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Abstract In the authors’ previous research the possible usage of correlation clus-
tering in rough set theory was investigated. Correlation clustering is based on a
tolerance relation that represents the similarity among objects. Its result is a par-
tition which can be treated as the system of base sets. However, singleton clusters
represent very little information about the similarity. If the singleton clusters are
discarded, then the approximation space received from the partition is partial. In
this way, the approximation space focuses on the similarity (represented by a tol-
erance relation) itself and it is different from the covering type approximation
space relying on the tolerance relation. In this paper, the authors examine how
the partiality can be decreased by inserting the members of some singletons into
base sets and how this annotation affects the approximations. This process can
be performed by the user of system. However, in the case of a huge number of
objects, the annotation can take a tremendous amount of time. This paper shows
an alternative solution to the issue using neural networks.

Keywords: Rough set theory · Correlation clustering · Set approximation



1 Introduction

In our previous work, we examined whether the clusters, generated by correlation clus-
tering, can be understood as a system of base sets. Correlation clustering is a clustering
method in data mining that is based on a tolerance relation. Its result is a partition. The
groups, defined by this partition, contain similar objects. In [12], we showed that it is
worth to generate the system of base sets from the partition. In this way, the base sets
contain objects that are typically similar to each other and they are also pairwise dis-
joint. The proposed approximation space is different from the tolerance-based covering
approximation spaces. There can be some clusters that have only one member. These
singletons represent very little information regarding the similarity. This is the reason
why they are not treated as base sets. Without them, the approximation space becomes
partial. In practice, partiality can cause issues in logical systems. That is why its degree
should be minimized. In [13] we showed a possible way to decrease it by allowing the
user to insert a member of a singleton into a base set. We called this process annota-
tion. Its main problem is that it needs to be performed manually which takes a lot of
time if there are a huge number of data points. In this paper, we propose an improved
version of the annotation which performs the process using a neural network. Thus the
annotation can be done automatically. So, the main problem of manual annotation is
mitigated. The structure of the paper is the following: A theoretical background about
the classical rough set theory comes first. In section 4 we present our previous work
and in section 3 we define correlation clustering mathematically. Then, we show why
decreasing partiality is important in logical systems. In section 6 the annotation process
is described. Finally, we conclude our results.

2 Theoretical Background

In general, a set is a collection of objects which is uniquely identified by its members. It
means that if one would like to decide, whether an object belongs to a certain set, then
a precise answer can be given (yes/no). A good example is the set of numbers that are
divisible by 3 because it can be decided if an arbitrary number is divisible by 3 or not.
Of course, it is required that one knows how to use the modulo operation. This fact can
be considered as a background knowledge and it allows us to decide if a number belongs
to the given set. Naturally, it is not necessary to know how to use the modulo operation
for each number. Some second graders may not be able to divide numbers greater than
100. They would not be able to decide if 142 is divisible by 3 because they lack the
required background knowledge. For them, 142 is neither divisible nor indivisible by
3. So there is uncertainty (vagueness) based on their knowledge. Rough set theory was
proposed by Zdisław Pawlak in 1982 [14]. The theory offers a possible way to treat
vagueness caused by some background knowledge. In data sciences, each object can be
characterized by a set of attribute values. If two objects have the same known attribute
values, then these objects cannot really be distinguished. The indiscernibility generated
this way, gives the mathematical basis of rough set theory.

Definition 1. The ordered 5–tuple 〈U,B,DB, l, u〉 is a general approximation space if



1. U is a nonempty set;
2. B ⊆ 2U \ ∅, B 6= ∅ (B is the set of base sets);
3. DB is the set of definable sets and it is given by the following inductive definition:

(a) ∅ ∈ DB;
(b) B ⊆ DB;
(c) if D1, D2 ∈ DB, then D1 ∪D2 ∈ DB

4. 〈l, u〉 is a Pawlakian approximation pair i.e.
(a) Dom(l) = Dom(u) = 2U

(b) l(S) =
⋃
{B | B ∈ B and B ⊆ S};

(c) u(S) =
⋃
{B | B ∈ B and B ∩ S 6= ∅}.

The system of base sets represents the background knowledge or its limit. The func-
tions l and u give the lower and upper approximation of a set. The lower approximation
contains objects that surely belong to the set, and the upper approximation contains
objects that possibly belong to the set.

Definition 2. A general approximation space is Pawlakian [16,15] if B is a partition
of U .

The indiscernibility modeled by an equivalence relation represents the limit of our
knowledge embedded in an information system (or background knowledge). It has also
an effect on the membership relation. In certain situations, it makes our judgment of
the membership relation uncertain – thus making the set vague – as a decision about a
given object affects the decision about all the other objects that are indiscernible from
the given object. In practice, indiscernibility can be too strict as the attribute values of
the objects must be completely the same. In these situations, the similarity among the
objects can be enough to consider. Over the years, many new approximation spaces
have been developed as the generalization of the original Pawlakian space [11]. The
main difference between these kinds of approximation spaces (with a Pawlakian ap-
proximation pair) lies in the definition of the base sets (members of B).

Definition 3.
Different types of general approximation spaces 〈U,B,DB, l, u〉 are as follows:

1. A general approximation space is a covering approximation space [17] generated
by a tolerance relationR if B = {[u]R | u ∈ U}, where [u]R = {u′ | uRu′}.

2. A general approximation space is a covering approximation space if
⋃
B = U .

3. A general approximation space is a partial approximation space if
⋃

B 6= U .

3 Correlation Clustering

Cluster analysis is an unsupervised learning method in data mining. The goal is to group
the objects so that the objects in the same group are more similar to each other than to
those in other groups. In many cases, the similarity is based on the attribute values
of the objects. Although there are some cases when these values are not numbers, we
can still say something about their similarity or dissimilarity. From the mathematical
point of view, similarity can be modeled by a tolerance relation. Correlation clustering



is a clustering technique based on a tolerance relation [5,6,18]. Bansal et al. defined
correlation clustering for complete weighted graphs. Here G = (V,E) is a graph and
function w : E → {+1,−1} is the weight of edges. Weight +1 and −1 denotes the
similarity/dissimilarity of the nodes of the edges. We always treat a node similar to
itself. This graph defines a relation: xRy iff w

(
(x, y)

)
= +1 or x = y. It is obvious,

that this relation R is tolerance relation: it is reflexive and symmetric. Let p denote a
clustering (partition) on this graph and let p(x) be the set of vertices that are in the same
cluster as x. In a partition p we call an edge (x, y) a conflict if w

(
(x, y)

)
= +1 and

x /∈ p(y) or w
(
(x, y)

)
= −1 and x ∈ p(y). The cost function is the number of these

disagreements. Solving the correlation clustering is minimizing its cost function.
It is easy to check that we cannot necessarily find a perfect partition for a graph.

Consider the simplest case, given three objects x, y and z, and x is similar to both y
and z, but y and z are dissimilar. The number of partitions can be given by the Bell
number [1], which grows exponentially. So the optimal partition cannot be determined
in a reasonable time. In a practical case, a quasi-optimal partition can be sufficient,
so a search algorithm can be used. The main advantage of the correlation clustering
is that the number of clusters does not need to be specified in advance like in many
clustering algorithms, and this number is optimal based on the similarity. However,
since the number of partitions grows exponentially, it is an NP-hard problem.

In the original definition, a weight of an edge could be only +1 or −1. Naturally
the function w can be the following as well: w : E → [−1, 1]. If w

(
(x, y)

)
> 0, then x

and y are similar. If w
(
(x, y)

)
< 0, then x and y are dissimilar and if the weight is 0,

then they are neutral. In a partition p we call an edge (x, y) a conflict if w
(
(x, y)

)
> 0

and x /∈ p(y) or w
(
(x, y)

)
< 0 and x ∈ p(y). A natural cost function is one in which

an edge of weight w incurs a cost of |w| when it is clustered improperly and a cost of 0
when it is correct.

4 Similarity-based Rough Sets

When we would like to define the base sets, we use the background knowledge em-
bedded in an information system. The base sets represent background knowledge (or
its limit). In a Pawlakian system, we can say that two objects are indiscernible if all of
their known attribute values are identical. The indiscernibility relation defines an equi-
valence relation. In some cases, it is enough to treat the similar objects in the same
way. From the mathematical point of view, similarity can be described by a tolerance
relation. Some covering systems are based on a tolerance relation. In these covering
spaces, a base set contains objects that are similar to a distinguished member. This
means that the similarity to a given element is considered and it generates the system
of base sets. Using correlation clustering, we obtain a (quasi- optimal) partition of the
universe (see in [2,3,4]). The clusters contain such elements which are typically similar
to each other and not just to a distinguished member. In our previous research, we in-
vestigated whether the partition can be understood as a system of base sets (see in [12]).
By our experiments, it is worth to generate a partition with correlation clustering. The
base sets, generated from the partition, have several good properties:



– the similarity of objects relying on their properties (and not the similarity to a dis-
tinguished object) plays a crucial role in the definition of base sets;

– the system of base sets consists of disjoint sets, so the lower and upper approxima-
tion are closed in the following sense: Let S be a set and x ∈ U . If x ∈ l(S), then
we can say, that every y ∈ U object which is in the same cluster as x ∈ l(S). If
x ∈ u(S), then we can say, that every y ∈ U object which is in the same cluster as
x ∈ u(S).

– only the necessary number of base sets appears (in applications we have to use an
acceptable number of base sets);

– the size of base sets is not too small, or too big.

In the case of singleton clusters, their members cannot be considered as similar to
any other objects without increasing the value of the cost function (see in section 3).
Therefore, they represent very little information about the similarity. This is the reason
why these objects can be treated as outliers. In machine learning, outliers can impair
the decisions and result in more inaccurate results. Singleton clusters, therefore, are not
considered as base sets. Thus, the approximation space becomes partial (the union of
the base sets does not cover the universe).

5 Partiality in Logical Systems

Classical first-order logic gives the necessary tools to prove the soundness of the in-
ference chains. But what inferences could be derived from the background knowledge
when it appears in a vague (rough) structure, and what kind of logical systems need
to be used to verify the correctness of the information gained from a rough-set-based
framework? In this section, we briefly introduce the rough-set-based semantics of first-
order logic (or at least we will show one approach), then we will emphasize the threats
hiding in partiality.

The semantics of classical first-order logic is based on set theory. The semantic
meaning of the predicate symbols is often defined with the help of a positivity domain
which is determined by an interpretation of the logical language. The positivity domain
of a unary predicate is a subset of a given universe. It contains those objects for which
the predicate is said to be true. Predicates with higher arity can be defined similarly
using some Cartesian product of the universe as base set [9]. Since an approximation
space gives the ability to create the lower or upper approximation of sets, it can be used
to approximate the positivity domain of predicates.

In a reasonable logical system, the positivity and negativity domains of the predic-
ates must be disjoint. From this point of view, the use of the lower approximation can
represent our certain knowledge (supposing that the lower approximation of a set S is a
subset of S). In these circumstances, it is a legitimate expectation that the derived res-
ults in the approximated system, if there is any, must coincide with the results we could
receive from the crisp (approximation free) world. These expectations can be satisfied
by a three-valued logic system where the relationship between an object and a unary
predicate can be the following:

– the object certainly belongs to the positivity domain of the predicate, or



– the object certainly belongs to the negativity domain of the predicate, or
– it cannot be determined whether the object belongs to the positivity or negativity

domain (the object is it in the border).

The cases above are usually represented with the truth values 1, 0, 1
2 respectively, so

the result is a three-valued logic system [8]. The way how these systems extend the
semantics of the logical connectives is crucial. A widely accepted principle to define
the existential and the universal quantifiers so that they generalize the zero-order con-
nectives: the disjunction and the conjunction. A partial approximation space requires
partial logic system [10]. It gives us the ability to distinguish situations where we can-
not say anything certain about the above-mentioned relationship between an object and
a predicate:

– we do not know anything about the object (it is missing from the approximation),
– we do not know how the object is related to the predicate (the object is in the

border).

The partiality causes the appearance of the truth value gap (usually denoted by 2 which
extends the three-valued system). It is also widely accepted, that the connectives are
defined so that the truth value gap is inherited.

The pessimistic scenario says that missing knowledge can refute the conclusions
derived from our available knowledge. Keeping in mind how we defined the goal of
the logic system, we have to adopt this pessimistic approach. In other words, from our
viewpoint, it is better to say nothing than to say something unsure.

The disadvantage of the pessimistic approach is that, if we respect all the earlier
mentioned widely accepted properties of the partial three-valued logic system, it makes
the quantification useless in the case of partial approximation space. For example, to
evaluate a universally quantified formula, we need to evaluate the subformula substi-
tuted all the objects of the universe in place of the bound variable (with the help of
modified assignments). Since the approximation space is partial, at least one evaluation
of the subformula will cause truth value gap. An often-used solution is to modify the
semantics of the quantifiers so that truth value gap appears only if all subformula eval-
uations raise truth value gap [7] but it also voids the pessimistic approach. The second
approach is to avoid partial approximation spaces.

6 Similarity-based Rough Sets with Annotation

Sometimes it can happen that an object does not belong to a base set (non-singleton
cluster) because the system could not consider it similar to any other objects based on
the background information. This does not mean that this object is only similar to itself,
but without proper information (maybe due to noisy data) the system could not insert
it into any base set (non-singleton cluster) to decrease the number of conflicts. Correla-
tion clustering is based on a tolerance relation that represents similarity. The degree of
similarity is between -1 and 1. It can also happen that some relevant information is lost
when we map the difference of two objects to [−1, 1]. In [13] we proposed a possible
way to handle this situation. The users can use their knowledge to help the system by



inserting the members of some singletons into base sets (non-singleton clusters). With
the help of this manual annotation, the users can put their knowledge into the system. It
also decreases the partiality by decreasing the number of singletons. One of the issues
with this approach is that it assumes that the user has some background knowledge. It
must also be performed manually, so it cannot be used in the case of a huge number of
points because it requires too much time.

Artificial neural networks (ANN) are inspired by the biological neural networks in
machine learning. They can be used to perform classification. The annotation process is
a classification problem as we need to find a proper cluster to an object. Here, the cluster
IDs can be treated as class labels. Given the specifics of an approximation space, the
deep learning algorithms can help the user in the annotation process. Each layer of the
neural network can identify the main properties of the base sets. Based on these charac-
teristics, it can perform an automated comparison and offer options accordingly. In this
way, annotation can be executed completely automatically which means it can also be
used in the case of huge data. Naturally, during the annotation, not every object must be
inserted into a base set. The neural network identifies if an object is an outlier and dis-
cards it. Fig. 1 shows how the similarity-based rough sets approximation is constructed
from the original data.

In a real-world application, it can happen that an attribute value of an object is miss-
ing. This means that it can be unknown, unassigned, or inapplicable (e.g. maiden name
of a male). Handling these data is usually a difficult task. In many cases, these values
are imputed. It is common to replace them with the mean or the most frequent value.
Typically, this gives a rather good result in many situations. In early-stage diabetes, it
is not unusual that the patient has only an elevated blood sugar level. If this value is
missing for a patient, then it should not be replaced by the mean because the mean is
usually the normal blood sugar level. After the substitution, this patient can be treated
as healthy. This type of substitution does not consider the information of an object itself
but the information of a collection of objects, therefore it can lead to a false conclusion.
In this paper, we propose another method to handle missing data. If an object has a
missing attribute value, then it cannot be treated as similar to any other objects, so this
entity becomes a member of a singleton. As mentioned earlier, such a cluster cannot
be treated as a base set. However, with the annotation, it can be placed into a base set.
The neural network should only consider the non-missing attribute values and based on
them it should find the appropriate base set.

In machine learning, it is very common to combine clustering with classification.
Classification always requires class labels. After clustering the data, the cluster IDs can
be treated as these class labels. In our approximation space, the non-singleton clusters
are treated as base sets. If there is a new object for which we need to find the appropriate
base set, then this object can be considered as a singleton. If it is a singleton, then the
annotation can be applied to find the fitting base set.

7 Conclusion and Future Work

In [12] the authors introduced a partial approximation space relying on a tolerance re-
lation that represents similarity. The novelty of this approximation space is that the



Figure 1. The main steps of the similarity-based rough sets approximation space



systems of base sets are the result of correlation clustering. Thus the similarity is taken
into consideration generally. Singleton clusters have no real information in the approx-
imation process, these clusters cannot be taken as base sets, therefore the approximation
space is partial. In the present paper, a new possibility is proposed to embed some in-
formation into the approximation space. A neural network may decide the status of a
member of a singleton cluster. It can be put into a base set, and the approximation of
a set changes according to the new system of base sets. This possibility is crucial in
practical applications because it decreases the degree of partiality. Neural networks can
also be used when we need to decide to which base set a new object belongs. In ma-
chine learning, it is common to combine clustering with classification. In our proposed
system, a neural network decides and puts the new objects into the chosen base set. This
is especially promising for a large number of new objects as we do not need to perform
correlation clustering, which is an NP-hard problem, for each object.
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