral and state product properties across an
extended enterprise is insufficient in comparison to their significance for
successful product development and its complete life cycle.

1 Introduction

Growing product complexity continues to be one of the hardest challenges facing
design and manufacturing today. Many vendors developed systems to help the
designer save his time and effort during the design. One of the earliest efforts
was to build modeling tools, i.e. tools to aid in representing and viewing the
designer’s work. In order to support system evaluation, tools for simulation were
developed as well as tools for manufacturing support. Today, PLM systems cover
many engineering and management domains. However, the introduction of soft-
ware intensive systems, [oT, Industry 4.0, Cyber-Physical systems concepts set
additional challenges to interoperability, modeling and simulation capabilities of
the software.

Modern cyber-physical and automated systems blend the distinction between
physical and computer systems. The development of these systems and their
components requires physical as well as behavioral product information. The
physical representation includes typical CAD structures, like form and material.
Behavioral product specification is related to its functionality, possible inter-
actions with other systems or their parts in different domains, like structural,
electrical or informational. Sophisticated simulation of system behavior at the
detail product development phase and its interaction with the environment has
become essential for predicting and ensuring commercial product success.
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Furthermore, in a highly connected world, companies often need to simulate
their target system interacting with other systems across the extended enter-
prise, so advanced means for change management, collaboration and model reuse
between disparate simulation and modeling systems are required.

Despite the diversity of simulation software, any digital process simulation
uses some kind of event model: continuous event model, or discrete event model,
or a mixed one. In any of these cases, the system of interest could be represented
by a set of variables that evolve over time in a continuous or discontinuous
way. The domain of these variables is called state space and their values at any
particular point in time define the state of a simulated system. This way state
is a fundamental concept for systems behavior simulation and analysis.

In spite of their fundamental meaning for product development, system states
still could not be effectively reused and handled by software solutions. Geometry
modeling and solid object representation serves as a backbone for version control
and collaboration, which do not provide sufficient support for product state
control.

In this work we will underline the importance of the system state concept
for product development. We will concentrate on system state definition as a
fundamental block of product representation at all stages of the life cycle. We
will discuss with examples current practices for state and behavior representa-
tion from the systems engineering and PLM point of view and underline the
importance of explicit management of stateful objects for complex system de-
velopment.

2 Defining Processes And Product States

Fundamentally, the work of a designer is to create the definition of products and
systems as objects. An object can be defined as a thing that exists or might exist.
Real objects can be transformed in various ways: they can be heated, deformed or
wear out during the operations. A process is something that transforms objects:
consumes, creates, or modifies its state. The function is the main process of the
system, which is designed to deliver value — benefit at cost — to the system
beneficiary.

The Webster dictionary [1] proposes the following definitions of “state”, any
of which is applicable in the scientific and engineering domain:

“State”, noun:
— a condition or stage in the physical being of something
— any of various conditions characterized by definite quantities (as
of energy, angular momentum, or magnetic moment) in which an
atomic system may exist

There are several important implications of that definition:

— there are no stateless objects. A CAD solid object has at least a single state:
it is an abstraction which does not change in time and can only change
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its position. Real objects are much more complex and could be potentially
decomposed into many states. Thus, a state is a natural part of any physical
object in a system, which defines the object at some point in time or in a
time frame;

— the notion of state effectively allows us to describe only some of the pa-
rameters of a condition in which the system may exist. Indeed, the designer
considers only those variables which are essential for product definition, ig-
noring others. Moreover, he narrows the set of variables to a minimal set
that appropriately, i.e. to a degree that allows to solve a problem at hand,
describe the product or system. Even the information that does not allow
appropriate system description could be useful, e.g. at early project stages,
when the system is not yet sufficiently defined;

— a state is a natural primitive constituent of any process within a system. A
process in a system can be defined as a change of state over time.

Sometimes the change in system parameters can be insufficient for our senses
or instruments to capture the difference with the adjacent state. This idea leads
us from a continuous state space to a discrete state space. A discrete state space
is also useful to intentionally simplify a system behavior representation.

Valid states for a kettle are: hot and cold; a landing gear of an aircraft can
be retracted or extended; a tablecloth can be clean or dirty, etc. These states
are characterized by parameters, such as temperature, gear position, or color
respectively. Usually the designer defines his or her product for being “good
enough” in some state, such as cruise state for an aircraft, or for changing the
state of other objects, such as “making the water hot” in case of a kettle.

3 Representations

Knowledge representation and reasoning are deeply intertwined. It was argued by
Davis [4] that by choosing a particular representation, one chooses a character
of answers and method of reasoning it could provide by its ontology, which
inevitably captures only a part of the underlying phenomenon.

Many systems for reasoning about processes and states are used in industry.
Even more are developed in academic literature, but none of them surprisingly
are explicitly present in PLM systems. The next section briefly reviews some of
existing methods for state and process representation.

Discrete event systems and continuous event systems are a part of modeling and
simulation theory. It is an active field of research, which formalizes modeling con-
cepts for complex systems. System states play an essential role in the formalism
by defining the event as a transition from one state to another. Currently this
theory could be considered as a backbone for different simulation engines and
softwares used by engineering community [3].
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Process Specification Language [8], [11] is a comprehensive ontology developed
by NIST, which was designed to provide unified means for software semantic in-
teroperability and formal reasoning about business and manufacturing processes.
The ontology is based on extended and modified situation calculus, which pro-
vides formal reasoning mechanisms. The state extension supports definitions of
states before and after certain activities through their attribution to change-
able properties of the objects. Many kinds of properties and their connections
to processes and other properties are defined for formal reasoning support.

The SAPPHIRE model was originally proposed by Venkataraman and Chakrabarti
[14] to support conceptual product design. In Figure 1 it is shown in the form
proposed by McSorley in [10]. The model underlines causal relationships between
objects, processes and states. The function of an object could be attributed to
an “affect” link to components of other models. In other words, it represents the
reality that the function of a system affects its environment. The model allows
to describe in detail and track product behavior. In this causality model, states
have a central role as a causal connector between physical phenomena and other
entities in a system.

Modified model with
’ Corrective action to the system %» updated inputs or
f Yes components

’ Requires action? ‘

| Affect_ { Change of State % _ AMiect | Component/Input

: I N for other model
1 N
! ‘ Physical Phenomena ‘ Y
¥ ) R\
External Inputs F Constitutive Laws <+ Component Features
4

’ Subset of components

Fig. 1. SAPPHIRE model structure

3.1 Systems Engineering

Systems engineering could be defined as a methodical multi-disciplinary ap-
proach for the design, realization, technical management, operations and retire-
ment of a system. A significant overlapping exists between PLM and Systems En-
gineering. PLM scope of application is larger and can be applied independently
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of Systems Engineering methods. Systems Engineering is more concerned with
engineering methods and processes from the very beginning of the system devel-
opment, as well as with enhancing communication and interoperability between
multidisciplinary teams, as it was described by Vosgien in [15]. So, in contrast
to domain modeling and analysis in PLM systems, for systems engineering the
semantic representation is essential, especially at the conceptual design stage,
when the system may be not yet sufficiently defined to run precise simulations.

From this point of view, states are important to define concept of opera-
tions and requirements for a product to accurately convey system functionality
description to system’s stakeholders. According to NASA Systems Engineering
Handbook [12], top-level requirements define constraints and scope for a tech-
nical system. The concept of operations and functional requirements describe
them on subsequent stages. These documents prescribe how the system will be
used and define its functional and behavioral expectations, that is, they loosely
define states and transitions of the considered system and product. For exam-
ple, consider two excerpts from James Webb Space Telescope (JWST) Mission
Operations Concept [13], which defines possible states of the telescope and its
subsystems and transitions between them:

— MO-44. The JWST Mission will be divided into 5 operational phases: Pre-
launch, Launch, Deployment and Trajectory Correction, Cruise and Com-
missioning, and Normal Operations.

— MO-226. A generic sequence of events in a typical science observation with
a JWST instrument would be:

1. The spacecraft slews to a new target field.

2. The FGS (Fine Guidance Sensor) performs a guide star acquisition and
the spacecraft fine points the Observatory.

3. etc. ..

Each mission phase will have different requirements, corresponding to various
mission states, and different types of verification procedures for the same physical
products and parts. In other words, the designer has to consider that an object of
interest has more than one potential state. In early product development stages,
the designer doesn’t know all the details to precisely specify state variables
values, so he is forced to hide some complexity by specifying only high-level
system states, in fact representing subsystem states as indistinguishable.

Traditional ways of delivering the information to the stakeholders is to use
documents and natural language. However, currently, many graphical and formal
notations have appeared to partially substitute natural language in order to make
the information more expressive and compact. As a result, Model-Based Systems
Engineering (MBSE) concept emerged. One of the earliest attempts to formalize
systems engineering was performed by Wymore [17]. He used system state as one
of fundamental building blocks in his formalism. However, modern MBSE to a
large extent adopted state and process concepts as well as their representations
from software engineering practices. Harel state machine is adopted in SysML
and very popular among systems engineers. A review of different kinds of state
machines is presented in [16] by Wach.
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The Object Process Methodology developed by Dori [5] provides a simple, but
powerful vocabulary for system representation in a holistic way. It is standard-
ized as 1SO19450-2015 and gains popularity in different domains. It has only
three fundamental objects: object, process and state, along with different types
of relations between them. OPM defines both graphical and textual language rep-
resentations which can be used to model any complex system and offers zoom-in
capabilities in its proposed application OPCloud, to represent any subsystems
or components in greater detail particularly for the system architecture defini-
tion. Dov Dori proposes [6] to use the term stateful objects in OPM to articulate
states as a natural constituent of an object. With this definition he effectively
integrates changeability into any physical object or system, and proposes that all
complex systems representations must include this fundamental characteristic to
be appropriately defined.

Object

Initial || Regular || Final
V4
A

Transitioning

Fig. 2. OPM object, process and state representations

As an atomic structure, the state of the object is defined as a “possible
situation or position of an object”. The state of the system is derived as a
“snapshot of the system model taken at a certain point in time, which shows
all the existing object instances, current states of each stateful object instance,
and the process instances, with their elapsed times, executing at the time the
snapshot occurs”.

At every point in time, a stateful object is in one of its states or in transition
between two of its states as a consequence of a process currently affecting that
object. Rounded-corner rectangle with a label placed inside the object denotes
an object state. Initial, final and default states could be visually distinguished.
The classification of state within a value range is also supported.

OPM authors argue that stateful objects, processes and relationships con-
stitute a minimal universal ontology, meaning that any system in any domain
could be modeled using that ontology.

SysML standardized by OMG, is a collection of diagrams for visual systems
representation. SysML has a pretty rich tool set for behavior representation
that includes statecharts, sequence charts, activity diagrams and functional flow
diagrams. SysML was originally designed to replace classic documents and was
not meant to provide simulation capabilities. UML and SysML adopt Harel
statecharts as one of the means for behavior representation.
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First published in 1984, and later adopted in UML and SysML, Harel stat-
echarts [9] are a broad extension of the state machine formalism. They were at
first aimed for software systems description, but eventually gained popularity
for physical systems and now are adopted in UML2 and SysML languages. They
are easy to read, require no prior training and are widely used in different areas.

Statecharts can be concisely described as state diagrams with hierarchy, or-
thogonality and broadcast communication support. An example of a statechart
is shown on Figure 3. Here states B and C are orthogonal, i.e. could coexist
simultaneously. They are triggered from state A by eventl. State B has one sub-
state D, which is entered right after eventl. State C has two sub-states E and
F, which are switched by event2 and event3.

T

!

e

} event2

I =
|

!

!

|

|

cl
event3

V\_/

Fig. 3. Statechart example

In statecharts, events are considered to be external inputs and should be
provided for execution. Some tools, like MagicDraw use events generated by ac-
tivity diagrams in order to trigger the transitions. Many tools try to provide some
simulation capabilities to SysML, integration with different simulation software,
etc. However, modern SysML still remains to be a graphical language with 9
diagrams representing the structure and behavior of a system, rather than its
simulation.

3.2 Domain Modeling

Electrical, mechanical, hydraulic and many other mature engineering domains
have developed many types of simulation software with readable graphical pro-
cesses representations and dynamic system simulation support. They are capable
to calculate the values of state variables in any particular point in time by solv-
ing algebraic and differential equations or using discrete event systems. The
heterogeneous and multidisciplinary nature of today’s products often demands
interoperability with specialized or locally used software as well as other large
PLM systems.

In-house solutions are often implemented using general-purpose modeling
software like Matlab and Simulink, or programming languages: Python, Java,
and C++ are among the most widely used now. For these solutions engineers
share system behavior using Excel or plain text “csv” formatted files, because
they afford relatively easy to read and write system independent interface. For
more complex interactions the Functional Mock Up (FMI) is a powerful tool
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which was developed by the MODELISTAR consortium and the Modelica As-
sociation Project [2], which is now supported by more than 100 tools. Time-
continuous as well as time-discrete process descriptions are supported by FMI
as well as feedback loops and many more features.

A time series representation can be easily considered as a representation
of state evolution in time of discrete state or continuous state system, but for
the FMI interface between systems this kind of mapping is not always possible,
because it implements direct simulation of a process with its inputs and outputs.

Software and robotics engineers also frequently use state machines for de-
scription of logic in their systems. Many variations of state machines are used
for computer systems representations, protocol modeling, etc.

Work of the engineer frequently requires the use of simulation software to
check whether the requirements for the product are met or not. Some vendors of
simulation software afford integrations with requirements management software.
As we have seen, requirements are deeply connected with system states. PLM
system support for system state could significantly enhance interoperability be-
tween these products.

It could be seen that despite the need to explicitly share and manage in-
formation about operational states, current PLM software capabilities mostly
concentrate on geometry description and its change management. There is little
or no support for managing engineering and software changes for these systems.

Space Systems Design Example. In the European Space Agency, a data model
for information exchange in concurrent design facilities is described in technical
memorandum ECSS-E-TM-10-25A [7]. It is generally designed to facilitate data
exchange during the earliest stages in the product lifecycle, thus the standard
aims for simplicity of specification with less precise definitions, which are appro-
priate for this task. Product states are implemented to store several instances
of a single variable. This interface is mainly designed to exchange discrete state
variables rather than continuous ones and very actively used during space mis-
sion design. Typical examples comprise the specification of power consumption
of an instrument, different torques of attitude control system, etc. in different
operational modes.

4 Discussion

A complex electromechanical system is operating in various states throughout
its life cycle and change its state during operations, e.g. for the whole aircraft
— taxiing, taking-off, climb, cruise or descent, while for its subsystems it could
be retracted/extended gear, retracted/extended flaps or slats, different opera-
tion states of the engine, etc. Each system state may be a subject to different
requirements that have to be properly implemented in the design, e.g. size of
retracted undercarriage might be more constrained than that in an extended
position, certain safety requirements may be applied only to engine in opera-
tion, etc. A difficulty that can be foreseen in a sold modeler is the coherency of
all the states that needs to be maintained with options and version control.
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To illustrate the above, in Fig. 4 different deployment states of James Webb
Space Telescope are shown. While the spacecraft essentially consist of the same
structural elements in all of its states, each of them could be a subject to different
requirements and thus diferent simulation scenarios. Different people could be
in charge of product design and its functionality in different states, so state
coherency may become a big issue.

Fig. 4. JWST states: inside rocket fairing(left) and deployed(right)

Cyber-physical systems and Industry 4.0 make the problem of maintaining
state coherency even more demanding by increased number of interactions with
other systems in an extended enterprise. These systems mix software, electronic,
and physical parts making system state management increasingly important.

Systems Engineering has developed many languages with rich vocabulary
and expressivity for more formalized description of behavior, concept of opera-
tions, requirements, and architecture in comparison to natural language. Besides
being machine interpretable, they tend to be stricter and clearer than natural
languages. During system development they are primarily used for information
exchange between stakeholders, for requirements and functional specifications.
In many graphical languages for process specification and representation, states
play a key role.

On the other hand, simulation tools that provide extensive support for nu-
merical simulation operate with time series, which can be seen as continuous
state change in time. Simulation usually serves as preliminary verification to
ensure requirements compliance. In that sense, state representation could help
in generating simulation procedures as well as tracing requirement to concrete
simulation results and verification procedures. For example, it could be possible
to explicitly define single procedure and run it on a number of system states to
check system compliance to the requirement in every considered case.
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There is an intrinsic connection of state management with configuration man-
agement for simulation purposes. For analysis purposes that do not involve state
change, an object in some state could be regarded as one of its configurations.
For example, an aircraft with retracted landing gear could be treated similarly to
one of its configurations. This aspect is quite important for integration with Sim-
ulation Data Management software, proper design of experiments and numerical
simulation for verification. However, PLM systems have generally evolved from
solid modeling tools through Engineering Data Management tools and much of
their functionality is still constrained by data structures from solid modeling
heritage and thus, single state data structure.

5 Conclusion

The importance of states is shown by their explicit presence in the most signifi-
cant documents in the project, such as concept of operations and requirements
definition documents. During detail design, they are used to define simulation
procedures and during the verification and validation stages states are used to
define physical and numerical experiments.

Despite the importance of states for product development, product data man-
agement systems still heavily rely only on solid models and solid product part
representations. Solid object by definition has a single state, and that fact may
sufficiently limit the capabilities for cyber-physical and complex systems design
support. Objects in a real world are fundamentally stateful and we should rep-
resent this feature in design support systems in order to support full product life
cycle.

Our study clearly shows that states are explicitly present in software design
practices, mission requirements definition, simulation procedures for verification
and validation, since behavior is so pervasive in these processes. However, me-
chanical design and its corresponding PLM systems with their phenomenal solid
modeling capabilities have so far maintained implicit state representations apart
from their simulation modules; their formal representation of behavior, process
and states remains limited, and therefore limits their capability to support the
complete development of complex cyber-physical systems.
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