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Abstract. Place bisimilarity ∼p is a behavioral equivalence for finite Petri nets,
proposed in [1] and proved decidable in [13]. In this paper we propose an exten-
sion to finite Petri nets with silent moves of the place bisimulation idea, yielding
branching place bisimilarity≈p, following the intuition of branching bisimilarity
[6] on labeled transition systems. We prove that≈p is a decidbale equivalence re-
lation. Moreover, we argue that it is strictly finer than branching fully-concurrent
bisimilarity [22, 12], essentially because ≈p does not consider as unobservable
those τ-labeled net transitions with pre-set size larger than one, i.e., those result-
ing from multi-party interaction.

1 Introduction

Place bisimilarity, originating from an idea by Olderog [19] (under the name of strong
bisimilarity) and then refined by Autant, Belmesk and Schnoebelen [1], is a behavioral
equivalence over finite Place/Transition Petri nets (P/T nets, for short), based on re-
lations over the finite set of net places, rather than over the (possibly infinite) set of
net markings. This equivalence does respect the expected causal behavior of Petri nets;
in fact, van Glabbeek proved in [7] that place bisimilarity is slightly finer than struc-
ture preserving bisimilarity [7], in turn slightly finer than fully-concurrent bisimilarity
[3]. Place bisimilarity was proved decidable in [13] and, to date, it is the only sensi-
ble behavioral equivalence which was proved decidable over finite Petri nets (with the
exception of net isomorphism).

This paper aims at extending the place bisimulation idea to Petri nets with silent
transitions. To this aim, we take inspiration from branching bisimilarity, proposed in
[6] over labeled transition systems [16, 8] (LTSs, for short), a behavioral relation more
appropriate than weak bisimilarity [17], as it better respects the timing of choices.

The main problem we had to face was to properly understand if and when a silent
net transition can be really considered as potentially unobservable. In fact, while in
the theory of sequential, nondeterministic systems, modeled by means of LTSs, all the
τ-labeled transitions can, to some extent, be abstracted away, in the theory of Petri
nets (and of distributed systems, in general), it is rather questionable whether this is the
case. For sure a silent net transition with pre-set and post-set of size 1 may be abstracted



away, as it represents some internal computation, local to a single sequential component
of the distributed system. However, a τ-labeled net transition with pre-set of size 2 or
more, which models a multi-party interaction, is really observable: since to establish the
synchronization it is necessary to use some communication infrastructure, for sure one
observer can see that such a synchronization takes place. This is, indeed, what happens
over the Internet: a communication via IP is an observable event, even if the actual
content of the message may be unobservable (in case it is encrypted).

For this reason, our definition of branching place bisimulation considers as poten-
tially unobservable only the so-called τ-sequential transitions, i.e., those silent transi-
tions whose pre-set and post-set have size 1. We prove that branching place bisimilarity
≈p is an equivalence relation, where the crucial step in this proof is to prove that the
relational composition of two branching place bisimulations is a branching place bisim-
ulation. Of course, ≈p is rather discriminating if compared to other behavioral seman-
tics; in particular, we conjecture that it is strictly finer than branching fully-concurrent
bisimilarity [22, 12], essentially because the latter may also abstract w.r.t. silent transi-
tions that are not τ-sequential (and also may relate markings of different size).

The main contribution of this paper is to show that ≈p is decidable for finite P/T
nets. The proof idea is as follows. As a place relation R ⊆ S× S is finite if the set S
of places is finite, there are finitely many place relations for a finite net. We can list
all these relations, say R1,R2, . . .Rn. It is decidable whether a place relation Ri is a
branching place bisimulation by checking two finite conditions over a finite number
of marking pairs: this is a non-obvious observation, as a branching place bisimulation
requires that the place bisimulation game holds for the infinitely many pairs m1 and
m2 which are bijectively related via Ri (denoted by (m1,m2) ∈ R⊕i ). Hence, to decide
whether m1 ≈p m2, it is enough to check, for i = 1, . . .n, whether Ri is a branching place
bisimulation and, in such a case, whether (m1,m2) ∈ R⊕i .

The paper is organized as follows. Section 2 recalls the basic definitions about Petri
nets. Section 3 recalls the main definitions and results about place bisimilarity. Section
4 introduces branching place bisimilarity and proves that it is an equivalence relation.
Section 5 shows that≈p is decidable. Finally, in Section 6 we discuss the pros and cons
of branching place bisimilarity, and describe related literature and some future research.

2 Basic Definitions

Definition 1. (Multiset) Let N be the set of natural numbers. Given a finite set S, a
multiset over S is a function m : S→N. The support set dom(m) of m is {s∈ S

∣∣ m(s) 6=
0}. The set of all multisets over S, denoted by M (S), is ranged over by m. We write
s ∈m if m(s)> 0. The multiplicity of s in m is given by the number m(s). The size of m,
denoted by |m|, is the number ∑s∈S m(s), i.e., the total number of its elements. A multiset
m such that dom(m) = /0 is called empty and is denoted by θ . We write m⊆m′ if m(s)≤
m′(s) for all s∈ S. Multiset union ⊕ is defined as follows: (m⊕m′)(s) =m(s)+m′(s).
Multiset difference 	 is defined as follows: (m1	m2)(s) = max{m1(s)−m2(s),0}.
The scalar product of a number j with m is the multiset j ·m defined as ( j ·m)(s) =
j ·(m(s)). By si we also denote the multiset with si as its only element. Hence, a multiset



m over S = {s1, . . . ,sn} can be represented as k1 · s1⊕ k2 · s2⊕ . . .⊕ kn · sn, where k j =
m(s j)≥ 0 for j = 1, . . . ,n. 2

Definition 2. (Place/Transition net) A labeled Place/Transition Petri net (P/T net for
short) is a tuple N = (S,A,T ), where

• S is the finite set of places, ranged over by s (possibly indexed),
• A is the finite set of labels, ranged over by ` (possibly indexed), and
• T ⊆ (M (S) \ {θ})×A×M (S) is the finite set of transitions, ranged over by t

(possibly indexed).

Given a transition t = (m, `,m′), we use the notation:

• •t to denote its pre-set m (which cannot be empty) of tokens to be consumed;
• l(t) for its label `, and
• t• to denote its post-set m′ of tokens to be produced.

Hence, transition t can be also represented as •t
l(t)−→ t•. 2

Graphically, a place is represented by a little circle and a transition by a little box.
These are connected by directed arcs, which may be labeled by a positive integer, called
the weight, to denote the number of tokens consumed (when the arc goes from a place
to the transition) or produced (when the arc goes form the transition to a place) by the
execution of the transition; if the number is omitted, then the weight default value is 1.

Definition 3. (Marking, P/T net system) A multiset over S is called a marking. Given
a marking m and a place s, we say that the place s contains m(s) tokens, graphi-
cally represented by m(s) bullets inside place s. A P/T net system N(m0) is a tuple
(S,A,T,m0), where (S,A,T ) is a P/T net and m0 is a marking over S, called the initial
marking. We also say that N(m0) is a marked net. 2

Definition 4. (Enabling, firing sequence, transition sequence, reachable marking)
Given a P/T net N = (S,A,T ), a transition t is enabled at m, denoted by m[t〉, if •t ⊆m.
The execution (or firing) of t enabled at m produces the marking m′ = (m	 •t)⊕ t•.
This is written m[t〉m′. A firing sequence starting at m is defined inductively as follows:

• m[ε〉m is a firing sequence (where ε denotes an empty sequence of transitions) and
• if m[σ〉m′ is a firing sequence and m′[t〉m′′, then m[σt〉m′′ is a firing sequence.

If σ = t1 . . . tn (for n≥ 0) and m[σ〉m′ is a firing sequence, then there exist m1, . . . ,mn+1
such that m = m1[t1〉m2[t2〉 . . .mn[tn〉mn+1 = m′, and σ = t1 . . . tn is called a transition
sequence starting at m and ending at m′.

The definition of pre-set and post-set can be extended to transition sequences as
follows: •ε = θ , •(tσ) = •t⊕ (•σ 	 t•), ε• = θ , (tσ)• = σ•⊕ (t•	 •σ).

The set of reachable markings from m is [m〉 = {m′
∣∣ ∃σ .m[σ〉m′}. Note that the

reachable markings can be countably infinitely many. 2



Definition 5. (P/T net with silent moves, τ-sequential) A P/T net N = (S,A,T ) such
that τ ∈ A, where τ is the only invisible action that can be used to label transitions, is
called a P/T net with silent moves.

A transition t ∈ T is τ-sequential if l(t) = τ and |t•| = 1 = |•t|. A P/T net N with
silent moves is τ-sequential if ∀t ∈ T if l(t) = τ , then t is τ-sequential. 2

Definition 6. (Idling transitions, τ-sequential (acyclic) transition sequence) Given
a P/T net N = (S,A,T ) with silent moves, the set of idling transitions is I(S) = {i(s)

∣∣
s∈ S, i(s) = (s,τ,s)}. In defining silent transition sequences, we take the liberty of using
also the fictitious idling transitions, so that, e.g., if σ = i(s1)i(s2), then s1⊕s2[σ〉s1⊕s2.
Given a transition sequence σ , its observable label o(σ) is computed inductively as:

o(ε) = ε

o(tσ) =

{
l(t)o(σ) if l(t) 6= τ

o(σ) otherwise.
A transition sequence σ = t1t2 . . . tn (where n ≥ 1 and some of the ti can be idling

transitions) is τ-1-sequential if l(ti) = τ , |t•i | = 1 = |•ti| for i = 1, . . . ,n, and t•i = •ti+1
for i = 1, . . . ,n−1, so that o(σ) = ε and |σ•|= 1 = |•σ |.

A transition sequence σ = σ1σ2 . . .σk is τ-k-sequential if σi is τ-1-sequential for
i = 1, . . . ,k, •σ = •σ1⊕ •σ2⊕ . . .⊕ •σk and σ• = σ•1 ⊕σ•2 ⊕ . . .⊕σ•k , so that o(σ) = ε

and |σ•|= k = |•σ |. We say that σ is τ-sequential if it is τ-k-sequential for some k≥ 1.
A τ-1-sequential σ = t1t2 . . . tn is acyclic if •σ = m0[t1〉m1[t2〉m2 . . .mn−1[tn〉mn =

σ• and mi 6= m j for all i 6= j, with i, j ∈ {1,2, . . . ,n}. A τ-k-sequential σ = σ1σ2 . . .σk
is acyclic if σi is acyclic and τ-1-sequential for i = 1, . . . ,k. We say that σ is an acyclic
τ-sequential transition sequence if it is acyclic and τ-k-sequential for some k ≥ 1. 2

Remark 1. (Acyclic τ-sequential transition sequence) The definition of acyclic τ-1-
sequential transition sequence is a bit non-standard as it may allow for a cycle when
the initial marking and the final one are the same. For instance, σ = i(s)i(s) is cyclic,
while the apparently cyclic subsequence σ ′ = i(s) is actually acyclic, according to our
definition. Note that, given a τ-1-sequential transition sequence σ , it is always possible
to find an acyclic τ-1-sequential transition sequence σ ′ such that •σ = •σ ′ and σ• =
σ ′•. For instance, if •σ = m0[t1〉m1[t2〉m2 . . .mn−1[tn〉mn = σ• and the only cycle is
given by mi[ti+1〉mi+1 . . .m j−1[t j〉m j with mi =m j and i≥ 1, then σ ′= t1t2 . . . tit j+1 . . . tn
is acyclic and •σ = •σ ′ and σ• = σ ′•.

Note also that, given a τ-k-sequential transition sequence σ = σ1σ2 . . .σk, it is al-
ways possible to find an acyclic τ-k-sequential transition sequence σ ′ = σ ′1σ ′2 . . .σ

′
k,

where σ ′i is the acyclic τ-1-sequential transition sequence corresponding to σi for i =
1,2, . . . ,k, in such a way that •σ = •σ ′ and σ• = σ ′•. Finally, note that, given two
markings m1 and m2 of equal size k, it is decidable whether there exists an acyclic
τ-k-sequential transition σ such that •σ = m1 and σ• = m2. 2

Definition 7. (Interleaving Bisimulation) Let N = (S,A,T ) be a P/T net. An interleav-
ing bisimulation is a relation R⊆M (S)×M (S) such that if (m1,m2) ∈ R then

• ∀t1 such that m1[t1〉m′1, ∃t2 such that m2[t2〉m′2 with l(t1) = l(t2) and (m′1,m
′
2) ∈ R,

• ∀t2 such that m2[t2〉m′2, ∃t1 such that m1[t1〉m′1 with l(t1) = l(t2) and (m′1,m
′
2) ∈ R.



Two markings m1 and m2 are interleaving bisimilar, denoted by m1 ∼int m2, if there
exists an interleaving bisimulation R such that (m1,m2) ∈ R. 2

Interleaving bisimilarity was proved undecidable in [15] for P/T nets having at least
two unbounded places, with a proof based on the comparison of two sequential P/T
nets (i.e., nets not offering any concurrent behavior). Hence, interleaving bisimulation
equivalence is undecidable even for the subclass of sequential finite P/T nets. Esparza
observed in [5] that all the non-interleaving bisimulation-based equivalences (in the
spectrum ranging from interleaving bisimilarity to fully-concurrent bisimilarity [3])
collapse to interleaving bisimilarity over sequential P/T nets. Hence, the proof in [15]
applies to all these non-interleaving bisimulation equivalences as well.

Definition 8. (Branching interleaving bisimulation) Let N = (S,A,T ) be a P/T net
with silent moves. A branching interleaving bisimulation is a relation R ⊆M (S)×
M (S) such that if (m1,m2) ∈ R then

• ∀t1 such that m1[t1〉m′1,
– either l(t1) = τ and ∃σ2 such that o(σ2) = ε , m2[σ2〉m′2 with (m1,m′2) ∈ R and
(m′1,m

′
2) ∈ R,

– or ∃σ , t2 such that o(σ) = ε , l(t1) = l(t2), m2[σ〉m[t2〉m′2 with (m1,m) ∈ R and
(m′1,m

′
2) ∈ R,

• and, symmetrically, ∀t2 such that m2[t2〉m′2.

Two markings m1 and m2 are branching interleaving bisimilar, denoted m1 ≈bri m2,
if there exists a branching interleaving bisimulation R that relates them. 2

This definition is not a rephrasing on nets of the original definition on LTSs in [6],
rather of a slight variant called semi-branching bisimulation [6, 2], which gives rise
to the same equivalence relation as the original definition but has better mathematical
properties. Branching interleaving bisimilarity≈bri is the largest branching interleaving
bisimulation and also an equivalence relation. Of course, also branching interleaving
bisimilarity is undecidable for finite P/T nets.

3 Place Bisimilarity

We now present place bisimulation, introduced in [1] as an improvement of strong
bisimulation, a behavioral relation proposed by Olderog in [19] on safe nets which fails
to induce an equivalence relation. Our definition is formulated in a slightly different
way, but it is coherent with the original one. First, an auxiliary definition.

Definition 9. (Additive closure) Given a P/T net N =(S,A,T ) and a place relation R⊆
S×S, we define a marking relation R⊕ ⊆M (S)×M (S), called the additive closure of
R, as the least relation induced by the following axiom and rule.

(θ ,θ) ∈ R⊕
(s1,s2) ∈ R (m1,m2) ∈ R⊕

(s1⊕m1,s2⊕m2) ∈ R⊕
2



Note that, by definition, two markings are related by R⊕ only if they have the same
size; in fact, the axiom states that the empty marking is related to itself, while the rule,
assuming by induction that m1 and m2 have the same size, ensures that s1⊕m1 and
s2⊕m2 have the same size.

Proposition 1. For each relation R⊆ S×S, if (m1,m2) ∈ R⊕, then |m1|= |m2|. 2

Note also that there may be several proofs of (m1,m2) ∈ R⊕, depending on the cho-
sen order of the elements of the two markings and on the definition of R. For instance,
if R = {(s1,s3),(s1,s4),(s2,s3),(s2,s4)}, then (s1⊕ s2,s3⊕ s4) ∈ R⊕ can be proved by
means of the pairs (s1,s3) and (s2,s4), as well as by means of (s1,s4),(s2,s3). An alter-
native way to define that two markings m1 and m2 are related by R⊕ is to state that m1
can be represented as s1⊕ s2⊕ . . .⊕ sk, m2 can be represented as s′1⊕ s′2⊕ . . .⊕ s′k and
(si,s′i)∈R for i= 1, . . . ,k. In fact, a naive algorithm for checking whether (m1,m2)∈R⊕

would simply consider m1 represented as s1⊕s2⊕ . . .⊕sk and then scan all the possible
permutations of m2, each represented as s′1⊕ s′2⊕ . . .⊕ s′k, to check that (si,s′i) ∈ R for
i = 1, . . . ,k. Of course, this naive algorithm is in O(k!).

Example 1. Consider R = {(s1,s3), (s1,s4),(s2,s4)}, which is not an equivalence re-
lation. Suppose we want to check that (s1⊕ s2,s4⊕ s3) ∈ R⊕. If we start by matching
(s1,s4) ∈ R, then we fail because the residual (s2,s3) is not in R. However, if we per-
mute the second marking to s3⊕ s4, then we succeed because the required pairs (s1,s3)
and (s2,s4) are both in R. 2

Nonetheless, the problem of checking whether (m1,m2) ∈ R⊕ has polynomial time
complexity because it can be considered as an instance of the problem of finding a
perfect matching in a bipartite graph, where the nodes of the two partitions are the
tokens in the two markings, and the edges are defined by the relation R. In fact, the
definition of the bipartite graph takes O(k2) time (where k = |m1| = |m2|) and, then,
the Hopcroft-Karp-Karzanov algorithm [14] for computing the maximum matching has
worst-case time complexity O(h

√
k), where h is the number of the edges in the bipartire

graph (h ≤ k2) and to check whether the maximum matching is perfect can be done
simply by checking that the size of the matching equals the number of nodes in each
partition, i.e., k. Hence, in evaluating the complexity of the algorithm in Section 5, we
assume that the complexity of checking whether (m1,m2) ∈ R⊕ is in O(k2

√
k).

Proposition 2. [10] For each place relation R⊆ S×S, the following hold:

1. If R is an equivalence relation, then R⊕ is an equivalence relation.
2. If R1 ⊆ R2, then R⊕1 ⊆ R⊕2 , i.e., the additive closure is monotone.
3. If (m1,m2) ∈ R⊕ and (m′1,m

′
2) ∈ R⊕, then (m1⊕m′1,m2⊕m′2) ∈ R⊕, i.e., the addi-

tive closure is additive. 2

Proposition 3. [10] For each family of place relations Ri ⊆ S×S, the following hold:

1. /0⊕ = {(θ ,θ)}, i.e., the additive closure of the empty place relation is a singleton
marking relation, relating the empty marking to itself.

2. (IS)
⊕ = IM , i.e., the additive closure of the identity relation on places IS =

{(s,s)
∣∣ s ∈ S} is the identity relation on markings IM = {(m,m)

∣∣ m ∈M (S)}.



s1

a

s2

s3

Fig. 1. A simple net

3. (R⊕)−1 = (R−1)⊕, i.e., the inverse of an additively closed relation R is the additive
closure of its inverse R−1.

4. (R1 ◦R2)
⊕ = (R⊕1 )◦ (R

⊕
2 ), i.e., the additive closure of the composition of two place

relations is the compositions of their additive closures. 2

Definition 10. (Place Bisimulation) Let N = (S,A,T ) be a P/T net. A place bisimula-
tion is a relation R⊆ S×S such that if (m1,m2) ∈ R⊕ then

• ∀t1 such that m1[t1〉m′1, ∃t2 such that m2[t2〉m′2 with (•t1,•t2) ∈ R⊕, l(t1) = l(t2),
(t•1 , t

•
2 ) ∈ R⊕ and (m′1,m

′
2) ∈ R⊕,

• ∀t2 such that m2[t2〉m′2, ∃t1 such that m1[t1〉m′1 with (•t1,•t2) ∈ R⊕, l(t1) = l(t2),
(t•1 , t

•
2 ) ∈ R⊕ and (m′1,m

′
2) ∈ R⊕.

Two markings m1 and m2 are place bisimilar, denoted by m1 ∼p m2, if there exists a
place bisimulation R such that (m1,m2) ∈ R⊕. 2

Proposition 4. [1, 13] For each P/T net N = (S,A,T ), relation∼p ⊆M (S)×M (S) is
an equivalence relation. 2

By Definition 10, place bisimilarity can be defined as follows:
∼p=

⋃
{R⊕

∣∣ R is a place bisimulation}.
By monotonicity of the additive closure (Proposition 2(2)), if R1 ⊆ R2, then R⊕1 ⊆ R⊕2 .
Hence, we can restrict our attention to maximal place bisimulations only:
∼p=

⋃
{R⊕

∣∣ R is a maximal place bisimulation}.
However, it is not true that
∼p= (

⋃
{R
∣∣ R is a maximal place bisimulation})⊕

because the union of place bisimulations may not be a place bisimulation, so that its
definition is not coinductive. We illustrate this fact by means of the following example.

Example 2. Consider the simple P/T net in Figure 1, with S = {s1,s2,s3}. It is rather
easy to realize that there are only two maximal place bisimulations, namely:

R1 = IS = {(s1,s1),(s2,s2),(s3,s3)} and
R2 = (R1 \I{s1,s2})∪{(s1,s2),(s2,s1)}= {(s1,s2),(s2,s1),(s3,s3)},

only one of which is an equivalence relation. However, note that their union R= R1∪R2
is not a place bisimulation. In fact, on the one hand (s1⊕ s1,s1⊕ s2) ∈ R⊕, but, on the
other hand, these two markings do not satisfy the place bisimulation game, because
s1⊕ s1 is stuck, while s1⊕ s2 can fire the a-labeled transition, reaching s3. 2



4 Branching Place Bisimilarity

Now we define a variant of place bisimulation, which is insensitive, to some extent,
to τ-sequential transitions, i.e., τ-labeled transitions whose pre-set and post-set have
size one. This relation is inspired to (semi-)branching bisimulation [6, 2], a behavioral
relation defined over LTSs. In its definition, we use τ-sequential transition sequences,
usually denoted by σ , which are sequences composed of τ-sequential transitions in
T ∪ I(S), i.e., τ-sequential net transitions and also idling transitions.

Definition 11. (Branching place bisimulation) Given a P/T net N =(S,A,T ), a branch-
ing place bisimulation is a relation R⊆ S×S such that if (m1,m2) ∈ R⊕

1. ∀t1 such that m1[t1〉m′1
(i) either t1 is τ-sequential and ∃σ ,m′2 such that σ is τ-sequential, m2[σ〉m′2, and

(•t1,•σ) ∈ R, (•t1,σ•) ∈ R, (t•1 ,σ
•) ∈ R and (m1	 •t1,m2	 •σ) ∈ R⊕;

(ii) or there exist σ , t2,m,m′2 such that σ is τ-sequential, m2[σ〉m[t2〉m′2, l(t1) =
l(t2), σ• = •t2, (•t1,•σ) ∈ R⊕, (•t1,•t2) ∈ R⊕ (t•1 , t

•
2 ) ∈ R⊕, and moreover,

(m1	 •t1,m2	 •σ) ∈ R⊕;
2. and, symmetrically, ∀t2 such that m2[t2〉m′2

(i) either t2 is τ-sequential and ∃σ ,m′1 such that σ is τ-sequential, m1[σ〉m′1, and
(•σ ,•t2) ∈ R, (σ•,•t2) ∈ R, (σ•, t•2 ) ∈ R and (m1	 •σ ,m2	 •t2) ∈ R⊕;

(ii) or there exist σ , t1,m,m′1 such that σ is τ-sequential, m1[σ〉m[t1〉m′1, l(t1) =
l(t2), σ• = •t1, (•σ ,•t2) ∈ R⊕, (•t1,•t2) ∈ R⊕ (t•1 , t

•
2 ) ∈ R⊕, and moreover,

(m1	 •σ ,m2	 •t2) ∈ R⊕.

Two markings m1 and m2 are branching place bisimulation equivalent, denoted by
m1 ≈p m2, if there exists a branching place bisimulation R such that (m1,m2) ∈ R⊕. 2

Note that, in the either case, by additivity of R⊕ (cf. Proposition 2(3)), from (m1	
•t1,m2	•σ)∈R⊕ and (•t1,σ•)∈R, we get (m1,m′2)∈R⊕, as well as, from (t•1 ,σ

•)∈R
we get (m′1,m

′
2) ∈ R⊕. Similarly for the or case.

Proposition 5. For each P/T net N = (S,A,T ), the following hold:

(i) The identity relation IS is a branching place bisimulation.
(ii) The inverse relation R−1 of a branching place bisimulation R is a branching place

bisimulation.

Proof. Case (i) is obvious. For case (ii), assume (m2,m1) ∈ (R−1)⊕ and m2[t2〉m′2. By
Proposition 3(3), we have that (m2,m1) ∈ (R⊕)−1 and so (m1,m2) ∈ R⊕. Since R is a
branching place bisimulation, we have that

(i) either t2 is τ-sequential and ∃σ ,m′1 such that σ is τ-sequential, m1[σ〉m′1, and
(•σ ,•t2) ∈ R, (σ•,•t2) ∈ R, (σ•, t•2 ) ∈ R and, moreover, (m1	 •σ ,m2	 •t2) ∈ R⊕;

(ii) or there exist σ , t1,m,m′1 such that σ is τ-sequential, m1[σ〉m[t1〉m′1, l(t1) = l(t2),
σ• = •t1, (•σ ,•t2)∈ R⊕, (•t1,•t2)∈ R⊕ (t•1 , t

•
2 )∈ R⊕, and (m1	•σ ,m2	•t2)∈ R⊕.

Summing up, if (m2,m1) ∈ (R−1)⊕ and m2[t2〉m′2 (the case when m1 moves first is sym-
metric, and so omitted), then



(i) either t2 is τ-sequential and ∃σ ,m′1 such that σ is τ-sequential, m1[σ〉m′1, and
(•t2,•σ) ∈ R−1, (•t2,σ•) ∈ R−1, (t•2 ,σ

•) ∈ R−1 and (m2	 •t2,m1	 •σ) ∈ (R−1)⊕;
(ii) or there exist σ , t1,m,m′1 such that σ is τ-sequential, m1[σ〉m[t1〉m′1, l(t1) = l(t2),

σ• = •t1, (•t2,•σ) ∈ (R−1)⊕, (•t2,•t1) ∈ (R−1)⊕ (t•2 , t
•
1 ) ∈ (R−1)⊕, and, moreover,

(m2	 •t2,m1	 •σ) ∈ (R−1)⊕;

so that R−1 is a branching place bisimulation, indeed. 2

Much more challenging is to prove that the relation composition of two branching
place bisimulations is a branching place bisimulation. We need a technical lemma first.

Lemma 1. Let N = (S,A,T ) be a P/T net, and R be a place bisimulation.

1. For each τ-sequential transition sequence σ1, for all m2 such that (•σ1,m2) ∈ R⊕,
a τ-sequential transition sequence σ2 exists such that m2 =

•σ2 and (σ•1 ,σ
•
2 )∈ R⊕;

2. and symmetrically, for each τ-sequential transition sequence σ2, for all m1 such
that (m1,

•σ2)∈R⊕, a τ-sequential transition sequence σ1 exists such that m1 =
•σ1

and (σ•1 ,σ
•
2 ) ∈ R⊕.

Proof. By symmetry, we prove only case 1, by induction on the length of σ1.
Base case: σ1 = ε . In this trivial case, •σ1 = θ and so the only possible m2 is θ as

well. We just take σ2 = ε and all the required conditions are trivially satisfied.
Inductive case: σ1 = δ1t1, where t1 ∈ T ∪ I(S). Hence, by inductive hypothesis, for

each m2 such that (•δ1,m2) ∈ R⊕, we know that there exists a δ2 such that m2 = •δ2
and (δ •1 ,δ

•
2 ) ∈ R⊕.

If t1 = i(s), then we have to consider two subcases:

• if s ∈ δ •1 , then •δ1t1 = •δ1 and δ1t•1 = δ •1 . Hence, we can take σ2 = δ2 and all the
required conditions are trivially satisfied;

• if s 6∈ δ •1 , then •δ1t1 = •δ1⊕ s and δ1t•1 = δ •1 ⊕ s. Then, ∀s′ such that (s,s′) ∈ R,
we can take σ2 = δ2i(s′), so that (•δ1t1,•δ2i(s′)) ∈ R⊕, (δ1t•1 ,δ2i(s′)•) ∈ R⊕, as
required.

Also if t1 ∈ T , we have consider two subcases:

• If s1 =
•t1 ∈ δ •1 , then, since (δ •1 ,δ

•
2 )∈ R⊕, there exists s2 ∈ δ •2 such that (s1,s2)∈ R

and (δ •1 	 s1,δ
•
2 	 s2) ∈ R⊕. Then, by Definition 11, it follows that to the move

s1
τ−→ s′1:

(i) Either there exist σ ,s′2 such that σ is τ-sequential, s2[σ〉s′2, (s1,s′2) ∈ R and
(s′1,s

′
2) ∈ R.

In this case, we take σ2 = δ2σ , so that (•δ1t1,•δ2σ)∈ R⊕ (because •δ1t1 = •δ1
and •δ2σ = •δ2), and (δ1t•1 ,δ2σ•) ∈ R⊕ (because δ1t•1 = (δ •1 	 s1)⊕ s′1 and
δ2σ• = (δ •2 	 s2)⊕ s′2), as required.

(ii) Or there exist σ , t2,s,s′2 such that σt2 is τ-sequential, σ• = •t2, s2[σ〉s[t2〉s′2,
(s1,s) ∈ R and (s′1,s

′
2) ∈ R.

In this case, we take σ2 = δ2σt2, so that (•δ1t1,•δ2σt2) ∈ R⊕, and, moreover,
(δ1t•1 ,δ2σt•2 ) ∈ R⊕, as required.

• If s1 =
•t1 6∈ δ •1 , then, for each s2 such that (s1,s2) ∈ R, we follow the same step as

above (by Definition 11), and so we omit this part of the proof.



Proposition 6. For each P/T net N = (S,A,T ), the relational composition R1 ◦R2 of
two branching place bisimulations R1 and R2 is a branching place bisimulation.

Proof. Assume (m1,m3) ∈ (R1 ◦R2)
⊕ and m1[t1〉m′1. By Proposition 3(4), we have that

(m1,m3)∈ (R1)
⊕ ◦(R2)

⊕, and so m2 exists such that (m1,m2)∈ R⊕1 and (m2,m3)∈ R⊕2 .
As (m1,m2) ∈ R⊕1 and R1 is a branching place bisimulation, if m1[t1〉m′1, then

(i) either t1 is τ-sequential and ∃σ ,m′2 such that σ is τ-sequential, m2[σ〉m′2, and
(•t1,•σ) ∈ R1, (•t1,σ•) ∈ R1, (t•1 ,σ

•) ∈ R1 and (m1	 •t1,m2	 •σ) ∈ R⊕1 ;
(ii) or there exist σ , t2,m,m′2 such that σ is τ-sequential, m2[σ〉m[t2〉m′2, l(t1) = l(t2),

σ• = •t2, (•t1,•σ)∈ R⊕1 , (•t1,•t2)∈ R⊕1 (t•1 , t
•
2 )∈ R⊕1 , and moreover, (m1	•t1,m2	

•σ) ∈ R⊕1 .

Let us consider case (i), i.e., assume that to the move m1[t1〉m′1, m2 replies with
m2[σ〉m′2 such that (•t1,•σ) ∈ R1, (•t1,σ•) ∈ R1, (t•1 ,σ

•) ∈ R1 and, moreover, (m1	
•t1,m2	 •σ) ∈ R⊕1 . Since (m2,m3) ∈ R⊕2 , there exists a submarking m ⊆ m3 such that
(•σ ,m) ∈ R⊕2 and (m2	 •σ ,m3	m) ∈ R⊕2 . By Lemma 1, there exists a τ-sequential
transition sequence σ ′ such that m = •σ ′ and (σ•,σ ′•) ∈ R⊕2 . Hence, m3[σ

′〉m′3, where
m′3 = (m3	 •σ ′)⊕σ ′•.

Summing up, to the move m1[t1〉m′1, m3 can reply with m3[σ
′〉m′3, in such a way

that (•t1,•σ ′) ∈ R1 ◦R2, (•t1,σ ′•) ∈ R1 ◦R2, (t•1 ,σ
′•) ∈ R1 ◦R2 and, moreover, (m1	

•t1,m3	 •σ ′) ∈ (R1 ◦R2)
⊕, (by Proposition 3(4)), as required.

Let us consider case (ii), i.e., assume that to the move m1[t1〉m′1, m2 replies with
m2[σ〉m[t2〉m′2, where σ is τ-sequential, l(t1) = l(t2), σ• = •t2, and (•t1,•σ) ∈ R⊕1 ,
(•t1,•t2) ∈ R⊕1 , (t•1 , t

•
2 ) ∈ R⊕1 , and moreover, (m1	 •t1,m2	 •σ) ∈ R⊕1 .

Since (m2,m3) ∈ R⊕2 , there exists a submarking m⊆m3 such that (•σ ,m) ∈ R⊕2 and
(m2	•σ ,m3	m)∈R⊕2 . By Lemma 1, there exists a τ-sequential transition sequence σ ′

such that m = •σ ′ and (σ•,σ ′•) ∈ R⊕2 . Hence, m3[σ
′〉m′, where m′ = (m3	 •σ ′)⊕σ ′•

and, moreover, (m,m′) ∈ R⊕2 .
Since (m,m′) ∈ R⊕2 , σ• = •t2 and (σ•,σ ′•) ∈ R⊕2 , there exists m = σ ′• ⊆ m′ such

that (•t2,m) ∈ R⊕2 and (m	 •t2,m′	m) ∈ R⊕2 . Hence, by Definition 11, to the move
•t2[t2〉t•2 , m can reply as follows:

(a) Either t2 is τ-sequential and ∃σ such that σ is τ-sequential, m = •σ , m[σ〉σ•, and
(•t2,•σ) ∈ R2, (•t2,σ•) ∈ R2, (t•2 ,σ

•) ∈ R2 and (m	 •t2,m′	 •σ) ∈ R⊕2 .
In this case, to the move m1[t1〉m′1, m3 can reply with m3[σ

′〉m′[σ〉m′3, with m′3 =
(m′	 •σ)⊕σ

•, such that (•t1,•σ ′σ) ∈ (R1 ◦R2)
⊕ (because (•t1,•σ) ∈ R⊕1 , σ ′• =

•σ and (•σ ,•σ ′)∈ R⊕2 ), (•t1,σ ′σ•)∈ (R1 ◦R2)
⊕ (because (•t1,•t2)∈ R1, σ ′• = •σ

and (•t2,σ•) ∈ R2), (t•1 ,σ
′σ ′•) ∈ (R1 ◦R2)

⊕ (as (t•1 , t
•
2 ) ∈ R1 and (t•2 ,σ

•) ∈ R2),
and, moreover, (m1	 •t1,m3	 •σ ′σ) ∈ (R1 ◦R2)

⊕.
(b) or ∃σ , t3,m such that σ is τ-sequential, m = •σ , m[σ〉m[t3〉t•3 , l(t2) = l(t3), m =

σ
• = •t3, (•t2,•σ) ∈ R⊕2 , (•t2,•t3) ∈ R⊕2 (t•2 , t

•
3 ) ∈ R⊕2 , and (m	 •t2,m′	 •σ) ∈ R⊕2 .

In this case, to the move m2[σ〉m[t2〉m′2, m3 replies with m3[σ
′〉m′[σ〉m′′[t3〉m′3,

with m′3 = (m′ 	 •σ)⊕ t•3 , such that σ is τ-sequential, •σ = σ ′•, and therefore
(•σt2,•σ ′σt3) ∈ R⊕2 (because •σt2 = •σ , •σ ′σt3 = •σ ′ and (•σ ,•σ ′) ∈ R⊕2 ), and
(σt•2 , σ ′σt•3 ) ∈ R⊕2 (because σt•2 = t•2 , σ ′σt•3 = t•3 and (t•2 , t

•
3 ) ∈ R⊕2 ).

Summing up, to the move m1[t1〉m′1, m3 can reply with m3[σ
′〉m′[σ〉m′′[t3〉m′3, such

that (•t1,•σ ′σ) ∈ (R1 ◦R2)
⊕ (as (•t1,•σ) ∈ R⊕1 , •σ ′σ = •σ ′ and (•σ ,•σ ′) ∈ R⊕2 ),
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(•t1,•t3) ∈ (R1 ◦R2)
⊕ (as (•t1,•t2) ∈ R⊕1 , and (•t2,•t3) ∈ R⊕2 ), (t•1 , t

•
3 ) ∈ (R1 ◦R2)

⊕

(because (t•1 , t
•
2 ) ∈ R⊕1 , and (t•2 , t

•
3 ) ∈ R⊕2 ), and (m1	 •t1,m3	 •σ ′σ) ∈ (R1 ◦R2)

⊕

(because (m1	 •t1,m2	 •σ) ∈ R⊕1 and (m2	 •σ ,m3	 •σ ′) ∈ R⊕2 ).

The case when m2 moves first is symmetric, and so omitted. Hence, R1 ◦R2 is a branch-
ing place bisimulation, indeed. 2

Theorem 1. For each P/T net N = (S,A,T ), relation≈p ⊆M (S)×M (S) is an equiv-
alence relation.

Proof. Direct consequence of Propositions 5 and 6. 2

Proposition 7. (Branching place bisimilarity is finer than branching interleaving
bisimilarity) For each P/T net N = (S,A,T ), m1 ≈p m2 implies m1 ≈bri m2.

Proof. If m1 ≈p m2, then (m1,m2)∈ R⊕ for some branching place bisimulation R. Note
that R⊕ is a branching interleaving bisimilarity, so that m1 ≈bri m2. 2

Example 3. Consider the nets in Figure 2. Of course, s1 ≈p s2, as well as s1 ≈p s4.
However, s2 6≈p s5, because s2 cannot respond to the non-τ-sequential move s5

τ−→θ .
For the same reason, s2 6≈p s6. Note that silent transitions that are not τ-sequential are
not considered as unobservable. 2

By Definition 11, branching place bisimilarity can be defined as follows:
≈p=

⋃
{R⊕

∣∣ R is a branching place bisimulation}.
By monotonicity of the additive closure (Proposition 2(2)), if R1 ⊆ R2, then R⊕1 ⊆ R⊕2 .
Hence, we can restrict our attention to maximal branching place bisimulations only:
∼p=

⋃
{R⊕

∣∣ R is a maximal branching place bisimulation}.
However, it is not true that
∼p=(

⋃
{R
∣∣ R is a maximal place bisimulation})⊕, because the union of branching

place bisimulations may be not a branching place bisimulation.

Example 4. Consider the nets in Figure 3. It is easy to realize that s1⊕ s2 ≈p s3⊕ s5,
because R1 = {(s1,s3),(s2,s5),(s1,s4)} is a branching place bisimulation. In fact, to
the move t1 = s1⊕ s2

a−→ s1⊕ s2, s3⊕ s5 replies with s3⊕ s5[σ〉s4⊕ s5[t2〉s3⊕ s5, where
σ = t i(s5) (with t = (s3,τ,s4) and i(s5) = (s5,τ,s5)) and t2 = (s4⊕ s5,a,s3⊕ s5), such
that (•t1,•t2)∈R⊕1 and (t•1 , t

•
2 )∈R⊕1 . Then, to the move s3⊕s5[t〉s4⊕s5, s1⊕s2 can reply
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by idling with s1⊕ s2[σ
′〉s1⊕ s2, where σ ′ = i(s1), and (•σ ′,•t) ∈ R⊕1 , (σ ′•,•t) ∈ R⊕1

and (σ ′•, t•) ∈ R⊕1 .
Note that also the identity relation IS, where S = {s1,s2,s3,s4,s5} is a branch-

ing place bisimulation. However, R = R1 ∪IS is not a branching place bisimulation,
because, for instance, (s1⊕ s2,s3⊕ s2) ∈ R⊕, but these two markings are clearly not
equivalent, as s1⊕ s2 can do a, while s3⊕ s2 cannot.

Similarly, one can prove that s1 ⊕ s2 ≈p s6 ⊕ s8 because R2 = {(s1,s6),(s2,s8),
(s1,s7),(s2,s9)} is a branching place bisimulation. 2

5 Branching Place Bisimilarity is Decidable

In order to prove that≈p is decidable, we first need a technical lemma which states that
it is decidable to check if a place relation R⊆ S×S is a branching place bisimulation.

Lemma 2. Given a P/T net N = (S,A,T ) and a place relation R⊆ S×S, it is decidable
if R is a branching place bisimulation.

Proof. We want to prove that R is a branching place bisimulation if and only if the
following two conditions are satisfied:

1. ∀t1 ∈ T , ∀m such that (•t1,m) ∈ R⊕

(a) either t1 is τ-sequential and there exists an acyclic τ-sequential σ such that
m = •σ , (•t1,σ•) ∈ R and (t•1 ,σ

•) ∈ R;
(b) or there exist an acyclic τ-sequential σ and t2 ∈ T , with σ• = •t2, such that

m = •σ , l(t1) = l(t2), (•t1,•t2) ∈ R⊕ and (t•1 , t
•
2 ) ∈ R⊕.

2. ∀t2 ∈ T , ∀m such that (m,•t2) ∈ R⊕

(a) either t2 is τ-sequential and there exists an acyclic τ-sequential σ such that
m = •σ , (σ•,•t2) ∈ R and (σ•, t•2 ) ∈ R;

(b) or there exist an acyclic τ-sequential σ and t1 ∈ T , with σ• = •t1, such that
m = •σ , l(t1) = l(t2), (•t1,•t2) ∈ R⊕ and (t•1 , t

•
2 ) ∈ R⊕.

The implication from left to right is obvious: if R is a branching place bisimulation,
then for sure conditions 1 and 2 are satisfied, because, as observed in Remark 1, if there
exists a suitable τ-sequential transition sequence σ , then there exists also a suitable



acyclic τ-sequential σ ′ such that •σ = •σ ′ and σ• = σ ′•. For the converse implication,
assume that conditions 1 and 2 are satisfied; then we have to prove that the branching
place bisimulation game for R holds for all pairs (m1,m2) ∈ R⊕.

Let q = {(s1,s′1),(s2,s′2), . . . , (sk,s′k)} be any multiset of associations that can be
used to prove that (m1,m2) ∈ R⊕. So this means that m1 = s1 ⊕ s2 ⊕ . . .⊕ sk, m2 =
s′1⊕s′2⊕ . . .⊕s′k and that (si,s′i)∈R for i= 1, . . . ,k. If m1[t1〉m′1, then m′1 =m1	•t1⊕t•1 .
Consider the multiset of associations p = {(s1,s′1), . . . ,(sh,s′h)} ⊆ q, with s1⊕ . . .⊕ sh
= •t1. Note that (•t1,s′1⊕ . . .⊕ s′h) ∈ R⊕. Therefore, by condition 1,

(a) either t1 is τ-sequential and there exists an acyclic τ-sequential σ such that m= •σ ,
(•t1,σ•) ∈ R and (t•1 ,σ

•) ∈ R;
(b) or there exist an acyclic τ-sequential σ and t2 ∈ T , with σ•= •t2, such that m= •σ ,

l(t1) = l(t2), (•t1,•t2) ∈ R⊕ and (t•1 , t
•
2 ) ∈ R⊕.

In case (a), since •σ ⊆ m2, also m2[σ〉m′2 is firable, where m′2 = m2	 •σ ⊕σ•, so that
(•t1,σ•) ∈ R, (t•1 ,σ

•) ∈ R and, finally, (m1	 •t1,m2	 •σ) ∈ R⊕, as required. Note that
the last condition holds because, from the multiset q of matching pairs for m1 and m2,
we have removed those in p. In case (b), since •σ ⊆ m2, also m2[σ〉m[t2〉m′2 is firable,
where m′2 = m2	 •σ⊕ t•2 , so that l(t1) = l(t2), (•t1,•t2) ∈ R⊕, (t•1 , t

•
2 ) ∈ R⊕ and, finally,

(m1	 •t1,m2	 •σ) ∈ R⊕, as required.
If m2[t2〉m′2, then we have to use an argument symmetric to the above, where con-

dition 2 is used instead. Hence, we have proved that conditions 1 and 2 are enough to
prove that R is a branching place bisimulation.

Finally, observe that the set T is finite and, for each t1 ∈ T , the number of markings
m such that (•t1,m) ∈ R⊕ and (m,•t1) ∈ R⊕ is finite as well. More precisely, this part
of the procedure takes O(q · (n+p−1)!

(n−1)!·p! · (p2√p)) time where q = |T |, n = |S| and p is the
least number such that |•t| ≤ p for all t ∈ T , because the distribution of p tokens over
n places is given by the binomial coefficient

(n+p−1
p

)
= (n+p−1)!

(n−1)!·p! and checking if such a

marking of size p is related to •t1 takes O(p2√p) time.
Moreover, for each pair (t1,m) satisfying the condition (•t1,m) ∈ R⊕, we have to

check conditions (a) and (b), each checkable in a finite amount of time. In fact, for
case (a), we have to check if there exists a place s such that (•t1,s) ∈ R and (t•1 ,s) ∈ R,
which is reachable from m by means of an acyclic τ-1-sequential transition sequence σ ;
this condition is decidable because we have at most n places to examine and for each
candidate place s, we can check whether a suitable acyclic τ-1-sequential σ exists.
Similarly, in case (b) we have to consider all the transitions t2 such that (•t1,•t2) ∈ R⊕

and (t•1 , t
•
2 ) ∈ R⊕ and check if at least one of these is reachable from m by means of

an acyclic τ-sequential transition sequence σ such that •σ = m and σ• = •t2 and the
existence of such a σ is decidable. Therefore, in a finite amount of time we can decide
if a given place relation R is actually a branching place bisimulation. 2

Theorem 2. (Branching place bisimilarity is decidable) Given a P/T net N =(S,A,T ),
for each pair of markings m1 and m2, it is decidable whether m1 ≈p m2.

Proof. If |m1| 6= |m2|, then m1 6≈p m2 by Proposition 1. Otherwise, let |m1|= k = |m2|.
As |S|= n, the set of all the place relations over S is of size 2n. Let us list such relations
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Fig. 4. Two non-place bisimilar nets

as: R1,R2, . . . ,R2n . Hence, for i = 1, . . . ,2n, by Lemma 2 we can decide whether Ri is a
branching place bisimulation and, in such a case, we can check whether (m1,m2) ∈ R⊕i
in O(k2

√
k) time. As soon as we found a branching place bisimulation Ri such that

(m1,m2) ∈ R⊕i , we stop concluding that m1 ≈p m2. If none of the Ri is a branching
place bisimulation such that (m1,m2) ∈ R⊕i , then we can conclude that m1 6≈p m2. 2

6 Conclusion and Future Research

Place bisimilarity [1] is the only decidable [13] behavioral equivalence for P/T nets
which respects the expected causal behavior, as it is slightly finer than structure preserv-
ing bisimilarity [7], in turn slightly finer than fully-concurrent bisimilarity [3]. Thus, it
is the only equivalence for which it is possible (at least, in principle) to verify algo-
rithmically the (causality-preserving) correctness of an implementation by exhibiting a
place bisimulation between its specification and implementation.

It is sometimes argued that place bisimilarity is too discriminating. In particular, [1]
and [7] argue that a sensible equivalence should not distinguish markings whose behav-
iors are patently the same, such as marked Petri nets that differ only in their unreachable
parts. As an example, consider the net in Figure 4, discussed in [1]. Clearly, markings
s1 and s4 are equivalent, also according to all the behavioral equivalences discussed in
[7], except for place bisimilarity. As a matter of fact, a place bisimulation R containing
the pair (s1,s4) would require also the pairs (s2,s5) and (s3,s6), but then this place re-
lation R cannot be a place bisimulation because (s2,⊕s3,s5⊕ s6) ∈ R⊕, but s2⊕ s3 can
perform c, while this is not possible for s5⊕ s6. Nonetheless, we would like to argue in
favor of place bisimilarity, despite this apparent paradoxical example.

As a matter of fact, our interpretation of place bisimilarity is that this equivalence
is an attempt of giving semantics to unmarked nets, rather than to marked nets, so
that the focus shifts from the common (but usually undecidable) question When are
two markings equivalent? to the more restrictive (but decidable) question When are
two places equivalent? A possible (preliminary, but not accurate enough) answer to
the latter question may be: two places are equivalent if, whenever the same number of
tokens are put on these two places, the behavior of the marked nets is the same. If we
reinterpret the example of Figure 4 in this perspective, we clearly see that place s1 and
place s4 cannot be considered as equivalent because, even if the markings s1 and s4 are



equivalent, nonetheless the marking 2 · s1 is not equivalent to the marking 2 · s4, as only
the former can perform the trace abc.

A place bisimulation R considers two places s1 and s2 as equivalent if (s1,s2) ∈ R,
as, by definition of place bisimulation, they must behave the same in any R-related
context. Back to our example in Figure 4, if (s1,s4) would belong to R, then also (2 ·
s1,2 · s4) should belong to R⊕, but then we discover that the place bisimulation game
does not hold for this pair of markings, so that R cannot be a place bisimulation.

Moreover, if we consider the duality between the process algebra FNM (a dialect
of CCS, extended with multi-party interaction) and P/T nets, proposed in [9], we may
find further arguments supporting this more restrictive interpretation of net behavior.
In fact, an unmarked P/T net N can be described by an FNM system of equations,
where each equation defines a constant Ci (whose body is a sequential process term ti),
representing place si. Going back to the nets in Figure 4, according to this duality, the
constant C1 for place s1 is not equivalent (in any reasonable sense) to the constant C4
for place s4 because these two constants describe all the potential behaviors of these
two places, which are clearly different! Then, the marked net N(m0) is described by a
parallel term composed of as many instances of Ci as the tokens that are present in si
for m0, encapsulated by a suitably defined restriction operator (νL)−. Continuing the
example, it turns out that (νL)C1 is equivalent to (νL)C4 because the markings s1 and s4
are equivalent, but (νL)(C1 |C1) is not equivalent to (νL)(C4 |C4) because the markings
2 · s1 is not equivalent to the marking 2 · s4, as discussed above.

Furthermore, on the subclass of BPP nets (i.e., nets whose transitions have single-
ton pre-set), place bisimilarity specializes to team bisimilarity [10], which is unques-
tionably the most appropriate behavioral equivalence for BPP nets, as it coincides with
structure-preserving bisimilarity [7], hence matching all the relevant criteria expressed
in [7] for a sensible behavioral equivalence.

Finally, there are at least the following three important technical differences be-
tween place bisimilarity and other coarser, causality-respecting equivalences, such as
fully-concurrent bisimilarity [3].

1. A fully-concurrent bisimulation is a complex relation – composed of cumbersome
triples of the form (process, bijection, process) – that must contain infinitely many
triples if the net system offers never-ending behavior. (Indeed, not even one single
case study of a system with never-ending behavior has been developed for this
equivalence.) On the contrary, a place bisimulation is always a very simple finite
relation over the finite set of places. (And a simple case study is described in [13].)

2. A fully-concurrent bisimulation proving that m1 and m2 are equivalent is a relation
specifically designed for the initial markings m1 and m2. If we want to prove that,
e.g., n ·m1 and n ·m2 are fully-concurrent bisimilar (which may not hold!), we
have to construct a new fully-concurrent bisimulation to this aim. Instead, a place
bisimulation R relates those places which are considered equivalent under all the
possible R-related contexts. Hence, if R justifies that m1 ∼p m2 as (m1,m2) ∈ R⊕,
then for sure the same R justifies that n ·m1 and n ·m2 are place bisimilar, as also
(n ·m1,n ·m2) ∈ R⊕.

3. Finally, while place bisimilarity is decidable [13], fully-concurrent bisimilarity is
undecidable on finite P/T nets [5].
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Fig. 5. Two branching fully-concurrent P/T nets

The newly defined branching place bisimilarity is the only extension of the place
bisimilarity idea to P/T nets with silent moves that has been proved decidable, even if
the time complexity of the decision procedure we have proposed is exponential in the
size of the net.

Of course, this behavioral relation may be subject to the same criticisms raised to
place bisimilarity and also its restrictive assumption that only τ-sequential transitions
can be abstracted away can be criticized, as its applicability to real case studies may
appear rather limited. In the following, we try to defend our point of view.

First, on the subclass of BPP nets, branching place bisimilarity coincides with
branching team bisimilarity [12], a very satisfactory equivalence which is actually coin-
ductive and, for this reason, also very efficiently decidable in polynomial time. More-
over, on the subclass of finite-state machines (i.e., nets whose transitions have singleton
pre-set and singleton, or empty, post-set), branching team bisimilarity has been axiom-
atized [11] on the process algebra CFM [9], which can represent all (and only) the
finite-state machines, up to net isomorphism.

Second, we conjecture that branching place bisimilarity does respect the causal be-
havior of P/T nets. In particular, we conjecture that branching fully-concurrent bisimi-
larity [22, 12] (which is undecidable) is strictly coarser than ≈p, because it may equate
nets whose silent transitions are not τ-sequential (and also may relate markings of dif-
ferent size). For instance, consider the net in Figure 5. Of course, the markings s1⊕ s3
and s5 ⊕ s6 are branching fully-concurrent bisimilar: to the move s1 ⊕ s3[t1〉s2 ⊕ s3,
where t1 = (s1,τ,s2), s5⊕s6 can reply with s5⊕s6[t2〉s7⊕s8, where t2 = (s5⊕s6,τ,s7⊕
s8) and the reached markings are clearly equivalent. However, s1⊕s3 6≈p s5⊕s6 because
s1⊕ s3 cannot reply to the move s5⊕ s6[t2〉s7⊕ s8, as t2 is not τ-sequential (i.e., it can
be seen as the result of a synchronization), while t1 is τ-sequential.

We already argued in the introduction that it is very much questionable whether a
synchronization can be considered as unobservable, even if this idea is rooted in the
theory of concurrency from the very beginning. As a matter of fact, in CCS [17] and
in the π-calculus [18, 24], the result of a synchronization is a silent, τ-labeled (hence



unobservable) transition. However, the silent label τ is used in these process algebras
for two different purposes:

• First, to ensure that a synchronization is strictly binary: since the label τ cannot be
used for synchronization, by labeling a synchronization transition by τ any further
synchronization of the two partners with other parallel components is prevented
(i.e., multi-party synchronization is disabled).

• Second, to describe that the visible effect of the transition is null: a τ-labeled tran-
sition can be considered unobservable and can be abstracted away, to some extent.

Nonetheless, it is possible to modify slightly these process algebras by introducing
two different actions for these different purposes. In fact, the result of a binary synchro-
nization can be some observable label, say λ (or even λ (a), if the name of the channel
a is considered as visible), for which no co-label exists, so that further synchronization
is impossible. While the action τ , that can be used as a prefix, is used to denote some
local, internal (hence unobservable) computation. In this way, a net semantics for these
process algebras (in the style of, e.g., [9]) would generate τ-sequential P/T nets, that are
amenable to be compared by means of branching place bisimilarity.

As a final comment, we want to discuss an apparently insurmountable limitation
of our approach. In fact, the extension of the place bisimulation idea to nets with silent
transitions that are not τ-sequential seems very hard, or even impossible. Consider again
the two P/T nets in Figure 5. If we want that s1⊕ s3 be related to s5⊕ s6, we need to
include the pairs (s1,s5) and (s3,s6). If the marking s5⊕s6 silently reaches s7⊕s8, then
s1⊕ s3 can respond by idling (and in such a case we have to include the pairs (s1,s7)

and (s3,s8)) or by performing the transition s1
τ−→ s2 (and in such a case we have to

include the pairs (s2,s7) and (s3,s8)). In any case, the candidate place relation R should
be of the form {(s1,s5),(s3,s6),(s3,s8), . . .}. However, this place relation cannot be a
place bisimulation of any sort because, on the one hand, (s1⊕ s3,s5⊕ s8) ∈ R⊕ but, on
the other hand, s1⊕ s3 can eventually perform a, while s5⊕ s8 is stuck.

Nonetheless, this negative observation is coherent with our intuitive interpretation
of (branching) place bisimilarity as a way to give semantics to unmarked nets. In the
light of the duality between P/T nets and the FNM process algebra discussed above
[9], a place is interpreted as a sequential process type (and each token in this place as
an instance of a sequential process of that type, subject to some restriction); hence, a
(branching) place bisimulation essentially states which kinds of sequential processes
(composing the distributed system represented by the Petri net) are to be considered
equivalent. In our example above, it makes no sense to consider place s1 and place s5
as equivalent, because the corresponding FNM constants C1 and C5 have completely
different behavior: C5 can interact (with C6), while C1 can only perform some internal,
local transition.

Future work will be devoted to find more efficient algorithms for checking branch-
ing place bisimilarity. One idea could be to build directly the set of maximal branching
place bisimulations, rather than to scan all the place relations to check whether they are
branching place bisimulations, as we did in the proof of Theorem 2.

Acknowledgements: The anonymous referees are thanked for their useful comments
and suggestions.
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