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Abstract. Modern smartphones expressed an exponential growth and
have become a personal assistant in people’s daily lives, i.e., keeping
connected with peers. Users are willing to store their personal data even
sensitive information on the phones, making these devices an attractive
target for cyber-criminals. Due to the limitations of traditional authenti-
cation methods like Personal Identification Number (PIN), research has
been moved to the design of touch behavioral authentication on smart-
phones. However, how to design a robust behavioral authentication in
a long-term period remains a challenge due to behavioral inconsistency.
In this work, we advocate that touch gestures could become more con-
sistent when users interact with specific applications. In this work, we
focus on social networking applications and design a touch behavioral
authentication scheme called SocialAuth. In the evaluation, we conduct
a user study with 50 participants and demonstrate that touch behavioral
deviation under our scheme could be significantly decreased and kept rel-
atively stable even after a long-term period, i.e., a single SVM classifier
could achieve an average error rate of about 3.1% and 3.7% before and
after two weeks, respectively.

Keywords: Behavioral User Authentication, Touch Gestures, Usable
Security, Smartphone Security, Social Networking, Machine Learning.

1 Introduction

Due to the capabilities and convenience, smartphones have been widely adopted
by individuals. International Data Corporation (IDC) reported that up to 344.3
million smartphones have been shipped around the world in the first quarter of
2017, which achieved a growth rate of 3.4% over the last year [4]. These devices
have become a personal assistant, i.e., working as a social connection and work
facilitator. A survey showed that nearly 40 percent of respondents play with
their phones for three hours or more each day [1]. As modern smartphones can
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work like a mini-computer, users are willing to store personal data and complete
sensitive tasks on the phones [7], such as personal photos, credit card informa-
tion, transactions, etc. For example, 62 percent of phone users in Denmark were
using their phone for viewing bank account and online payment [3].

As compared with PCs or laptops, smartphones are becoming a more private
device (i.e., few people would like to share their phones) [8]. For profit purposes,
cyber-criminals are always trying to exploit the stored data on smartphones. As
long as having a victim’s phone, cyber-criminals can launch various attacks, i.e.,
they can steal the identity of phone users and conduct impersonation attacks
to threaten the whole networks, especially online social networks. As a result,
designing appropriate user authentication mechanisms becomes very important
to protect phones from unauthorized access.

Most smartphones adopt traditional password-based authentication mecha-
nisms like PINs. However, this kind of authentication is known to be insecure,
i.e., passwords are easily to be stolen via “shoulder surfing” [17], smudge at-
tacks [2] and phone charging attacks (e.g., JFC attack [12]). To address this
problem, research has been focused on behavioral authentication, which uses
measurements from human actions to re-authenticate a user. Behavioral au-
thentication is believed to complement the existing authentication mechanisms.
Generally, behavioral authentication needs to build a normal profile at first and
then detect an anomaly by identifying any great deviations between the current
profile and the pre-defined normal profile. For instance, Frank et al. [6] proposed
a behavioral authentication scheme with 30 features, which achieved a median
equal error rate of nearly 4% using an SVM classifier.

Contributions. Up to now, there are many touch behavioral authentication
schemes available in the literature, but how to design a behavioral authentica-
tion scheme for a long-term period still remains a challenge. Previous work ever
showed that users’ touch behavioral would become more stable after more tri-
als [11]. Motivated by this observation, we advocate that the deviation of users’
touch behavior would be reduced when they played some specific tasks. In this
work, we focus on social networking applications due to their frequent usage by
phone users [1], and design a touch gesture-based authentication scheme called
SocialAuth. Our contributions in this work can be summarized as below.

– We revise and design a touch gesture-based authentication scheme with 22
features to authenticate a phone user, when they are playing a social network-
ing application. As compared with some conventional tasks, i.e., inputting a
PIN code, social networking applications allow users to perform more diverse
touch gestures, like touch movement and multi-touch.

– To investigate the scheme performance, we performed a user study with a
total of 50 Android phone users, who were required to use the phones in
the same way as they would do in their daily lives. We mainly consider two
situations for data analysis. For the first situation, our scheme analyzes all
touch gestures during the phone usage, while for the second situation, our
scheme only considers the touch gestures when the users were playing with
social networking applications.
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– Experimental results with five popular classifiers demonstrated that the de-
viation of users’ touch actions could be reduced when phone users were in-
teracting with social networking applications, where an SVM could achieve
a better average error rate of approximately 3.1% than other classifiers. Our
study also verified the authentication performance after two weeks (as long-
term period), and it is found that the SVM classifier could still reach an
average error rate of nearly 3.7%.

Road map. The reminder of this paper is organized as follows. Section 2 intro-
duces related studies on touch behavioral authentication on mobile devices. We
describe the authentication scheme, touch features, data collection and session
identification in Section 3. In Section 4, we present a user study with 50 par-
ticipants and analyze the scheme performance like authentication accuracy and
long-term performance. We conclude our work in Section 5.

2 Related Work

Thanks to the rapid development of smartphones, touchscreens are becoming
quite common and popular. Touch dynamics has thus received more attention
worldwide. Feng et al. [5] designed a touchscreen-based authentication system
called FAST, in which users utilize a digital sensor glove for authentication.
Their approach could achieve a false acceptance rate (FAR) of 4.66% and a
false rejection rate (FRR) of 0.13% using a random forest classifier. Meanwhile,
Meng et al. [9] developed a behavioral authentication scheme with 21 features
and performed a study with 20 participants. An average error rate of nearly
3% was reported by means of a PSO-RBFN classifier. Then, Frank et al. [6]
developed Touchalytics, a touch behavioral authentication scheme with a total of
30 touch features. In the study, their system showed a median equal error rate of
nearly 4%. Based on the observations obtained in their study, they claimed that
Touchalytics could only be deployed as an optional rather than a stand-alone
authentication mechanism. Later, Sae-Bae et al. [14] focused on multi-touch
behavior and proposed to authenticate a user based on up to 22 multi-touch
gestures, which could be extracted from both hand and finger actions.

Recent studies started combining behavioral authentication with other bio-
metrics. For instance, Smith-Creasey and Rajarajan [15] described an authenti-
cation scheme by combining face and touch gestures based on a dataset with 50
users, and reported an equal error rate of 3.77% with a stacked classifier. Shahzad
et al. [16] proposed an authentication scheme based on users’ particular behavior
when they perform a touch gesture and a signature. Nguyen et al. [13] proposed
an authentication scheme called DRAW-A-PIN, which required users to draw
a PIN on touchscreen instead of typing. Their system particularly employed
a Content Analyzer and a Drawing Behaviour Analyzer to identify imposters.
Meng et al. [11] proposed TMGuard, a touch movement-based authentication
scheme with a combination of Android unlock patterns. Their study with 75
participants demonstrated that the security of Android unlock patterns can be
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enhanced without degrading its usability, and that users’ touch behavior can
become relatively stable after more trials.

3 Touch Gesture-based User Authentication

3.1 Authentication Architecture

To secure a smartphone from unauthorized access, an ideal touch behavioral au-
thentication scheme has to continuously monitor the behaviors and make an alert
(or lock the phone) when any anomalies are detected. The high-level architecture
of touch gesture-based authentication system is presented in Fig. 1.
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Fig. 1. The architecture of touch gesture-based authentication system.

A behavioral authentication system often contains three major phases: data
collection, behavior modelling and behavior matching. The purpose of the first
phase is to gather behavioral data from screen sensors and store them based on
the particular session identification method. The second phase then refines the
raw data and extracts features to build a normal behavioral profile for legiti-
mate users. Various machine learning algorithms can be applied here. These two
phases can help prepare the system for detecting behavioral anomalies. The last
phase takes the current behavioral data from sensors and makes a decision by
conducting a comparison with the pre-defined normal profile.

3.2 Touch Gesture Types and Features

Modern smartphones can provide a wide range of touch gestures, such as tap,
swipe left or right, swipe up and down, and so on. Generally, these gestures on
touchscreen can be categorized into the following types:

– Single-Touch (ST): this touch event starts with a touch-press down, and
ends with a touch-press up without any touch movement in-between, like
single-finger tap.
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– Touch-Movement (TM): this touch event starts with a touch-press down,
followed by a touch movement, and ends by a touch-press up, like swipe up
and down.

– Multi-Touch (MT): this touch input starts with two or more simultane-
ous and distinct touch-press down events at different coordinates of a touch-
screen, either with or without any touch movement before a touch press up
event, like zoom, pinch and rotate.

To facilitate the comparison, in this work, we adopt and revise a touch be-
havioral authentication scheme on smartphones with up to 22 features, based
on the work by Meng et al. [9]. These features can also be extracted when users
interact with social networking applications, including average touch movement
speed per direction (eight directions), the fraction of touch movements per di-
rection (eight directions), average single-touch time, average multi-touch time,
the fraction of touch movements per session, the fraction of single-touch events
per session, and the fraction of multi-touch events per session. We further add
one extra touch feature, namely touch pressure into the scheme, as many studies
have proven its effectiveness [6, 14].

Average Touch Movement Speed per Direction. Fig. 2 shows how to define
each direction; thus, a touch movement can be divided into different features.
If we assume there are two points (x1, y1) and (x2, y2) in a touch movement’
trajectory with relevant system time S1 and S2 (suppose S1 < S2). Then the
features of touch movement speed (TMS ) and touch movement angle between
these two points can be calculated as follows:

TMS =

√
(x2− x1)2 + (y2− y1)2

S2− S1

Touch movement angle: θ = arctan
y2− y1

x2− x1
, θ ∈ [0, 360

◦
]

Let ATMS denote average touch movement speed. It is easy to calculate each
feature based on the angles, i.e., ATMS2 describes an average touch movement
speed in direction 2, and ATMS5 describes this feature in direction 5.
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Fraction of Touch Movements per Direction. Intuitively, users may per-
form a touch movement more often in some certain directions. Therefore, the
fraction of touch movements per direction varies among users and can be used
for user authentication.

Average Single-Touch and Multi-Touch Time. Single-touch and multi-
touch are two types of touch gestures when users interact with their phones. Let
AST denote average single-touch time and MTT denote average multi-touch
time. The touch duration would be different between a single-touch and a multi-
touch action.

Fraction of Touch Action Events. It is observed that users could have their
own habit when interacting with the phone. For instance, some users would like
to use single-touch more often than multi-touch, while some may prefer using
multi-touch actions more, i.e., during web browsing. As a result, the fraction of
touch events can be used for authenticating users. Three relevant features can
be derived: the fraction of touch movements per session (denoted FTM ), the
fraction of single-touch events per session (denoted FSTE ), and the fraction of
multi-touch events per session (denoted FMTE ).

Touch Pressure. With the development of modern smartphones, sensors are
becoming more accurate and sensitive. In this case, average touch pressure (de-
noted ATP) has become one of the promising features for validating users. It is
worth noting that all these features would be validated in Section 4.

3.3 Data Collection

Similar to [9, 10], we employ an Android phone - Google/HTC Nexus One for
data collection, which has a capacitive touchscreen of 480× 800 px. This type of
phone is selected because its OS can be replaced with a modified OS version. In
this work, we updated the phone with a modified Android OS version 2.2 based
on CyanogenMod5. The changes were mostly on its application framework layer
by inserting system level command to record raw data from the touchscreen, such
as the timing of touch inputs, the coordinates x and y, and the touch pressure and
various gestures like single-touch, multi-touch and touch movement.6 A separate
logcat application was installed to help extract and record the captured data
from the phone.

A sample of collected raw data from the phone is depicted in Table 1. Each
record contains five major items: input type, x-coordinate, y-coordinate, touch
pressure, and system time (S-time). The system time is relevant to the last

5 http://www.cyanogenmod.com/
6 We inserted Slog.v command to two java source files (InputDevice.java and KeyIn-
putQueue.java) regarding the Application framework layer, and then recompiled the
whole source codes of Froyo operating system to generate our demanded experimen-
tal platform.
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Table 1. A sample of raw data collected from touchscreen on the Android platform.

Input Type X-Coordinate Y-Coordinate Touch Pressure Time (ms)

Press Down 478.5686 658.6726 0.090196080 1870785

Press Move 473.5593 660.5503 0.101960786 1870807

Press Move 471.2780 660.9001 0.101960786 1870814

Press Move 468.7645 662.0188 0.125686300 1870852

Press Move 470.5872 660.5211 0.125686300 1870898

Press Move 472.8723 658.5432 0.125686300 1870910

Press Up 470.6778 660.6223 0.125686300 1870933

start-up of the phone and is managed by the phone itself, while the duration of
each touch gesture can be computed by measuring the difference in system-time
between touch press down and up. As a complementary item to the system time,
the deployed logcat application can record regular timing information (e.g., 06-
29 22:08:48.080) for later potential data verification. This kind of data collection
does not need any special hardware on phones’s side. It is worth noting that
additional information can be collected by updating certain parts of the Android
application framework.

3.4 Session Identification

To build a behavioral profile, session identification is an important factor that
could affect authentication performance. The purpose of session identification is
to help decide the length of a session. To ensure the collection of enough touch
gestures, in this work, we adopted an event-based session identification includes
a total of 120 touch gestures in each session [10]. A session ends if the number
of touch gestures reached the pre-define value and then a new session starts. For
implementation, session start and end can be easily determined by checking the
raw data record.

4 User Study

4.1 Study Methodology

In the study, we recruited a total of 50 regular Android phone users (including
26 female and 24 male), who were aged from 18 to 61 years. Participants have a
diverse background including students, senior citizens, researchers and business
people. Table 2 details the background information of participants.

During the study, each participant was provided with an Android phone (a
Google/HTC Nexus One) equipped with our modified OS version. The main
purpose is to ensure that all data were collected under the same settings. Before
the study, we described our research objective to all participants, introduced how
to perform data collection, and explained what kind of data would be collected,
i.e., we emphasized that no personal data would be collected during the study.



8 W. Meng et al.

Table 2. Background of participants in the user study.

Occupation Male Female Age Male Female

Students 14 16 18 - 30 14 16

Business people 2 3 31 - 40 5 5

Researchers 7 5 40 - 50 2 3

Senior citizen 1 2 Above 3 2

Further, we seek approval from each participant for gathering and analyzing the
data, before they started the experiment.

More specifically, all participants were required to use the Android phones
freely as the same way they would use the phones in their daily lives. By con-
sidering the limitations of a lab study, we allowed participants to do the actual
data collection out of the lab, motivating them to have enough time to get fa-
miliar with the phone. They could decide when to start the collection process,
according to our provided manual with detailed steps and explanations.

In this study, we mainly consider two situations for data analysis. For the
first situation (S1 ), our scheme analyzes all recorded touch gestures when par-
ticipants use the phones, whereas for the second situation (S2 ), our scheme only
considers the touch gestures when participants play with any social network-
ing applications. Each participant was required to complete 15 sessions for each
situation (each session contains 120 touch gesture events) within 3 days. As a
result, we could collect up to 1500 sessions of raw data, that is, 750 sessions for
each situation. All participants could get a $20 gift card.

4.2 Machine Learning Classifiers and Metrics

As a study, we employed five commonly used classifiers in the comparison: name-
ly, Decision tree (J48), Naive Bayes, Radial Basis Function Network (RBFN),
Back Propagation Neural Network (BPNN) and Support Vector Machine (SVM).
To avoid any unexpected implementation bias, we extracted the above classifiers
from WEKA [18] (using default settings), which is an open-source collection of
machine learning algorithms.

Intuitively, a machine learning classifier is expected to achieve high classifi-
cation accuracy. However, it is not easy in practice due to the behavioral dy-
namics. There is a need to balance false acceptance rate and false rejection rate
in real-world applications. In practice, a desirable user authentication system is
expected to achieve both a low FAR and FRR.

– False Acceptance Rate (FAR): indicates the probability that an impostor is
categorized as a legitimate user.

– False Rejection Rate (FRR): indicates the probability that a legitimate user
is classified as an intruder.
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4.3 Result Analysis

As stated above, our authentication scheme is comprised of 22 touch features
such as ATMS1, ATMS2, ATMS3, ATMS4, ATMS5, ATMS6, ATMS7, ATMS8,
FTM1, FTM2, FTM3, FTM4, FTM5, FTM6, FTM7, FTM8, AST, MTT, FTM,
FSTE, FMTE and ATP. In this part, we analyze the collected data regarding
the effectiveness of features, touch behavioral deviation between two groups,
authentication accuracy, and long-term performance after two weeks.

The effectiveness of features. Based on the collected 1500 sessions of touch
gesture events, we calculate the touch features for each participant and randomly
present 1/3 participants (about eight individuals) to validate the effectiveness
of each feature in distinguishing users.

Fig. 3 describes the average touch movement speed for different directions. It
is found that the distributions varied with different users. For example, User-2
performed a higher speed in direction 1, 2 and 4; User-9 performed a higher
speed in direction 3, 4 and 8; User-15 performed a higher speed in direction 1, 3,
5 and 6; User-21 achieved a higher speed in direction 1, 3, 5 and 8; and User-29
achieved a higher speed in direction 2, 3 and 7. The results prove that the use
of ATMS per direction could help distinguish different phone users.

The fraction of touch movements for different directions is shown in Fig. 4. It
is observed that User-2 conducted relatively more touch movements in direction
1, 3 and 5; User-9 performed more touch movements in direction 1, 3, 5, and
6; User-15 achieved a higher rate in direction 1, 2, 4, and 8; User-21 performed
more touch movements in direction 1, 2 and 3; and User-29 had a higher rate
in direction 1, 4, 7 and 8. The results validate that FTM in different directions
can be used to characterize a user’s touch behavior.
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Fig. 5 presents the average duration time regarding single-touch and multi-
touch action. It is visible that time consumption could vary with different users.
For single-touch action, User-21 consumed more time than the others while User-
9 could finish the gesture with the minimum time among these users. For multi-
touch action, User-33 and User-2 required the longest and the shortest time to
finish the action. Based on our data, there is no direct relationship identified
between single-touch and multi-touch. In this case, these features can be use to
distinguish different users.

Fig. 6 describes the fraction of single-touch, touch movement and multi-touch
for eight users. It is found that User-2, User-21 and User-33 performed more
single-touch actions than others. For touch movement, User-9 achieved a much
higher rate than others, whereas User-15 achieved a higher rate than others
regarding multi-touch. These results prove that these features can be used to
model phone users’ touch habits. It is similar to the feature of average touch
pressure (ATP), it is found that User-9 achieved the biggest touch pressure of
2.012, while User-33 had the smallest touch pressure of 0.8892. The values of
ATP for other users mainly ranged from 1 to 2.

Overall, our data analysis validates that our adopted 22 features could be
effective in distinguishing phone users. This observation is in-line with the results
in many previous studies like [6, 9].

Touch Behavioral Deviation. Under S1, we considered all touch behavioral
events when participants used the phone, while under S2, we only considered
the touch gestures when they were using social networking applications. A to-
tal of four social networking applications were selected in the study: WeChat,
Facebook, Twitter and Instagram. Our major purpose is to investigate the touch
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behavioral deviation between the two situations. Intuitively, a smaller deviation
is desirable, indicating that users’ touch actions are more stable. Fig. 7 depict-
s the average behavioral deviation regarding all features and Fig. 8 shows the
distribution of behavioral deviation under two situations.

It is visible that the average deviation for each touch feature under S2 is
much smaller than that under S1. For example, participants under S1 made a
deviation above 10 for ATMS1, ATMS4, ATMS6, FTM2, FTM3, FTM5, FTM8,
AST and MTT, while the corresponding deviation was only ranged from 4.1 to
5.2 under S2. Fig. 8 indicates that the deviations made under S2 are mostly
half or less than those made under S1. Intuitively, a higher deviation means that
participants’ touch gestures are more unstable, which may increase the difficulty
of behavioral modelling. In contrast, a smaller deviation makes it easier to build
a robust touch behavioral authentication scheme.

Further, we informally interviewed all the participants about their habits
of phone usage. Based on their feedback, most participants reflected that their
touch behavior would be quite dynamic when they freely used the phone without
a task, whereas their touch actions would become focused when they were using a
particular application, like social networking application. The feedback validated
the observation that users’ touch actions could become relatively stable under
certain scenarios.

Authentication Accuracy. To investigate the authentication performance, we
applied 18 sessions (up to 60% of the total sessions) as training data to help each
classifier build a touch behavioral profile for each participant. Then we used the
remaining sessions for testing. The test was run in 10-fold mode provided by the
WEKA platform. The false acceptance rate (FAR), false rejection rate (FRR),
and average error rate (AER) are presented in Table 3.
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Table 3. Authentication performance for different classifiers under two situations.

S1 J48 NBayes RBFN BPNN SVM

FAR (%) 22.55 18.66 9.72 9.12 5.22

FRR (%) 23.78 20.73 10.45 10.34 6.82

AER (%) 23.17 19.70 10.09 9.73 6.02

S2 J48 NBayes RBFN BPNN SVM

FAR (%) 15.13 11.56 6.88 6.42 2.89

FRR (%) 16.55 13.23 7.11 7.88 3.24

AER (%) 15.84 12.40 7.00 7.15 3.07

It is found that under S1, the single classifier of SVM could reach a better
error rate than other classifiers, i.e., SVM achieved an AER of 6.02% while
the others could only reach a rate of nearly 10%. Under S2, it is visible that
the performance was much better than that under S1. For example, SVM still
achieved the best performance among single classifiers, but could offer an AER
of 3.07% under S2 vs. 6.02% under S1. For other classifiers like J48 and NBayes,
their AER could be reduced by around 7% under S2.

Overall, these results demonstrate that with a smaller deviation, it is easier
for a classifier to model phone users’ touch behavior and to provide desirable
authentication accuracy. In addition, users’ touch behavior can become relative-
ly stable under our scheme of SocialAuth, when they play with certain phone
applications like a social networking application, as compared to the situation
by considering all touches during the phone usage.

Long-term Authentication. In the study, up to 16 participants (seven males)
chosen to attend our task on long-term authentication, in which they could keep
using our provided phone and returned to our lab after two weeks. They then
required to complete 5 sessions for each S1 and S2 within two days. After the
experiment, they could get a $30 gift card.

Our goal is to investigate the behavioral deviation after two weeks. Similarly,
Fig. 9 and Fig. 10 shows the average behavioral deviation regarding all features
and the distribution of behavioral deviation after two weeks, respectively. En-
couragingly, it is found that after two weeks, the behavioral deviation under S2
is much smaller than those under S1, i.e., some features’ deviations are smaller
than 2. In other words, users’ touch gestures were much more stable under S2
than those under S1.

For authentication accuracy, we applied the same five classifiers on the new
sessions without re-training. That is, we used the already built behavioral model
(before two weeks) for each classifier. It is found that SVM still could achieve a
smaller AER under two situations, but the rate is much different, i.e., it reached
a rate of 3.68% and 9.82% under S2 and S1, respectively. The results validated
that users’ touch behavior could become relatively stable when they play with
social networking applications, making it easier to build a robust authentication
scheme for a long-term period.
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Fig. 9. The average behavioral deviation
regarding all features after two weeks.
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Fig. 10. The distribution of average devia-
tion after two weeks.

5 Conclusion

How to design a robust scheme for a long-term period remains a challenge due to
the inconsistent behavior. In this work, we advocate that users’ touch behavior
would become relatively stable when they interact with particular applications,
and design a touch behavioral authentication scheme called SocialAuth. In the
evaluation, we conducted a user study with 50 common Android phone users
and considered two major situations for data analysis. We consider all recorded
touch behavioral events under the first situation, whereas only consider the touch
gestures when they use social networking applications under the second situation.
It is found that an SVM classifier could reach an average error rate of 3.07%
and 3.68% (before and after two weeks) under the second situation, versus a rate
of 6.02% and 9.82% (before and after two weeks) under the first situation. The
results demonstrated that with our scheme, users could achieve a much smaller
behavioral deviation (more stable behavior) even after two weeks.
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