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Abstract. We describe a model for polarization in multi-agent systems based
on Esteban and Ray’s standard measure of polarization from economics. Agents
evolve by updating their beliefs (opinions) based on an underlying influence
graph, as in the standard DeGroot model for social learning, but under a con-
firmation bias; i.e., a discounting of opinions of agents with dissimilar views.
We show that even under this bias polarization eventually vanishes (converges
to zero) if the influence graph is strongly-connected. If the influence graph is a
regular symmetric circulation, we determine the unique belief value to which all
agents converge. Our more insightful result establishes that, under some natural
assumptions, if polarization does not eventually vanish then either there is a dis-
connected subgroup of agents, or some agent influences others more than she is
influenced. We also show that polarization does not necessarily vanish in weakly-
connected graphs under confirmation bias. We illustrate our model with a series
of case studies and simulations, and show how it relates to the classic DeGroot
model for social learning.

Keywords: Polarization - Confirmation bias - Multi-Agent Systems - Social Net-
works

1 Introduction

Distributed systems have changed substantially in the recent past with the advent of
social networks. In the previous incarnation of distributed computing [22] the empha-
sis was on consistency, fault tolerance, resource management and related topics; these
were all characterized by interaction between processes. What marks the new era of
distributed systems is an emphasis on the flow of epistemic information (facts, beliefs,
lies) and its impact on democracy and on society at large.

Indeed in social networks a group may shape their beliefs by attributing more value
to the opinions of outside influential figures. This cognitive bias is known as authority

* Miério S. Alvim and Bernardo Amorim were partially supported by CNPq, CAPES and
FAPEMIG. Santiago Quintero and Frank Valencia were partially supported by the ECOS-
NORD project FACTS (C19MO03).
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bias [32]. Furthermore, in a group with uniform views, users may become extreme by
reinforcing one another’s opinions, giving more value to opinions that confirm their
own preexisting beliefs. This is another common cognitive bias known as confirmation
bias [4]. As a result, social networks can cause their users to become radical and isolated
in their own ideological circle causing dangerous splits in society [5] in a phenomenon
known as polarization [4].

There is a growing interest in the development of models for the analysis of polar-
ization and social influence in networks [0, 8, 9, 12, 14, 15, 19, 20, 28, 31, 34, 35, 37].
Since polarization involves non-terminating systems with multiple agents simultane-
ously exchanging information (opinions), concurrency models are a natural choice to
capture the dynamics of polarization.

The Model. In fact, we developed a multi-agent model for polarization in [3], in-
spired by linear-time models of concurrency where the state of the system evolves in
discrete time units (in particular [27, 33]). In each time unit, the agents update their be-
liefs about the proposition of interest taking into account the beliefs of their neighbors
in an underlying weighted influence graph. The belief update gives more value to the
opinion of agents with higher influence (authority bias) and to the opinion of agents
with similar views (confirmation bias). Furthermore, the model is equipped with a po-
larization measure based on the seminal work in economics by Esteban and Ray [13].
The polarization is measured at each time unit and it is 0 if all agents’ beliefs fall within
an interval of agreement about the proposition. The contributions in [3] were of an ex-
perimental nature and aimed at exploring how the combination of influence graphs and
cognitive biases in our model can lead to polarization.

In the current paper we prove claims made from experimental observations in [3]
using techniques from calculus, graph theory, and flow networks. The main goal of this
paper is identifying how networks and beliefs are structured, for agents subject to con-
firmation bias, when polarization does not disappear. Our results provide insight into the
phenomenon of polarization, and are a step toward the design of robust computational
models and simulation software for human cognitive and social processes.

The closest related work is that on DeGroot models [9]. These are the standard
linear models for social learning whose analysis can be carried out by linear techniques
from Markov chains. A novelty in our model is that its update function extends the
classical update from DeGroot models with confirmation bias. As we shall elaborate
in Section 5 the extension makes the model no longer linear and thus mathematical
tools like Markov chains do not seem applicable. Our model incorporates a polarization
measure in a model for social learning and extends classical convergence results of
DeGroot models to the confirmation bias case.

Main Contributions. The following are the main theoretical results established in
this paper. Assuming confirmation bias and some natural conditions about belief values:
(1) If polarization does not disappear then either there is disconnected subgroup of
agents, or some agent influences others more than she is influenced, or all the agents
are initially radicalized (i.e., each individual holds the most extreme value either in favor
or against of a given proposition). (2) Polarization eventually disappears (converges to
zero) if the influence graph is strongly-connected. (3) If the influence graph is a regular
symmetric circulation we determine the unique belief value all agents converge to.
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Organization. In Section 2 we introduce the model and illustrate a series of exam-
ples and simulations, uncovering interesting new insights and complex characteristics
of the believe evolution. The theoretical contributions (1-3) above are given in Sections
3 and 4. We discuss DeGroot and other related work in Sections 5 and 6. Full proofs
can be found in the corresponding technical report [2]. An implementation of the model
in Python and the simulations are available on Github [1].

2 The Model

Here we refine the polarization model introduced in [3], composed of static and dy-
namic elements. We presuppose basic knowledge of calculus and graph theory [11, 38].

Static Elements of the Model Static elements of the model represent a snapshot of a
social network at a given point in time. They include the following components:

A (finite) set A = {0,1,...,n—1} of n > 1 agents.

— A proposition p of interest, about which agents can hold beliefs.

A belief configuration B: A—|0,1] s.t. each value B; is the instantaneous confi-
dence of agent i€.A in the veracity of proposition p. Extreme values 0 and 1 repre-
sent a firm belief in, respectively, the falsehood or truth of p.

A polarization measure p:[0,1]*—R mapping belief configurations to real num-
bers. The value p(B) indicates how polarized belief configuration B is.

There are several polarization measures described in the literature. In this work we
adopt the influential measure proposed by Esteban and Ray [13].

Definition 1 (Esteban-Ray Polarization). Consider a set Y={yo,y1,...,Yx—1} of
size k, s.t. each y;€R. Let (7,y)=(m0, M1, -, Tk—1,Y0,Y1,- - -, Yk—1) be a distribu-
tion on Y s.t. w; is the frequency of value y;€Y in the distribution. © The Esteban-Ray
(ER) polarization measure is defined as pgr(m,y) = K Zi:ol Z?;& Tty — ysl,
where K >0 is a constant, and typically a~1.6.

The higher the value of pggr(7,y), the more polarized distribution (7, y) is. The
measure captures the intuition that polarization is accentuated by both intra-group ho-
mogeneity and inter-group heterogeneity. Moreover, it assumes that the total polariza-
tion is the sum of the effects of individual agents on one another. The measure can be
derived from a set of intuitively reasonable axioms [13].

Note that pgp is defined on a discrete distribution, whereas in our model a general
polarization metric is defined on a belief configuration B:. A—[0, 1]. To apply pggr to
our setup we convert the belief configuration B into an appropriate distribution (7, y).

Definition 2 (k-bin polarization). Let Dy, be a discretization of the interval [0, 1] into
k>0 consecutive non-overlapping, non-empty intervals (bins) Iy, I, ..., Ir_1. We use
the term borderline points of Dy, to refer to the end-points of Iy, I, ..., I;_; different
from 0 and 1. We assume an underlying discretization Dy, throughout the paper.

® W.1o.g. we can assume the values of 7; are all non-zero and add up to 1.



4 Alvim et al.

Given Dy, and a belief configuration B, define the distribution (7, y) as follows. Let
YV={y0,91,.-.,Yx—1} where each y; is the mid-point of I;, and let ; be the fraction of
agents having their belief in I;. The polarization measure p of B is p(B) = pgr(7,y).

Notice that when there is consensus about the proposition p of interest, i.e., when
all agents in belief configuration B hold the same belief value, we have p(B)=0. This
happens exactly when all agents’ beliefs fall within the same bin of the underlying dis-
cretization Dy,. The following property is an easy consequence from Def. 1 and Def. 2.

Proposition 1 (Zero Polarization). Let D=1y, I, ..., I;_1 be the discretization of
[0, 1] in Def. 2. Then p(B)=0 iff there exists me{0, ..., k—1} s.t. forall i€ A, B;€1,,.

Dynamic Elements of the Model Dynamic elements formalize the evolution of agents’
beliefs as they interact over time and are exposed to different opinions. They include:

— A time frame T={0,1,2, ...} representing the discrete passage of time.

— A family of belief configurations { Bt: A—[0, 1]};c7 s.t. each B is the belief con-
figuration of agents in A w.r.t. proposition p at time step t€7 .

— A weighted directed graph 1T: Ax A—|0, 1]. The value Z(%, j), written Z; ;, repre-
sents the direct influence that agent ¢ has on agent j, or the weight i carries with j.
A higher value means stronger weight. Conversely, Z; ; can also be viewed as the
trust or confidence that j has on ¢. We assume that Z; ;=1, meaning that agents are
self-confident. We shall often refer to Z simply as the influence (graph) Z.
We distinguish, however, the direct influence Z; ; that ¢ has on j from the overall
effect of ¢ in j’s belief. This effect is a combination of various factors, including
direct influence, their current opinions, the topology of the influence graph, and
how agents reason. This overall effect is captured by the update function below.

— An update function p:(B',I)— B! mapping belief configuration B! at time t
and influence graph Z to new belief configuration B**! at time ¢+1. This function
models the evolution of agents’ beliefs over time. We adopt the following premises.

(i) Agents present some Bayesian reasoning: Agents’ beliefs are updated in every
time step by combining their current belief with a correction term that incorpo-
rates the new evidence they are exposed to in that step —i.e., other agents’ opinions.
More precisely, when agent j interacts with agent ¢, the former affects the latter
moving ¢’s belief towards j’s, proportionally to the difference B; — B! in their be-
liefs. The intensity of the move is proportional to the influence Z; ; that j carries
with ¢. The update function produces an overall correction term for each agent as
the average of all other agents’ effects on that agent, and then incorporates this
term into the agent’s current belief. 7 The factor Z; ; allows the model to capture
authority bias [32], by which agents’ influences on each other may have different
intensities (by, e.g., giving higher weight to an authority’s opinion).

7 Note that this assumption implies that an agent has an influence on himself, and hence cannot
be used as a “puppet” who immediately assumes another’s agent’s belief.
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(ii) Agents may be prone to confirmation bias: Agents may give more weight to
evidence supporting their current beliefs while discounting evidence contradicting
them, independently from its source. This behavior in known in the psychology
literature as confirmation bias [4], and is captured in our model as follows. When
agent j interacts with agent ¢, the update function moves agent ¢’s belief toward
that of agent j, proportionally to the influence Z; ; of j on ¢, but with a caveat: the
move is stronger when 5’s belief is similar to ¢’s than when it is dissimilar.

The premises above are formally captured in the following update-function.

Definition 3 (Confirmation-bias). Let B® be a belief configuration at time t€T, and T
be an influence graph. The confirmation-bias update-function is the map u8:(Bt,I)
B with B given by BI*' = Bf41/|.4,| Yjea, Bi;Lji (Bj—Bj). for every agent
i€ A, where A; = {je A | T;;>0} is the set of neighbors of i and 3} ;=1—|B:—B}| is
the confirmation-bias factor of ¢ w.r.t. j given their beliefs at time t.

The expression 1/|4;1 D¢ 4. B, 1 (B: — By) in Def. 3 is a correction term in-
corporated into agent ¢’s original belief B! at time ¢. The correction is the average of
the effect of each neighbor j€.A; on agent i’s belief at that time step. The value Bf“
is the resulting updated belief of agent ¢ at time ¢+1.

The confirmation-bias factor 3 ; lies in the interval [0, 1], and the lower its value,
the more agent ¢ discounts the opinion provided by agent 7 when incorporating it. It is
maximum when agents’ beliefs are identical, and minimum they are extreme opposites.

Remark 1 (Classical Update: Authority Non-Confirmatory Bias). In this paper we fo-
cus on confirmation-bias update and, unless otherwise stated, assume the underlying
function is given by Def. 3. Nevertheless, in Sections 4 and 5 we will consider a
classical update 1©:(B*, )~ B'*! that captures non-confirmatory authority-bias and
is obtained by replacing the confirmation-bias factor ﬁf, ; in Def. 3 with 1. That is,
BT =BI4+1/14:1 Y. e 4, Zj.i (Bi—BY). (We refer to this function as classical because
it is closely related to the standard update function of the DeGroot models for social
learning from Economics [9]. This correspondence will be formalized in Section 5.)

2.1 Running Example and Simulations

We now present a running example and several simulations that motivate our theoretical
results. Recall that we assume Z; ;=1 for every ¢€.A. For simplicity, in all figures of
influence graphs we omit self-loops.

In all cases we compute the polarization measure (Def. 2) using a discretization Dy,
of [0, 1] for k=5 bins, each representing a possible general position w.r.t. the veracity of
the proposition p of interest: strongly against, [0, 0.20); fairly against, [0.20, 0.40); neu-
tral/unsure, [0.40,0.60); fairly in favour, [0.60, 0.80); and strongly in favour, [0.80, 1].8
We set parameters a=1.6, as suggested by Esteban and Ray [13], and K=1000. In all
definitions we let A={0,1,...,n—1}, and i, j€.A be generic agents.

As a running example we consider the following hypothetical situation.

8 Recall from Def. 2 that our model allows arbitrary discretizations Dy, —i.e., different number
of bins, with not-necessarily uniform widths— depending on the scenario of interest.
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(b) Adding inverse influences (c) Inversion of Zp; and 75 4
to Fig. la. in Fig. la.

0 o 0 EY @ B 0 Y © & & 100
Time Time

(d) Beliefs and pol. for Fig. 1a. (e) Beliefs and pol. for Fig. 1b.  (f) Belief and pol. for Fig. 1c.

Fig. 1: Influence graphs and evolution of beliefs and polarization for Ex. 1.

Example 1 (Vaccine Polarization). Consider the sentence “vaccines are safe” as the
proposition p of interest. Assume a set .4 of 6 agents that is initially extremely polarized
about p: agents 0 and 5 are absolutely confident, respectively, in the falsehood or truth
of p, whereas the others are equally split into strongly in favour and strongly against p.
Consider first the situation described by the influence graph in Fig. 1a. Nodes 0, 1
and 2 represent anti-vaxxers, whereas the rest are pro-vaxxers. In particular, note that
although initially in total disagreement about p, Agent 5 carries a lot of weight with
Agent 0. In contrast, Agent 0’s opinion is very close to that of Agents 1 and 2, even
if they do not have any direct influence over him. Hence the evolution of Agent 0’s
beliefs will be mostly shaped by that of Agent 5. As can be observed in the evolution of
agents’ opinions in Fig. 1d, Agent 0 moves from being initially strongly against to being
fairly in favour of p around time step 8. Moreover, polarization eventually vanishes (i.e.,
becomes zero) around time 20, as agents reach the consensus of being fairly against p.
Now consider the influence graph in Fig. 1b, which is similar to Fig. 1a, but with
reciprocal influences (i.e., the influence of ¢ over j is the same as the influence of j
over 7). Now Agents 1 and 2 do have direct influences over Agent 0, so the evolu-
tion of Agent 0’s belief will be partly shaped by initially opposed agents: Agent 5 and
the anti-vaxxers. But since Agent 0’s opinion is very close to that of Agents 1 and 2,
the confirmation-bias factor will help keeping Agent 0’s opinion close to their opinion
against p. In particular, in contrast to the situation in Fig. 1d, Agent 0 never becomes
in favour of p. The evolution of the agents’ opinions and their polarization is shown in
Fig. le. Notice that polarization vanishes around time 8 as the agents reach consensus
but this time they are more positive about (less against) p than in the first situation.
Finally, consider the situation in Fig. lc obtained from Fig. la by inverting the
influences of Agent 0 over Agent 1 and Agent 2 over Agent 4. Notice that Agents 1 and
4 are no longer influenced by anyone though they influence others. Thus, as shown in
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Strongly against Fairly against Neutral / unsure Fairly in favour | Strongly in favour
[0,0.20) [0.20,0.40) [0.40,0.60) [0.60,0.80) [0.80,1]
Uniform A A ddididididdsisisssisidsasaa
Mildly polarized - & & & e & & &
Extremely polar.
Tripolar a daa a adaa a & aa

Fig. 2: Depiction of different initial belief configurations used in simulations.

(a) Clique (b) Circular (c) Disconnected groups (d) Unrelenting influencers

Fig. 3: The general shape of influence graphs used in simulations, for n=6 agents.

Fig.1f, their beliefs do not change over time, which means that the group does not reach
consensus and polarization never disappears though it is considerably reduced. a

The above example illustrates complex non-monotonic, overlapping, convergent, and
non-convergent evolution of agent beliefs and polarization even in a small case with
n=~6 agents. Next we present simulations for several influence graph topologies with
n=1 000 agents, which illustrate more of this complex behavior emerging from confir-
mation-bias interaction among agents. Our theoretical results in the next sections bring
insight into the evolution of beliefs and polarization depending on graph topologies.

In all simulations we limit execution to 7' time steps varying according to the ex-
periment. A detailed mathematical specification of simulations can be found in the cor-
responding technical report [2].

We consider the following initial belief configurations, depicted in Fig. 2: a uni-
form belief configuration with a set of agents whose beliefs are as varied as possible, all
equally spaced in the interval [0, 1]; a mildly polarized belief configuration with agents
evenly split into two groups with moderately dissimilar inter-group beliefs compared
to intra-group beliefs; an extremely polarized belief configuration representing a situa-
tion in which half of the agents strongly believe the proposition, whereas half strongly
disbelieve it; and a tripolar configuration with agents divided into three groups.

As for influence graphs, we consider the following ones, depicted in Fig. 3:

— A C-cligue influence graph Z¢4“¢ in which each agent influences every other with
constant value C'=0.5. This represents a social network in which all agents interact
among themselves, and are all immune to authority bias.

— A circular influence graph Z¢ representing a social network in which agents can
be organized in a circle in such a way each agent is only influenced by its predeces-
sor and only influences its successor. This is a simple instance of a balanced graph
(in which each agent’s influence on others is as high as the influence received, as in
Def. 9 ahead), which is a pattern commonly encountered in some sub-networks.
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— A disconnected influence graph 7% representing a social network sharply divided
into two groups in such a way that agents within the same group can considerably
influence each other, but not at all the agents in the other group.

— An unrelenting influencers influence graph 7" representing a scenario in which
two agents exert significantly stronger influence on every other agent than these
other agents have among themselves. This could represent, e.g., a social network
in which two totalitarian media companies dominate the news market, both with
similarly high levels of influence on all agents. The networks have clear agendas to
push forward, and are not influenced in a meaningful way by other agents.

We simulated the evolution of agents’ beliefs and the corresponding polarization of
the network for all combinations of initial belief configurations and influence graphs
presented above. The results, depicted in Figure 4, will be used throughout this paper
to illustrate some of our formal results. Both the Python implementation of the model
and the Jupyter Notebook containing the simulations are available on Github [1].

3 Belief and Polarization Convergence

Polarization tends to diminish as agents approximate a consensus, i.e., as they (asymp-
totically) agree upon a common belief value for the proposition of interest. Here and in
Section 4 we consider meaningful families of influence graphs that guarantee consen-
sus under confirmation bias. We also identify fundamental properties of agents, and the
value of convergence. Importantly, we relate influence with the notion of flow in flow
networks, and use it to identify necessary conditions for polarization not converging to
Zero.

3.1 Polarization at the limit

Prop. 1 states that our polarization measure on a belief configuration (Def. 2) is zero
exactly when all belief values in it lie within the same bin of the underlying discretiza-
tion Dy=Iy ... I;_1 of [0, 1]. In our model polarization converges to zero if all agents’
beliefs converge to a same non-borderline value. More precisely:

Lemma 1 (Zero Limit Polarization). Let v be a non-borderline point of Dy, such that
for every i€ A, limy_, o, Bi=v. Then lim;_, », p(B*)=0.

To see why we exclude the k—1 borderline values of Dy, in the above lemma, as-
sume ve€l,, is a borderline value. Suppose that there are two agents ¢ and j whose
beliefs converge to v, but with the belief of 7 staying always within I,,, whereas the
belief of j remains outside of I,,,. Under these conditions one can verify, using Def. 1
and Def. 2, that p will not converge to 0. This situation is illustrated in Fig. 5b assum-
ing a discretization Dy = [0,1/2), [1/2, 1] whose only borderline is 1/2. Agents’ beliefs
converge to value v=1/2, but polarization does not converge to 0. In contrast, Fig.5¢c
illustrates Lem. 1 for D3 = [0,1/3), [1/3,2/3), [%/3,1]. *

? Tt is worthwhile to note that this discontinuity at borderline points matches real scenarios where
each bin represents a sharp action an agent takes based on his current belief value. Even when
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Fig.4: Evolution of belief and polarization under confirmation bias. Horizontal axes
represent time. Each row contains all graphs with the same influence graph, and each
column all graphs with the same initial belief configuration. Simulations of circular
influences used n=12 agents, the rest used n=1 000 agents.
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(a) Influence graph. (b) Beliefs and polarization, 2 (c) Beliefs and polarization, 3
bins, for graph in Fig. 5a. bins, for graph in Fig. 5a.

Fig. 5: Belief convergence to borderline value 1/2. Polarization does not converge to 0
with equal-length 2 bins (Fig. 5b) and but it does with 3 equal-length bins (Fig. 5c).

3.2 Convergence under Confirmation Bias in Strongly Connected Influence

We now introduce the family of strongly-connected influence graphs, which includes
cliques, that describes scenarios where each agent has an influence over all others. Such
influence is not necessarily direct in the sense defined next, or the same for all agents,
as in the more specific cases of cliques.

Definition 4 (Influence Paths). Let C € (0, 1]. We say that i has a direct influence C
over j, written i£>j, ifL;; =C.

An influence path is a finite sequence of distinct agents from A where each agent
in the sequence has a direct influence over the next one. Let p be an influence path

. . . . . ¢ . C Cr - .
i0i1 - - . in. The size of p is |p|=n. We also use ig = i1 =5 ... =5 i, to denote p with

the direct influences along this path. We write ig ~>, i, to indicate that the product

influence of ig over i,, along p is C=C1x ... xXC),.
We often omit influence or path indices from the above arrow notations when they
are unimportant or clear from the context. We say that i has an influence over j if i~ j.

The next definition is akin to the graph-theoretical notion of strong connectivity.

Definition 5 (Strongly Connected Influence). We say that an influence graph 7 is
strongly connected if for all i, j€A such that ij, i~j.

Remark 2. For technical reasons we assume that, initially, there are no two agents
i, j€A such that B)=0 and BY=1. This implies that for every i, j€A: 57 ;>0 where

2 j is the confirmation bias of ¢ towards j at time 0 (See Def. 3). Nevertheless, at the
end of this section we will address the cases in which this condition does not hold.

We shall use the notion of maximum and minimum belief values at a given time ¢.

two agents’ beliefs are asymptotically converging to a same borderline value from different
sides, their discrete decisions will remain distinct. E.g., in the vaccine case of Ex. 1, even
agents that are asymptotically converging to a common belief value of 0.5 will take different
decisions on whether or not to vaccinate, depending on which side of 0.5 their belief falls.
In this sense, although there is convergence in the underlying belief values, there remains
polarization w.r.t. real-world actions taken by agents.
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Definition 6 (Extreme Beliefs). Define maz' = max;c 4 B! and min' = max;c 4 BY.

It is worth noticing that extreme agents —i.e., those holding extreme beliefs— do not
necessarily remain the same across time steps. Fig. 1d illustrates this point: Agent O
goes from being the one most against the proposition of interest at time {=0 to being
the one most in favour of it around t=8. Also, the third row of Fig. 4 shows simulations
for a circular graph under several initial belief configurations. Note that under all initial
belief configurations different agents alternate as maximal and minimal belief holders.

Nevertheless, in what follows will show that the beliefs of all agents, under strongly-
connected influence and confirmation bias, converge to the same value since the differ-
ence between mint and max?! goes to 0 as ¢ approaches infinity. We begin with a lemma
stating a property of the confirmation-bias update: The belief value of any agent at any
time is bounded by those from extreme agents in the previous time unit.

Lemma 2 (Belief Extremal Bounds). For everyi € A, min' < B/ < maa?.
The next corollary follows from the assumption in Rmk. 2 and Lemma 2.
Corollary 1. For every i, jeA, t>0: ,BfJ >0.

Note that monotonicity does not necessarily hold for belief evolution. This is illus-
trated by Agent 0’s behavior in Fig. 1d. However, it follows immediately from Lemma 2
that min’ and maz" are monotonically increasing and decreasing functions of ¢.

Corollary 2 (Monotonicity of Extreme Beliefs). maz'™t <max! and min'*1>min!
forall teN.

Monotonicity and the bounding of maz’, min’ within [0, 1] lead us, via the Mono-
tonic Convergence Theorem [38], to the existence of limits for beliefs of extreme agents.

Theorem 1 (Limits of Extreme Beliefs). There are U, L€[0, 1] s.t. lim;_, o, maz'=U
and lim,_, oo mint=L.

We still need to show that U and L are the same value. For this we prove a dis-
tinctive property of agents under strongly connected influence graphs: the belief of any
agent at time ¢ will influence every other agent by the time ¢+|.A|—1. This is pre-
cisely formalized below in Lemma 3. First, however, we introduce some bounds for
confirmation-bias, influence as well as notation for the limits in Th.1.

Definition 7 (Min Factors). Define 3, = min; jec 4 ﬁ?, ; as the minimal confirmation
bias factor at t=0. Also let L,,;,, be the smallest positive influence in L. Furthermore,
let L=1lim;_, oo min® and U= lim;_, o max’.

Notice that since min’ and maz® do not get further apart as the time ¢ increases
(Cor. 2), min; je 4 5;?7 j is a non-decreasing function of t. Therefore (3,,;, acts as a lower
bound for the confirmation-bias factor in every time step.

Proposition 2. f3,,,;, = min; je 4 3} ; for every t > 0.
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The factor (3,,,;, is used in the next result to establish that the belief of agent ¢ at
time ¢, the minimum confirmation-bias factor, and the maximum belief at ¢ act as bound
of the belief of j at t+|p|, where p is an influence path from 4 and j.

Lemma 3 (Path bound). If7 is strongly connected:

1. Letp be an arbitrary path i wgp j. Then B;'Hp‘ < max'+CBL. /| AP (Bt —maz?).
2. Letm*€A be an agent holding the least belief value at time t and p be a path such
that m* ~>, i. Then B;»H_lpl < maxt—6, with § = (ZminBmin/|4)) P (U-L).

Next we establish that all beliefs at time ¢+|.4|—1 are smaller than the maximal
belief at ¢ by a factor of at least e depending on the minimal confirmation bias, minimal
influence and the limit values L and U.

Lemma 4. Suppose that 1 is strongly-connected.

L If BE™ < maz' — v and v > 0 then BI" ! < magt — /4.
2. BIAITY < maat — ¢, where e is equal to (TminBmin/|4) A~ (U = L).

Lem. 4(2) states that max’ decreases by at least € after | A|—1 steps. Therefore, after
m(]A|] — 1) steps it should decrease by at least me.

t

Corollary 3. If T is strongly connected, maz!t™ (A=Y <max®—me for € in Lem. 4.

We can now state that in strongly connected influence graphs extreme beliefs even-
tually converge to the same value. The proof uses Cor. 1 and Cor. 3 above.

Theorem 2. If T is strongly connected then lim;_, . max® = lim;_, o min’.

Combining Th. 2, the assumption in Rmk. 2 and the Squeeze Theorem, we conclude
that for strongly-connected graphs, all agents’ beliefs converge to the same value.
Corollary 4. [fT is strongly connected then for all i, j€ A, lim; _, o Bj=1lim; ,, BY.
The Extreme Cases. We assumed in Rmk. 2 that there were no two agents ¢, j s.t.
B}=0 and B{=1. Th. 3 below addresses the situation in which this does not hap-

pen. More precisely, it establishes that under confirmation-bias update, in any strongly-
connected, non-radical society, agents’ beliefs eventually converge to the same value.

Definition 8 (Radical Beliefs). An agent i€ A is called radical if B;=0 or B;=1. A
belief configuration B is radical if every i€ A is radical.

Theorem 3 (Confirmation-Bias Belief Convergence). In a strongly connected influ-
ence graph and under the confirmation-bias update-function, if B® is not radical then
foralli, jeA, limy_, o Bi=lim;_, o B; Otherwise for every i€A, Bf:Bf‘HE{O, 1}.

We conclude this section by emphasizing that belief convergence is not guaranteed
in non strongly-connected graphs. Fig. 1¢ from the vaccine example shows such a graph
where neither belief convergence nor zero-polarization is obtained.
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4 Conditions for Polarization

We now use concepts from flow networks to identify insightful necessary conditions for
polarization never disappearing. Understanding the conditions when polarization does
not disappear under confirmation bias is one of the main contributions of this paper.

Balanced Influence: Circulations The following notion is inspired by the circulation
problem for directed graphs (or flow network) [11]. Given a graph G = (V, F) and
a function ¢: E—R (called capacity), the problem involves finding a function f:EF—R
(called flow) such that: (1) f(e)<c(e) for each e€E; and (2) }_, yep f(v,w) =
> (wwyer f(w,v) forallv€V . If such an f exists it is called a circulation for G and c.

Thinking of flow as influence, the second condition, called flow conservation, corre-
sponds to requiring that each agent influences others as much as is influenced by them.

Definition 9 (Balanced Influence). We say that T is balanced (or a circulation) if every
i € Asatisfies the constraint 3 ;c 1 Zi j=3 ;e 4 Lji-

Cliques and circular graphs, where all (non-self) influence values are equal, are
balanced (see Fig. 3b). The graph of our vaccine example (Fig. 1) is a circulation that it
is neither a clique nor a circular graph. Clearly, influence graph Z is balanced if it is a
solution to a circulation problem for some G=(A, Ax A) with capacity c:Ax.A—|0,1].

Next we use a fundamental property from flow networks describing flow conserva-
tion for graph cuts [11]. Interpreted in our case it says that any group of agents ACA
influences other groups as much as they influence A.

Proposition 3 (Group Influence Conservation). Let Z be balanced and { A, B} be a
partition of A. Then 3, x> icpTij = 3 ica 2ojen Li-

We now define weakly connected influence. Recall that an undirected graph is con-
nected if there is path between each pair of nodes.

Definition 10 (Weakly Connected Influence). Given an influence graph Z, define the
undirected graph Gr=(A, E) where {1, j}€E if and only if T, ;>0 or Z; ;>0. An in-
fluence graph T is called weakly connected if the undirected graph Gt is connected.

Weakly connected influence relaxes its strongly connected counterpart. However,
every balanced, weakly connected influence is strongly connected as implied by the
next lemma. Intuitively, circulation flows never leaves strongly connected components.

Lemma 5. If1 is balanced and Z; ;>0 then j~i.

Conditions for Polarization We have now all elements to identify conditions for per-
manent polarization. The convergence for strongly connected graphs (Th. 3), the polar-
ization at the limit lemma (Lem. 1), and Lem. 5 yield the following noteworthy result.

Theorem 4 (Conditions for Polarization). Suppose that lim;_, . p(B%)#0. Then ei-
ther: (1) T is not balanced; (2) T is not weakly connected; (3) BY is radical; or (4) for

some borderline value v, lim;_, o Bf:v for eachic A.
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(a) Regular and reciprocal influence. (b) Beliefs and pol. for Fig. 6a.

Fig. 6: Influence and evolution of beliefs and polar.

Hence, at least one of the four conditions is necessary for the persistence of polar-
ization. If (1) then there must be at least one agent that influences more than what he is
influenced (or vice versa). This is illustrated in Fig. 1c from the vaccine example, where
Agent 2 is such an agent. If (2) then there must be isolated subgroups of agents; e.g.,
two isolated strongly-connected components the members of the same component will
achieve consensus but the consensus values of the two components may be very differ-
ent. This is illustrated in the fourth row of Fig. 4. Condition (3) can be ruled out if there
is an agent that is not radical, like in all of our examples and simulations. As already
discussed, (4) depends on the underlying discretization Dy, (e.g., assuming equal-length
bins if v is borderline in Dy, it is not borderline in Dy, see Fig. 5.).

Reciprocal and Regular Circulations The notion of circulation allowed us to identify
potential causes of polarization. In this section we will also use it to identify meaningful
topologies whose symmetry can help us predict the exact belief value of convergence.

A reciprocal influence graph is a circulation where the influence of 7 over j is the
same as that of j over i, i.e, Z; ;=TI; ;. Also a graph is (in-degree) regular if the in-
degree of each nodes is the same; i.e., for all i, je A, |A;|=|A;].

As examples of regular and reciprocal graphs, consider a graph Z where all (non-
self) influence values are equal. If 7 is circular then it is a regular circulation, and if 7
is a clique then it is a reciprocal regular circulation. Also we can modify slightly our
vaccine example to obtain a regular reciprocal circulation as shown in Fig. 6.

The importance of regularity and reciprocity of influence graphs is that their sym-
metry is sufficient to the determine the exact value all the agents converge to under con-
firmation bias: the average of initial beliefs. Furthermore, under classical update (see
Rmk. 1), we can drop reciprocity and obtain the same result. The result is proven using
Lem. 5, Th. 3, Cor. 5, the squeeze theorem and by showing that ", , Bi=3",_ , B/ ™'

using symmetries derived from reciprocity, regularity, and the fact that Bf = ]tl

Theorem 5 (Consensus Value). Suppose that T is regular and weakly connected. If T
is reciprocal and the belief update is confirmation-bias, or if the influence graph T is
a circulation and the belief update is classical, then lim;_, Bf = 1|4 ZjGA B? for
every icA.
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5 Comparison to DeGroot’s model

DeGroot proposed a very influential model, closely related to our work, to reason about
learning and consensus in multi-agent systems [9], in which beliefs are updated by
a constant stochastic matrix at each time step. More specifically, consider a group
{1,2,...,k} of k agents, s.t. each agent i holds an initial (real-valued) opinion F
on a given proposition of interest. Let T} ; be a non-negative weight that agent 7 gives
to agent j’s opinion, s.t. Zle T; ;=1. DeGroot’s model posits that an agent ¢’s opinion
F! at any time ¢t>1 is updated as F}= Z?Zl T; ;F/~!. Letting F* be a vector contain-
ing all agents’ opinions at time ¢, the overall update can be computed as F*t!=TF?,
where T={T; ;} is a stochastic matrix. This means that the ¢-th configuration (for t>1)
is related to the initial one by F*=T"*FY, which is a property thoroughly used to derive
results in the model.

When we use classical update (as in Remark 1), our model reduces to DeGroot’s via
the transformation F=B}, and T; j=1/|4; Z; ; if i#j, or Ti j=1-1/14:1 3", 4 Tji
otherwise. Notice that T; ;<1 for all ¢ and j, and, by construction, 2521 T; ;=1 for all
1. The following result is an immediate consequence of this reduction.

Corollary 5. In a strongly connected influence graph I and under the classical update

function, for all i, j€ A, lim;_, oo Bf=1lim; ., B}

Unlike its classical counterpart, however, the confirmation-bias update (Def. 3) does
not have an immediate correspondence with DeGroot’s model. Indeed, this update is
not linear due the confirmation-bias factor 3} ;=1—|B}—B}|. This means that in our
model there is no immediate analogue of the relation among arbitrary configurations
and the initial one as the relation in DeGroot’s model (i.e., F*=T" FY). Therefore, proof
techniques usually used in DeGroot’s model (e.g., based on Markov properties) are
not immediately applicable to our model. In this sense our model is an extension of
DeGroot’s, and we need to employ different proof techniques to obtain our results.

6 Conclusions and Other Related Work

We proposed a model for polarization and belief evolution for multi-agent systems un-
der confirmation-bias. We showed that whenever all agents can directly or indirectly
influence each other, their beliefs always converge, and so does polarization as long
as the convergence value is not a borderline point. We also identified necessary condi-
tions for polarization not to disappear, and the convergence value for some important
network topologies. As future work we intend to extend our model to model evolution
of beliefs and measure polarization in situations in which agents hold opinions about
multiple propositions of interest.

Related Work. As mentioned in the introduction and discussed in detail in Section 5,
the closest related work is on DeGroot models for social learning [9]. We summarize
some other relevant approaches put into perspective the novelty of our approach.

Polarization Polarization was originally studied as a psychological phenomenon in
[26], and was first rigorously and quantitatively defined by economists Esteban and



16 Alvim et al.

Ray [13]. Their measure of polarization, discussed in Section 2, is influential, and we
adopt it in this paper. Li et al.[20], and later Proskurnikov et al. [3 1] modeled consensus
and polarization in social networks. Like much other work, they treat polarization sim-
ply as the lack of consensus and focus on when and under what conditions a population
reaches consensus.Elder’s work [12] focuses on methods to avoid polarization, with-
out using a quantitative definition of polarization. [6] measures polarization but purely
as a function of network topology, rather than taking agents’ quantitative beliefs and
opinions into account, in agreement with some of our results.

Formal Models Sirbu et al. [37] use a model that updates probabilistically to investi-
gate the effects of algorithmic bias on polarization by counting the number of opinion
clusters, interpreting a single opinion cluster as consensus. Leskovec et al. [ 14] simulate
social networks and observe group formation over time.

The Degroot models developed in [9] and used in [15] are closest to ours. Rather

than examining polarization and opinions, this work is concerned with the network
topology conditions under which agents with noisy data about an objective fact con-
verge to an accurate consensus, close to the true state of the world. As already discussed
the basic DeGroot models do not include confirmation bias, however [7, 17, 23, 25, 36]
all generalize DeGroot-like models to include functions that can be thought of as mod-
elling confirmation bias in different ways, but with either no measure of polarization
or a simpler measure than the one we use. [24] discusses DeGroot models where the
influences change over time, and [16] presents results about generalizations of these
models, concerned more with consensus than with polarization.
Logic-based approaches Liu et al. [21] use ideas from doxastic and dynamic epistemic
logics to qualitatively model influence and belief change in social networks. Seligman
et al. [34, 35] introduce a basic “Facebook logic.” This logic is non-quantitative, but its
interesting point is that an agent’s possible worlds are different social networks. This is a
promising approach to formal modeling of epistemic issues in social networks. Christoff
[8] extends facebook logic and develops several non-quantitative logics for social net-
works, concerned with problems related to polarization, such as information cascades.
Young Pederson et al. [28-30] develop a logic of polarization, in terms of positive and
negeative links between agents, rather than in terms of their quantitative beliefs. Hunter
[19] introduces a logic of belief updates over social networks where closer agents in the
social network are more trusted and thus more influential. While beliefs in this logic are
non-quantitative, there is a quantitative notion of influence between users.

Other related work The seminal paper Huberman et al. [ 18] is about determining
which friends or followers in a user’s network have the most influence on the user. Al-
though this paper does not quantify influence between users, it does address an impor-
tant question to our project. Similarly, [10] focuses on finding most influential agents.
The work on highly influential agents is relevant to our finding that such agents can
maintain a network’s polarization over time.
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