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Abstract. Visual homograph attack is a way that the attackers deceive vic-
tims about what domain they are communicating with by exploiting the fact
that many characters look alike. The attack is growing into a serious problem
and raising broad attention in reality when recently many brand domains have
been attacked such as apple.com (Apple Inc.), adobe.com (Adobe Systems Incor-
porated), lloydsbank.co.uk (Lloyds Bank), etc. Therefore, how to detect visual
homograph becomes a hot topic both in industry and research community. Several
existing papers and tools have been proposed to find some homographs of a given
domain based on different subsets of certain look-alike characters, or based on an
analysis on the registered International Domain Name (IDN) database. However,
we still lack a scalable and systematic approach that can detect sufficient homo-
graphs registered by attackers with a high accuracy and low false positive rate. In
this paper, we construct a classification model to detect homographs and poten-
tial homographs registered by attackers using machine learning on feasible and
novel features which are the visual similarity on each character and some selected
information from Whois. The implementation results show that our approach can
bring up to 95.90% of accuracy with merely 3.27% of false positive rate. Further-
more, we also make an empirical analysis on the collected homographs and found
some interesting statistics along with concrete misbehaviors and purposes of the
attackers.

Keywords: Web Security · International Domain Name · Punycode · Visual
Homograph Attack.

1 Introduction

Visual homograph attack was first described by E. Gabrilovic [1]. To prove the feasi-
bility of this kind of attack, the authors registered a homograph of the brand domain
microsoft.com which incorporated Cyrillic characters. After that, several brand do-
mains were targeted by homograph attacks but this attack was not much attracted.
Until April 2017, when the apple.com was forged by the homographs [2] such as the one
appears under Punycode form xn-pple-43d.com which uses the Cyrillic ‘a’ (U+0430)
instead of the ASCII ‘a’ (U+0061), the attack got mass attention from the media, and
thus how to detect visual homographs becomes a significant issue.
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Right after the attack on apple.com was published, some web browsers disabled the
function of automatic IDN conversion. Since the IDNs contain non-ASCII characters
(e.g., Arabic, Chinese, Cyrillic alphabet), they are encoded to ASCII strings using Pun-
ycode transcription known as IDNA encoding and appear under ASCII strings starting
with xn--; for example, xn--ggle-0qaa.com is displayed as gõõgle.com. However, there
is a big trade-off when a web browser stops supporting the automatic IDN conversion
because a huge number of Internet users are using non-English languages with non-Latin
alphabets through over 7.5 million registered IDNs in all over the world (by December
2017) [3]. Furthermore, visual homograph not only takes advantage of look-alike Pun-
ycode characters in IDNs, but also look-alike Latin characters in even non-IDNs them-
selves; for example, the homograph bl0gsp0t.com was registered targeting to the brand
domain blogspot.com by replacing ‘o’ by ‘0’, or the homograph wlklpedia.org was
registered targeting to the brand domain wikipedia.com by replacing ‘i’ by ‘l’. Also,
if homograph domains can deceive users before they appear in the address bar of web
browsers (e.g., homographs are given from an email or a document under hyper-links)
without the users’ awareness of the browsers, disabling IDN conversion is not meaning-
ful to prevent users from accessing the homographs. Therefore, the web browsers after
that re-enabled the function but are trying to block homographs which can be detected
or blacklisted. Then, the problem is still how to detect homographs. Several existing
tools and previous papers such as [4–10, 17] have been proposed to find homographs of
given domains using different inadequate subsets of certain look-alike characters that are
defined by themselves, or using the IDN database registered at the time of analysis.

Therefore, our goal is how to propose a scalable, systematic, high-accuracy and
low-false-positive-rate approach that can detect sufficient visual homographs not reg-
istered by the brand domains’ owners to pro-actively protect their brands but by at-
tackers. The research scope in this paper is described as follows. First, there are sev-
eral types of homographs such as visual-based, semantic-based, top-level-domain(TLD)-
based, typosquatting-based but this paper focuses only on the visual-based homograph
which is the most popular and serious type (The explanation and the reason why visual-
based homograph is the most serious will be described in more details in the background).
Second, this paper focuses on finding homographs registered by attackers that can be
either phishing (being active and having phishing content) or not phishing yet (being
active and not yet have phishing content, but we still consider it as harmful case because
of the behavior of registering homograph targeting to brand domains); in other words,
our aim is not to detect phishings but homographs.

1.1 Related Work

Many existing tools such as [4–7], or previous work such as [8] by J. Abawajy et al. have
been proposed to find visual homographs on inputting a (brand) domain. Most of these
tools simply define a subset of look-alike characters, and then replace each character in
the given domain by the look-alike characters in the subset. Some of them such as [7]
look up Domain Name System (DNS) to determine whether the homographs are active or
not. However, using the tools and previous works cannot find sufficient homographs be-
cause the subsets are too small compared with the enormous set of look-alike characters.
Furthermore, their approaches cannot distinguish which homographs are registered by
owners of the brand domains (to protect their brands), and which homographs are regis-
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tered by attackers. Also, a formal measure (e.g., Structural Similarity Index (SSIM), Peak
Signal-to-Noise Ratio (PSNR) or Mean Squared Error (MSE), etc.) is not used to define
the visual similarity instead of subjective feelings on the visual look. There are also some
popular tools such as [11,12] but note that the tools are used to generate the other types
of homographs like TLD-based or typosquatting, not visual-based as our goal. K. Tian
et al. [13] proposed a method to predict phishing homographs by analyzing HTML con-
tent and visual screen-shots. However, using malicious HTML content and similar visual
screen-shots does not mean that the phishing has to be homograph in the domain name
string. For example, random.com (non-homograph) and faceböök.com (homograph) are
both phishing to the brand facebook.com but the former one is a non-homograph and
the latter one is a homograph. In other words, the features (i.e., HTML content and
screen-shot) are reasonable for detecting phishings but not homographs in term of do-
main string. Moreover, downloading HTML content and capturing screen-shots require
the analyzers to access the domains, and that can lead to malware injections or the cost
for setting up a virtual machine. J. Oliver et al. [10] detect illegitimate links including
homographs on a web page but it is not clear which criteria they use to formally define
about visual similarity. In their work, they describe “One solution is to introduce a table
of characters (i.e., glyphs) that are considered visually similar”; therefore probably their
approach is similar to [4–8] as we mentioned above. The same issue is in the work by M.
Tyson et al. [17]. Most recently, B. Liu et al. [9] have been proposed to detect homographs
by using a visual similarity metric for the images of entire domain strings between each
of 1.4 million registered IDNs and each of top 1000 popular domains ranked by Alexa.
The drawback is that, applying the visual similarity for entire domain strings can lower
the accuracy and lead to high false positive rate. When we analyzed their dataset, we
found that many domain pairs of the brand domains and sample domains that are too
different but have very high SSIM on the entire domain strings; for example, àa.com and
ea.com have 0.952 SSIM and are listed as homographs but actually not. Furthermore,
the paper only considers IDNs but as mentioned above, homographs can occur even in
Latin alphabet such as (‘I’, ‘1’, ‘l’) or (‘o’, ‘0’). Also, lots of new domains are registered
everyday and thus the method is not scalable.

1.2 Our Work

In this paper, we propose a machine learning based approach which meets the following
contributions:

– To the best of our knowledge, ours is the first study proposing a classification of
homographs and non-homographs using a visual similarity measure (i.e., SSIM) on
each character instead of entire domain string as previous work. This approach can
increase the accuracy to 95.36% with merely 2.83% of FPR.

– Although using Whois for detecting phishing is not a new approach, but when it is
combined with SSIM on each character, the approach becomes promising to detect
homographs and eliminate the domains that look alike to the brand domains but
are registered by the brand domains’ owners. We do not trivially use entire Whois
but select the practical features such as: creation date of homograph is often after
that of the brand domain, expiration date of homographs is often before that of
the brand domain, register name, and organization of homograph is different from
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that of the brand domain, along with original creation date and expiration date of
homograph and brand domain. The evaluation result shows that our approach can
reach to 95.90% of accuracy with merely 3.27% of FPR.

– Last but not least, we make an empirical analysis on the collected homographs and
found that a large portion of the domains (44.57%) are for sale or parked domains,
6.38% have the same/related content to the brand domains, 32.45% cannot be ac-
cessed or have blank content, 2.13% were created as an education about what is
homograph, and 14.47% have completely different content with the brand domains.
Interestingly, we figured out several concrete misbehaviors and purposes of the hack-
ers when analyzing these homographs.

Note that, the accuracy when using SSIM only is 95.36% and when using SSIM with
Whois is 95.90%. It does not mean that using Whois does not bring much effect (increas-
ing only 0.54% of accuracy because the processes of data labeling in the two cases are
different. The important thing here is the high accuracy (over 95%) in both cases.

1.3 Roadmap

The rest of this paper is organized as follows. The backgrounds of homograph attacks,
visual similarity measure, and Whois are described in Section 2. Our proposed method is
presented in Section 3. The experiment results are analyzed in Section 4. The empirical
analysis on the labelled homographs is described in Section 5. The discussion of several
ideas for future work is given in Section 6. Finally, the conclusion is drawn in Section 7.

2 Backgrounds

In this section, we present the backgrounds of homograph attacks, visual similarity mea-
sures in which SSIM is used in this paper, and Whois information.

2.1 Homograph Attacks

Homograph attack is a way that the attackers deceive victims about what domain they
are communicating with by exploiting the fact that many domains look alike. There are
several kinds of homographs in the wild, we thus synthesize them into five categories.
The first is visual homograph which uses different but visually look-alike characters,
for example: facebook.com and faceböök.com. The second is semantic homograph
which uses synonyms or contextual similar words, for example: facebook.com and mark_

zuckerberg_social_network.com. The third is TLD homograph which uses the same
main domain names, but different top-level-domain (TLD), for example: facebook.com
and facebook.biz. The fourth is typosquatting which relies on mistakes such as typos
made by Internet users when typing the domain names, for example: facebook.com and
faceboook.com. The last is the combination of the previous 4 categories. Note that the
homographs in which certain characters are inserted or replaced (known as bitsquatting)
in the brand domains are also listed in the fourth type (typosquatting homograph); for
instance, travelgoogle.com targeting to google.com. In this paper, we focus on the
first that is visual homograph since it is the most popular and serious type.
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Visual Homograph Attack. Why visual homograph is the type that is serious the most?
First, only the visual homograph can produce a fake domain that is 100% look-alike with
the brand domain and even human cannot distinguish. For example, the brand domain
google.com and the visual homograph google.com (encoded by xn--gogle-m29a.com)
which are completely look-alike with the brand domain, so have very high probability
to deceive users. Second, visual homograph not only utilizes the look-alike Punycode
characters but also even the look-alike Latin characters such as ‘I’ (big i), ‘l’ (el) or
‘1’ (one). For example, the visual homograph ad0be.com targeting to the brand domain
adobe.com by replacing ‘0’ by ‘o’.

2.2 Visual Similarity Measure

Visual similarity is a method for measuring the similarity between two images. In this
paper, we use the state-of-the-art metric called Structural Similarity Index (SSIM) [14]
which is perceptual measure based on visible structures in the images. Meanwhile, the
traditional methods such as Peak Signal-To-Noise Ratio (PSNR) and Mean Squared
Error (MSE) estimate absolute errors only. The SSIM between two images x and y of
the same size N ×N is:

SSIM(x, y) =
(2µxµy + c1)(2σxy + c2)

(µ2
x + µ2

y + c1)(σ2
x + σ2

y + c2)
(1)

µx and µy represent the averages of x and y respectively. σ2
x represents the covariance

of x and y. σ2
x and σ2

y represent the variances of x and y respectively. c1 − (k1L)2 and
c2−(k2L)2 represent the variables to stabilize the division with weak denominator where
L is the dynamic range of the pixel-values and is typically set to L = 2#bits per pixel − 1
and k1 = 0.01, k2 = 0.03 by default. SSIM values [−1, 1] where 1 indicates perfect
similarity.

2.3 Whois

Whois [15] is a protocol that is used for querying databases that store the information of
the registered domains such as domain name, registrar, creation date, expiration date, or-
ganization, email, etc. Nowadays, there are many competitive services supporting Whois
queries by web portal or API. An example of Whois is given in Figure 1.

3 Our Proposed Method

In this section, we present our method including data collection, data labelling, feature
extraction and selection, and learning process.

3.1 Data Collection

The most adequate method to collect homographs is to use the Confusable Unicode
table [16] defined by Unicode, Inc. This table (for example version 11.0.0 updated on
2018-05-25) contains 6,296 pairs of confusable characters. However, it is impossible since
using the entire set of the confusable pairs, then get all permutations for each position
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[Domain Name]

[Registrant]

[Name Server]

[Name Server]

[Name Server]

[Name Server]

[Creation on]

[Expires on]

[Status]

[Last Updated]

Contact 

Information:

[Name]

[Email]

[Web page]

[Postal code]

[Postal Address]

[Phone]

[Fax]

KDDI.JP

KDDI CORPORATION

dns101.dion.ne.jp

dns102.dion.ne.jp

dnsa01.kddi.ne.jp

dnsa02.kddi.ne.jp

2001/04/16

2017/04/30

Active

2016/05/01 01:05:12 (JST)

KDDI CORPORATION

kt-tanaka@kddi.com

163-8003

3-2, Nishishinjuku 2-chome, Shinjuku-ku

03-3347-5818

Fig. 1. An example of Whois: the Whois of the domain “kddi.jp”

in the domains, and finally query Whois for each permutation are too inefficient (also,
the number of non-homographs are extremely dominant compared with the number of
homographs). Instead, the way we collected homographs is as follows.

First, in 6,296 Unicode confusable pairs mentioned above, we use only the pairs that
have the targeting characters such as A-Z, 1-9 and the hyphen (-) because most of the
brand domains (top Alexa ranking) are non-international-domain-name (non-IDN) and
thus contains these characters only. We generated 26,021 homographs, then queried their
Whois but only got 37 registered domains. Second, we use some tools in the wild such
as [4–7] to generate 12,338 homographs which are different from the previous 26,021
generated ones (these tools use different subsets of similar characters), then we queried
Whois and got 129 registered domains. Third, thanks to the authors of [9] for sharing
us their 1,516 homographs that they matched 1,000 top popular domains ranked by
Alexa with their 1.4 million registered IDN out of 300+ million registered domains; we
then filter out the overlapping domains with the previous generated domains, re-queried
Whois and got 1,006 registered domains (perhaps, at the time that we re-queried Whois,
the other 510 domains already expired).

Totally, we got 39 + 129 + 1, 006 = 1, 174 unique domains that are (at this time)
called “temporary” homographs because we will annotate/label them again later. For
non-homographs, from each of unique brand domains in the previous 1,174 “temporary”
homographs, we generated at least one domain that is non-IDN and completely look
different, and then got 1,969 domains. In summary, there are 3,143 domains in which
1,174 “temporary” homographs and 1,969 “temporary” non-homographs.
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3.2 Data Labelling

Although the data we collected was “temporarily” labelled as homographs or non-
homographs, we still need to re-label them again by the human because different persons
will have different opinions about the visual homographs. For example, person A thinks
ess.com is a homograph of ass.com but person B does not think that. For lowering
the bias, we employed three analyzers to label the 3,143 domains with the same pro-
cess and our final decision is based on majority rule. For example, 2/3 analyzers think
ess.com is a homograph of ass.com so we finally label it as homograph. For different
implementations below, we have different processes for data labelling:

Visually 

look alike

Non-

homograph
Homograph

no yes

Fig. 2. Data labelling for case 1

Visually 

look alike

Non-

homograph

no yes

Whois: same register 

name or organization

Homograph/ 

potential homograph

Non-

homograph

no/ unknown yes

Fig. 3. Data labelling for case 2

Case 1. This case checks if using SSIM for each character can perform better than using
SSIM for entire domain string. Thus, the three analyzers labelled them based on visual
look only as Figure 2. As a result, 3137 domains (99.81%) got the same label from the
three analyzers; and the labels of the remaining 6 domains (0.19%) were decided based
on majority (the labels decided by 2/3 analyzers). Finally, we got 1060 domains labelled
as homograph and 2083 domains labelled as non-homograph.

Case 2. This case checks if using SSIM for each character and the Whois can classify
the homographs (including potential homographs). The labelling process is described in
Figure 3. We consider potential homographs here because the register names and organi-
zations of some domains (even brand domains or sample domains) are hidden to protect
the privacy of domain owners’ information. For such pairs of the brand and sample
domains that have unknown/hidden register name and organization, we treat them as
potential homographs. Also, we cannot separate these potential homographs from actual
homograph because we cannot confirm that they are actual or potential homographs. In
the case 1, the visual looks are different from each person, the data labelling was thus
done by the human. However, in this case 2, the Whois information is obvious, we thus
only re-use the labelling result from case 1 and create a program to combine it with
the condition of whether the register name and organization are different. In total 3143
domains, we finally got 940 domains labelled as homograph/potential homograph, and
2203 domains labelled as non-homograph.
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3.3 Feature Extraction and Selection

For each case mentioned in the data labelling, the process of feature extraction and
selection are described as follow:

Case 1. For each pair of the sample domain and its brand domain, we compute SSIM
for each character and get the average. More concretely, we first separate the domains
into each character. For each pair of characters in order, we parse them into images
and compute SSIM for the images. Finally, the average of all SSIMs for every pair
of characters which is corresponding to every position in the domain string. For ex-
ample, SSIM of the two domains ‘ab.jp’ and ‘xy.vn’ is the average of the following
five pairs: SSIM(image(‘a’), image(‘x’)), SSIM(image(‘b’), image(‘y’)), SSIM(image(‘.’),
image(‘.’)), SSIM(image(‘j’), image(‘v’)), and SSIM(image(‘p’), image(‘n’). For the pairs
of homographs and brand domains that have a different number of characters (domain
string lengths), they are labelled as non-homograph in Section 3.2 without the need to
compute the SSIM. There are a few examples when the homographs and brand domains
have a different string such as ‘rn’ and ‘m’ but they are very rare so we do not consider.

Case 2. For this case, besides the SSIM computed on each character in the domain
strings as the first case, the Whois of each brand and sample domains is also queried.
More concretely, we extract the register name, organization, creation date, and expiration
date. We finally use the following 15 features: (1) the average of SSIM on each character;
(2) whether register of the brand domain is different from that of sample domain (1 if
yes, 0 if no and 2 if both are none or hidden, we do not need to consider the case when
one of them (not both) is none or hidden because as long as they are different, they
cannot be non-homographs); (3) whether organization of the brand domain is different
from that of sample domain (the values are the same as (2)); (4) whether creation date
of the brand domains is before that of sample domains (1 if yes and 0 if no); (5) whether
expiration date of the brand domain is after that of sample domains (1 if yes and 0 if
no); (6) creation year of the brand domain; (7) creation month of the brand domain; (8)
expiration year of the brand domain; (9) expiration month of the brand domain; (10)
lifetime of the brand domain (the number of days between creation date and expiration
date); (11) creation year of sample domain; (12) creation month of sample domain; (13)
expiration year of sample domain; (14) expiration month of sample domain; and (15)
lifetime of sample domain (the number of days between creation date and expiration
date).

3.4 Learning

Since the homograph/non-homograph samples are collected consecutively for each given
brand domain, the data must be randomly shuffled at first in order for reducing variance
and making sure that models remain general and overfit less. Then, we apply 7 popular
supervised machine learning algorithms for training process including Support Vector
Machine, Naive Bayes, Decision Tree, Neural Network, Stochastic Gradient Descent,
Nearest Neighbors and Logistic Regression. We use k-fold cross validation (k is set to 10
in our implementation) and compute the accuracy, false positive rate, and true positive
rate for our model. Also, the ROC curves are drawn to depict the comparison of previous
and our approaches.
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4 Experiment

The programs written in Python 2.7.11 on a computer Intel(R) core i7, RAM 16.0 GB,
64-bit Windows 10. The Whois is extracted using the python-whois package version 0.6.3.
The machine learning algorithms are applied using scikit-learn package version 0.18. The
SSIM is computed using the skimage package version 0.15.dev0.

4.1 Parameters

For each model, different parameters are used. For the Support Vector Machine (SVM),
3 parameters used are SVC, NuSVC which support different kernels and LinearSVC which
supports only a linear kernel. For the Naive Bayes, 3 parameters used are GaussianNB
which implements the Gaussian Naive Bayes, MultinomialNB which implements the Naive
Bayes for multinomially distributed data, and BernoulliNB which implements the Naive
Bayes for data distributed according to multivariate Bernoulli distributions. For the
Nearest Neighbors, 3 parameters used are KNeighborsClassifier which implements learning
based on the n neighbors nearest neighbors of each query point, n neighbors = 5 is set
by default, RadiusNeighborsClassifier which implements learning based on the number of
neighbors within a fixed radius of each training point, radius = 1.0 is set by default),
and NearestCentroid which represents each class by the centroid of its members. For the
Decision Tree, only 1 parameter used is DecisionTreeClassifier (note that Decision Tree has
several algorithms such as ID3, C4.5, CART, CHAID, MARS, and Conditional Inference
Tree but only the optimized version of the CART is used in this experiment. For the
Neural Network, only 1 parameter used is MLPClassifier which implements a multi-layer
perceptron that trains using Backpropagation. For the Stochastic Gradient Descent, only
1 parameter used is SGDClassifier which implements a plain stochastic gradient descent
learning routine which supports different loss functions and penalties for classification.
Finally, for the Logistic Regression, only 1 parameter used is LogisticRegression.

4.2 Results

The result for each case is described as follows:

Case 1. The results are described in Table 1. For the approach of using SSIM on
the entire string, the best accuracy is 86.73% (with FPR = 5.41%) performed by
KNeighborsClassifier. For our approach of using SSIM on each character, the best accu-
racy is 95.35% (with FPR = 2.83%) performed also by KNeighborsClassifier. We achieve
8.62% higher accuracy and 2.58% lower FPR than the previous approach. In this case,
only the SSIM is used as the feature and what we expect is that the samples are clas-
sified as homograph if its SSIM is larger than a threshold and vice versa. There is only
KNeighbors algorithm that classifies an object by a majority vote of its neighbors, with
the object being assigned to the class most common among its k nearest neighbors. That
is why the KNeighborsClassifier performs the best. The ROC curves of our and previous
approaches are depicted in Figure 4. The light curves mean the curves in each of k = 10
folds and the unique bold curve means the average for all the folds.
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Case 2. In this case, we tried almost the same parameters for each algorithm as the
case 1 except only the RadiusNeighborsClassifier. Since the value of year is much larger
than the other features’ values, the radius is set larger (i.e., 1400) to avoid the case when
some outlier samples do not have any neighbor within the given radius. The results
are described in Table 2. Note that, we implemented the case of SSIM on the entire
string with Whois for fairly comparing with our achievement that is using SSIM on each
character with Whois; there is no previous work using SSIM on the entire string with
Whois but SSIM on the entire string only. The result shows that, for the approach of
using SSIM on the entire string with Whois, the best accuracy is 92.43% (with FPR
= 6.01%) performed by DecisionTreeClassifier. For our approach of using SSIM on each
character with Whois, the best accuracy is 95.90% (with FPR = 3.27%) performed also
by DecisionTreeClassifier. In this case 2, the way we label the samples is using SSIM at
first to filter out the samples that are look alike to the brand domains, and if some
domains satisfy this condition, the Whois is then used to filter out the ones which have
the same owner with the brand domains. Therefore, it is reasonable why DecisionTree
can perform the best because only this algorithm works based on decision rules in a
flowchart structure. The ROC curves of the two approaches are depicted in Figure 5.
The explanation for the light curves and the unique bold curves is the same as that in
case 1 above.

Why the ROC curves strictly change direction at the cut-point. In both case 1 and 2
and also in both case of using SSIM on each character and case of using SSIM on the
entire domain string, the curves do not increase regularly with the same acceleration,
but strictly change direction at the cut-point of each curve. This is because applying
SSIM on text for a classification has only two groups which are when the SSIM is under
a threshold and when the SSIM is over the threshold. It is different from applying SSIM
on more complex images (such as landscape or person portrait) which has multiple groups
because other elements are considered such as the color grayscale (the amount of light
or color intensity).

5 Empirical Analysis on Labelled Homographs in Case 2

In this section, we make an empirical analysis on 940 domains labelled as homo-
graph/potential homograph in the case 2 and found the following results. 60 domains
(6.38%) that have the same or related content to the brand domains. 305 domains
(32.45%) cannot be accessed or have blank content. 20 domains (2.13%) were created
as an education about what is homograph. 419 (44.57%) domains are for sale or parked
domains (Parked domains are a kind of domains that are registered without being asso-
ciated with any services. Instead, these idle domains are used to display relevant adver-
tisements; and every time a consumer clicks on one of the advertisements, the owner can
earn money). Finally, 136 domains (14.47%) have completely different content compared
with that of the brand domains. Interestingly, while analyzing these 136 domains, we
figure out some unusual misbehaviors of the hackers:

– Several homographs were created not for any harmful purpose but just for saying
some pointless words. For example, xn--pple-koa.com (displayed as äpple.com)
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targeting to the brand domain apple.com has a web content like “the art of killing
yourself” or “why is everybody so stupid”.

– Several homographs that redirect user’s accesses to a safe webpage for the purpose of
selling product only. For example, xn--yotbe-lvab.com (displayed as yoütübe.com)
redirects user to a page on amazon.com that is selling a Kindle E-reader.

– Several homographs were created with the purpose of increasing pageview. For ex-
ample, xn--youtbe-6ya.com (displayed as youtübe.com) is just a music video on
Youtube with almost 5 million views and 2.3 thousand subscribers. This is also a
way to make money (Youtube pays users based on the number of video views).

– Several homographs were created with the purpose of advertising the hackers them-
selves. For example, xn--facebok-q0a.com (displayed as faceboók.com) describes
a hacker’s profile with a message “If you’d like to hire me ...”.

– Several homographs were created to claim (or lower the reputation of) the brand
domains for the hacker’s demands. For example, xn--microsftnline-1kdc.com tar-
geting to microsoftonline.com claims Microsoft to support Cyrillic alphabet in its
keyboard.

Table 1. EVALUATION RESULT FOR CASE 1

Algorithms SSIM on entire string SSIM on each character
Acc(%) FPR(%) TPR(%) Acc(%) FPR(%) TPR(%)

svm.SVC 84.98 10.62 76.35 94.18 6.6 95.64

svm.NuSVC 85.14 10.38 76.35 94.02 6.83 95.64

svm.LinearSVC 86.35 8.37 75.96 94.21 5.9 94.45

GaussianNB 84.98 10.62 76.35 94.21 6.55 95.64

MultinomialNB 66.27 0.00 0.00 66.27 0.00 0.00

BernoulliNB 66.27 0.00 0.00 66.27 0.00 0.00

NearestCentroid 82.06 15.62 77.47 92.91 8.75 96.07

KNeighbors 86.73 5.41 71.22 95.35 2.83 91.79

RadiusNeighbors 66.27 0.00 0.00 66.27 0.00 0.00

DecisionTree 82.18 13.72 74.04 94.85 4.05 92.61

MLPClassifier 86.29 8.03 75.14 94.21 5.28 93.21

SGDClassifier 81.39 13.63 70.84 92.02 8.95 94.1

LogisticRegression 66.27 0.00 0.00 66.27 0.00 0.00

Abbreviation: Acc (accuracy), FPR (false positive rate), TPR (true positive rate)

6 Discussion

This section describe several challenges for future work to improve the accuracy.

Average SSIM For Different Characters And Other Measures For SSIM. In this paper,
we compute the average SSIM for all the characters. For example, for the pair of domains
foo.jp and föö.jp, the SSIM currently used is the average of SSIM of each pair (‘f’,
‘f’), (‘o’, ‘ö’), (‘o’, ‘ö’), (‘.’, ‘.’), (‘j’, ‘j’), (‘p’, ‘p’). However, for the domains that have
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Table 2. EVALUATION RESULT FOR CASE 2

Algorithms SSIM on string + Whois SSIM on character + Whois
Acc(%) FPR(%) TPR(%) Acc(%) FPR(%) TPR(%)

svm.SVC 82.12 2.64 46.28 82.12 2.64 46.28

svm.NuSVC 81.36 1.69 41.48 81.36 1.69 41.48

svm.LinearSVC 70.44 19.74 45.41 68.04 24.28 50.55

GaussianNB 78.87 26.10 90.47 78.84 26.15 90.47

MultinomialNB 80.66 21.61 85.91 80.66 21.61 85.91

BernoulliNB 70.09 0.00 0.00 70.09 0.00 0.00

NearestCentroid 76.27 29.50 89.77 76.27 29.50 89.77

KNeighbors 85.27 10.01 74.08 85.27 10.01 74.08

RadiusNeighbors 85.08 11.25 76.41 85.08 11.25 76.41

tree.DecisionTree 92.43 6.01 88.68 95.90 3.27 93.93

MLPClassifier 79.22 18.35 74.03 78.66 14.85 62.89

SGDClassifier 79.32 9.02 51.90 76.74 22.74 75.09

LogisticRegression 84.63 12.38 77.61 84.63 12.38 77.61

Abbreviation: Acc (accuracy), FPR (false positive rate), TPR (true positive rate)

a small number of different characters compared with the number of all characters, using
average SSIM cannot reflect clearly the visual difference; instead, the average SSIM on
the different characters only perhaps can improved the accuracy. Concretely, a promising
SSIM is the average of SSIM of two pairs (‘o’, ‘ö’), (‘o’, ‘ö’). Furthermore, besides using
the average for SSIM, other measures such as the median (the middle value of a range),
the covariance (the expected value of variations of two random variates from their ex-
pected values), or the correlation (the expected value of two random variates) can be
considered.

Additional Features. Several other features may also help. First, homograph domains
have the search engine’s result count is less than that of the brand domains. Second,
homograph domains often target to the brand domains that are hot topics such as
crypto-currency or payment. We analyzed a dataset of phishing sites downloaded from
PhishTank, and found that the top three categories with a dominant number of homo-
graphs are crypto-currency (38.3%), payment system (20.7%) and online game (10.2%),
not bank or online shopping as we thought. Third, the time distance between the cre-
ation date/expiration date in the Whois from the present should be also considered as
the features because the real brand domains have longer age (as the present) than the
homograph domains.

Removing Diacritical Marks. Diacritical marks (also diacritical sign or accent) is a glyph
added to a letter. For example, yáhoo.com (encoded by xn--yhoo-5na.com, targeting
to the brand domain yahoo.com) have the diacritical acute mark ‘´’ over the letter ‘a’.
By removing the diacritical marks as a pre-process before data labelling, the accuracy
may be improved but probably it can also lead to higher false positive rate; thus a
re-implementation is necessary.

Other Implementations. The implementation of the case 2 should be divided into two
sub-implementations. The first one uses only SSIM and the second one uses both SSIM
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and Whois as the current implementation even though they have the same data-labelling
process. These two sub-implementations can help figure out how fairly effective when
Whois is used without comparing it to the implementation of case 1. Furthermore, even
though SSIM is proven to be better than the traditional measures such as PSNR and
MSE, an additional implementation should be done to confirm whether our approach
when using SSIM outperforms it when using PSNR or MSE.

Extending Research Scopes. This paper currently deals with visual homograph but how
to thoroughly deal with all types of homographs described in Section 2.1 becomes a great
demand. The TLD-based is the most trivial since we can straightforwardly replace the
TLD with the un-large entire set of available TLDs (1,535 TLDs). The typosquatting
may be not difficult since there are several tools that can be used to create the samples
such as [7, 11, 12]. However, the semantic-based is the most challenge since as far as we
know, there is no existing methods which can automatically collect enough a number of
samples.

Whether Homographs Are Caused By Fonts? Someone may question that if we compare
characters in Arial and Times, the characters are probably slightly different. However,
homographs are not caused by the font differences but Unicode code differences. Even
if ’A’ in Arial and Times fonts are visually look different, they have the same Unicode
code that is “U+0041”. Furthermore, in any web browser, the font (and font size) can
be changed in the web body interface but not in the address bar.
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7 Conclusion

This paper proposes the first classification of homographs registered by attackers and
non-homographs by using the state-of-the-art visual similarity metric that is SSIM on
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each character along with some reasonable selected information from Whois to increase
the accuracy up to 95.90% with merely 3.27% of FPR. Two implementation cases are
analyzed to explain how the approach works when applying only SSIM and applying the
combination of SSIM and Whois (with the different labelling processes). An empirical
analysis on labelled homographs is also taken place to find the ratio between different
contents of the homographs, and to understand certain concrete purposes of the attackers.
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