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Abstract. Local differential privacy (LDP) has been received increas-
ing attention as a formal privacy definition without a trusted server. In
a typical LDP protocol, the clients perturb their data locally with a ran-
domized mechanism before sending it to the server for analysis. Many
studies in the literature of LDP implicitly assume that the clients hon-
estly follow the protocol; however, two recent studies show that LDP is
generally vulnerable under malicious clients. Cao et al. (USENIX Secu-
rity ’21) and Cheu et al. (IEEE S&P ’21) demonstrated that the mali-
cious clients could effectively skew the analysis (such as frequency esti-
mation) by sending fake data to the server, which is called data poisoning
attack or manipulation attack against LDP. In this paper, we propose
secure and efficient verifiable LDP protocols to prevent manipulation
attacks. Specifically, we leverage Cryptographic Randomized Response
Technique (CRRT) as a building block to convert existing LDP mech-
anisms into a verifiable version. In this way, the server can verify the
completeness of executing an agreed randomization mechanism on the
client side without sacrificing local privacy. Our proposed method can
completely protect the LDP protocol from output manipulation attacks,
and significantly mitigates unexpected damage from malicious clients
with acceptable computational overhead.

Keywords: Local Differential Privacy, Manipulation Attack, Data Poi-
soning, Verifiable computation, Oblivious Transfer

1 Introduction

Today’s data science has been very successful in collecting and utilizing large
amounts of data. Useful data often includes personal information, and there
are serious privacy concerns. In particular, recent data breaches [14] [15] and
strict rules [12] [13] by the government significantly promote the concerns. Local
differential privacy (LDP) [6] [5] is a promising privacy-enhanced technique for
collecting sensitive information. Each client perturbs sensitive data locally by a
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randomized mechanism satisfying differential privacy. A server can run analysis
such as frequency estimation based on the perturbed data without accessing the
raw data. We can see the effectiveness and feasibility of LDP in recent production
releases of the platformers such as Google [7], Apple [8], and Microsoft [9], which
all utilize LDP for privacy-preserved data curation.

While many studies have been focusing on improving LDP’s utility [10] [11]
[16] [17] [18] [19] in the literature, recent studies [1] [2] report a vulnerability
of LDP protocol and alert the lack of security. Specifically, [1] [2] show that
the malicious clients can manipulate the analysis, such as frequency estimation,
by sending false data to the server. Malicious clients can skew the estimations
effectively by considering that estimations are calculated by normalizing with
randomization probability defined in the LDP protocol and can even control the
estimations. Their studies significantly highlight the necessity of a secure LDP
protocol to defend against malicious clients. The problematic point of protecting
such an attack is that, in a general LDP protocol, others cannot verify the
integrity of results without the original data. The randomization would provide
data providers plausible deniability for their outputs.

To the best of our knowledge, no effective way in the literature can com-
pletely prevent manipulation attacks. Although Cao et al. [1] showed some of
the countermeasures against malicious clients, their empirical results showed
that preventing against output manipulation attack is still an open problem.
Among their proposed methods, the one normalizing the estimated probability
distribution was shown to be to some extent effective for input-manipulation
(i.e., the attackers can falsely manipulate the raw input data but honestly exe-
cute the local randomized mechanism). However, the proposed countermeasures
in [1] are not very effective for output-manipulation attack (i.e., the attackers can
arbitrarily change the output of the local randomized mechanism). In addition,
their detection-based countermeasures are based on the assumption of specific
attack methods and may not be effective against arbitrary output-manipulation
attacks. The authors concluded the need for more robust defenses against these
attacks. Concurrently, Cheu et al. [2] also emphasize the same conclusion for
manipulation attacks they call. There is another promising direction against an
attacker who exploits the random mechanism of Differential privacy. Narayan
et al. [3] propose an interesting scheme to prove integrity for executing correct
randomization mechanisms for Differential privacy. However, their setting is dif-
ferent from ours since they focus on central DP with the data curator, who has
the sensitive data, and the analyst, who creates the proof (in our setting, the
client needs to prove their local execution).

To solve these problems, we design a novel verifiable LDP protocol based
on Multi-Party Computation (MPC) techniques in this work. Our contributions
are summarized below. First, we categorize the attacks of malicious clients into
two classes, output-manipulation and input-manipulation (formally defined in
Section 3). For input-manipulation attacks, efficient countermeasures have been
provided in [1], but existing studies cannot prevent output-manipulation wholly
and effectively. We analyze the effectiveness of output-manipulation compared
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to input-manipulation, highlight the importance of output-manipulation protec-
tion, and formalize the definition of output-manipulation secure LDP protocol.
Second, we propose secure and efficient verifiable LDP protocols to prevent ma-
nipulation attack. Our protocols enable the server to verify the completeness of
executing an agreed randomization mechanism on the client side without sacrific-
ing local privacy. Specifically, we leverage Cryptographic Randomized Response
Technique (CRRT)[4] as a building block to convert existing state-of-the-art LDP
mechanisms including kRR [10], OUE [11], and OLH into output-manipulation
secure LDP protocols with negligible utility loss. Our proposed secure protocols
do not assume any specific attack, and work effectively against general output-
manipulation, and thus is more potent than previously proposed countermea-
sures. Third, we conduct intensive experiments to test the performance of the
proposed protocols. We demonstrate that the proposed methods can completely
protect the LDP protocol from output manipulation attacks with acceptable
computational overhead.

2 Background: Attacks on LDP protocols

2.1 Local Differential Privacy

Differential privacy (DP) [6] is a rigorous mathematical privacy definition, which
quantitatively evaluates the degree of privacy protection when we publish out-
puts about sensitive data in a database. DP is a central model where a trusted
server collects sensitive data and releases differentially private statistical infor-
mation to an untrusted third party. On the other hand, Local DP (LDP) is a
local model, considering an untrusted server that collects clients’ sensitive data.
Clients perturb their data on their local environment and send only randomized
data to the server to protect privacy.

In this work, we suppose server S collects data and aggregates them, and
N clients ci (0 ≤ i ≤ N − 1) send their sensitive data in a local differentially
private manner. Each client has an item v which is categorical data, and the
items have d domains and v ∈ [0, d − 1](:= [d]). Additionally, vi denotes ci’s
item. The clients randomize their data by randomization mechanism A, and ci
send A(vi) = yi(∈ D) to the server, where D is the output space of A. The
server estimates some statistics by F(y0, ..., yN−1). In particular of this work,
Fk corresponds to frequency estimation for item k (i.e., how many clients have
chosen item k). The formal LDP definition is as follows:

Definition 1 (ε-local differential privacy (ε-LDP)). A randomization mech-
anism A satisfies ε-LDP, if and only if for any pair of input values v, v′ ∈ [d]
and for all randomized output y ∈ D, it holds that

Pr[A(v) ∈ y] ≤ eε Pr[A(v′) ∈ y].

Under a specific randomized algorithm A, we want to estimate the frequency
of any items. Wang et al. [11] introduce ”pure” LDP protocols with nice sym-
metric property and a generic aggregation procedure to calculate the unbiased
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frequency estimations from given randomization probabilities. Let Support be a
function that maps each possible output y to a set of input that y supports.
Support is defined for each LDP protocol, and it specifies how the estimation
can be computed under the LDP protocol. A formal definition of pure LDP is
as follows:

Definition 2 (Pure LDP [11]). A protocol given by A and Support is pure if
and only if there exist two probability values p > q such that for all v1,

Pr[A(v1) ∈ {o|v1 ∈ Support(o)}] = p,

∀v2 6=v1 Pr[A(v2) ∈ {o|v1 ∈ Support(o)}] = q. (1)

where p, q are probabilities, and q must be the same for all pairs of v1 and v2.

While maximizing p and minimizing q make the LDP protocol more accurate,
under ε-LDP it must be p

q ≤ eε. The important thing is that, in pure LDP
protocol, we can simply estimate the frequency of item k as follows:

Fk =

∑
i 1Support(yi)(k)−Nq

p− q
(2)

We can interpret that this formula normalizes observed frequencies using prob-
abilities p and q to adjust for randomization.

For frequency estimation under LDP, we introduce three state-of-the-art ran-
domization mechanisms, kRR [10], OUE [11] and OLH [11]. These mechanisms
includes three steps: (1) Encode is encoding function: E : v(∈ [d]) → v′(∈ [g]) ,
(2) Perturbation is randomized function: A : v′(∈ [g])→ y(∈ D) , (3) Aggregation
calculates estimations from all collected values: F : (y0, ..., yN−1) → R. Formal
proofs that each protocol satisfies ε-LDP can be found in [11].

k-ary Randomized Response (kRR) is an extension of Randomized Re-
sponse [32] to meet ε-LDP. In particular, kRR provides accurate results in small
item domains. This mechanism does not require any special encoding, and pro-
vides a identity mapping E(v) = v ([g] = [d]). Perturbation is as follows;

Pr[A(v) = y] =


p =

eε

eε + d− 1
, if y = v

q =
1− p
d− 1

=
1

eε + d− 1
, if y 6= v

(3)

For aggregation, we can consider Support function as Support(v) = (v) and make
this follow pure LDP protocol (Def. 2). Therefore, aggregation follows Eq.(2).

Optimized Unary Encoding (OUE) encodes item v into d-length bit vector
and encode function is defined as E(v) = [0, ..., 0, 1, 0, ..., 0] where only single
bit corresponding to v-th position is 1. Final output space is also d dimensional
bit vector {0, 1}d (e.g. y = [1, 0, 1, 1, 0]). Let i-th bit of output vector as yi,
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perturbation is as follows;

Pr[yi = 1] =


p =

1

2
, if i = v

q =
1

eε + 1
, if i 6= v

(4)

These p and q minimize the variance of the estimated frequency in similar bit
vector encoding (e.g. RAPPOR [7]). In aggregation step, we consider Support
function as Support(y) = {v|yv = 1}, and also calculate using Eq.(2).

Optimized Local Hashing (OLH) employs hash function for dimensional
reduction to reduce communication costs. It picks up H from a universal hash
function family H, and H maps v ∈ [d] to v′ ∈ [g] where 2 ≤ g < d. Therefore,
encode function is E(v) = H(v). Perturbation is the same as kRR, except that
the input/output space is [g]. Then, p and q is defined as follows;

Pr[A(x) = y] =


p =

eε

eε + g − 1
, if y = H(v)

q =
1

g
· p+

(
1−

1

g

)
·

1

eε + g − 1
=

1

g
, if y 6= H(v)

(5)

In aggregation step, we consider Support function as Support(y) = {v|v ∈
[d] and y = H(v)} and follow Eq.(2) using p and q.

2.2 Attacks on LDP protocols

In this subsection, we introduce two important studies suggesting caution to the
necessity of secure LDP protocols.

Targeted Attack. Cao et al. [1] focus on targeted attacks to LDP protocols,
where the attacker tries to promote the estimated frequencies of a specific item
set. Considering the attacker against the LDP protocols, M malicious clients,
who can arbitrarily control local environments and send crafted data to the
server, are injected by the attacker. (They call data poisoning attacks.) Attacker
wants to promote r target items T = {t1, ..., tr} in the frequency estimation. Cao
et al. propose three attacks: Random perturbed-value attack (RPA), Random
item attack (RIA), Maximal gain attack (MGA). The first two attacks are as
baselines and MGA is an optimized attack. In RIA, malicious clients perform
uniform random samplings of a value from the target item set. And then, fol-
lowing the LDP protocol, encoding and perturbation are performed and sent to
the server. MGA is more complicated than others. It aims to maximize the at-
tacker’s overall gain G: sum of the expected frequency gains for the target items,
G =

∑
t∈T E[∆ft] where ∆ft represents the increase of estimated frequency of

item t (∀t ∈ T ) from without attack to with attack. In MGA, the output item se-
lection is performed according to the optimal solution maximizing the attacker’s
gain and sent to the server without perturbation.
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kRR OUE OLH

RPA (output-manipulation) β( r
d
− fT ) β(r − fT ) −βfT

RIA (input-manipulation) β(1− fT ) β(1− fT ) β(1− fT )

MGA (output-manipulation) β(1− fT ) + β(d−r)
eε−1

β(2r − fT ) + 2βr
eε−1

β(2r − fT ) + 2βr
eε−1

Table 1. MGA can achieve the highest gains against all three protocols. β = M
N+M

and fT =
∑
t∈T ft in the table. (The summary results of [11].)

Targeted Attack [1]
kRR OUE OLH

+

(
β(d− r)
eε − 1

)
+

(
β(2r − 1) +

2βr

eε − 1

)
+

(
β(2r − 1) +

2βr

eε − 1

)

Untargeted Attack [2] ×Ω

(√
d

ε

)
Table 2. Overall, output-manipulations are much more vulnerable than input-
manipulation. The differences of both manipulations gain are calculated by output-
manipulation gain − input-manipulation gain (resp. output-manipulation gain / input-
manipulation gain) in Targeted (resp. Untargeted) Attack.

Cao et al. describe the details of these three attacks against kRR, OUE, OLH
in the frequency estimation and give theoretical analysis. The summary of the
results is shown in Table 1. The table shows the overall gains of the three attacks
against kRR, OUE, and OLH. MGA can achieve the highest gains for all proto-
cols, clearly because MGA maximizes the gains. A notable point is a difference,
summarized in Table 2, showing the difference in gains between MGA and RIA
They respectively correspond to output-manipulation and input-manipulation
(described later) in our work. Note that the difference is remarkable, especially
under the higher privacy budget.

Untargeted Attack. Albert et al. [2] analyze manipulation attacks in LDP.
Compared to Cao et al.’s work, their study mainly focuses on untargeted attacks.
The attackers aim to skew the original distribution and degrade the overall
estimation accuracy of the server.

They suggest for the LDP protocols that the architecture is inherently vulner-
able to malicious clients’ manipulations. They suppose a general manipulation
attack: the attacker injects M users in N clients in the LDP protocol. These
injected users can send arbitrary data sampled from carefully skewed distribu-
tions to the server without supposed perturbation. We consider this attacker
model corresponds to MGA in [1] and output-manipulation (described later) in
this paper. We should focus on one of their contributions: they show the general

manipulation attack can skew the estimated distribution by Ω(M
√
d

εN ) in the fre-
quency estimation, which causes more significant error than input-manipulation

by about a
√
d
ε factor (Table 2). The difference is, for example, defined as l1-norm

of the original and skewed distribution.
Summary. We summarize these notable results in Table 2, showing how effective
output-manipulation can attack compared to input-manipulation. The above two
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Fig. 1. From top to bottom, normal protocol, input-manipulation attack and output-
manipulation attack against an LDP protocol.

previous studies’ common conclusion is highlighting the great necessity of enforc-
ing the correctness of users’ randomization to defend the output-manipulation
attacks.

3 Problem statements

Firstly, we give some notations to LDP protocols, partially following the above-
mentioned in Section 2. We denote a single LDP protocol as πi, where a client
ci sends sensitive data v to server S in ε-LDP manner. Encode and perturba-
tion are denoted together as φ. φ is a probabilistic function (i.e., randomization
mechanism) that takes v ∈ [d] as input and output y ∈ D, such that output
space D = [d] if kRR, D = {0, 1}d if OUE, D = [g] if OLH. And we denote
overall protocol including all clients as Π = {πi|i ∈ [N ]}.

3.1 Overview of our goal

An attacker against Π injects compromised users into the protocol to send many
fake data to a central server. Note that such an attack results in manipulation
against a single protocol π by each compromised user. Therefore, we consider
security for π, and by protecting security for π, we can naturally protect security
forΠ. As for the attacker’s capability, the attacker can access the implementation
of φ because this is executed on clients’ local, and he knows all parameters and
functions including φ, ε, d, D and Support(y), and employs this information
to craft effective malicious outputs. However, in fact, there is little variation in
the attacker’s behavior because the server can easily deny the protocol if output
y /∈ D. Under such conditions, as shown in Figure 1, we can observe that an
attacker can carry out the following two classes of attacks:
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Input-manipulation supposes that the attacker can only select input data
v ∈ [d] and cannot interfere with other parameters and functions in π (middle
in Figure 1). In other words, the attacker must send y = φ(v). But in a realistic
setting, we should consider it a too strong assumption, as it allows an attacker
to have complete control over the local system environment. For example, in
targeted attack, RIA corresponds to this class of attacks.

Output-manipulation supposes the attacker can send arbitrary outputs to
the server (bottom in Figure 1). This corresponds to the attacker can ignore
all parameters and functions ε, φ by manipulating outputs directly. This attack
is an entirely reasonable attack against a general LDP protocol because the
server cannot distinguish between true data or fake data. In targeted attack,
it corresponds to MGA or the attacks proposed in [2] for untargeted attack.
Generally, this class effectively attacks, as shown in Table 2.

An important observation from Section 2.2 is that input-manipulation is
much less effective than output-manipulation. Therefore, the natural direction
is to defend against output-manipulation and limit the attack to the range of
input-manipulation to achieve secure LDP protocols. On the other hand, it is
hard to prevent input-manipulation completely. These have been studied in the
fields of game theory [27] [26] or truth discovery [28], and we leave such a solution
as future work.

Overall, our goal is to mitigate attacks against the LDP protocols by com-
pletely defending output-manipulation and limiting to input-manipulation. For
this purpose, we consider enforcing the correct mechanism φ for protocol π. The
key idea is to make the protocol verifiable against malicious clients from a server.
In the rest of the paper, we refer to this property as output-manipulation secure.
(It is also expressed simply as secure, and we call it as secure LDP protocol.)

Definition 3 (output-manipulation secure). An LDP protocol π is output-
manipulation secure if any malicious client cannot perform output-manipulation
and can only perform input-manipulation against π.

3.2 Security definitions

In this subsection, we clarify what we should achieve for a secure LDP protocol.
Similar to [4], security definitions of secure LDP protocol are consistent with
a traditional secure two-party computation (2PC) protocol described in [25].
It considers an ideal world where we can employ Trusted Third Party (TTP)
to execute arbitrary confidential computations indeed. And we aim to replace
the TTP with a real-world implementation of cryptographic protocol π = (c, S)
between client c and server S. The protocol’s flow when using a TTP is very
simple. The client c sends input v to the TTP, and the TTP provides y = φ(v)
to S. After all, c and S never receive any other information; S does not know v,
and c does not know y. (S can estimate v from y and φ, but c’s privacy should
be guaranteed by LDP.)

While it is seemingly apparent that this ideal world’s protocols will satisfy
our requirements, let us review possible attacks closely. Goldreich [25] summa-
rizes that there are just three types of attacks in malicious model 2PC against
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ideal world protocols; (1) denial of participation in the protocol; (2) fake in-
put, not the true one; (3) aborting the protocol prematurely. We cannot hope
to avoid these, but (1) and (3) cannot influence the estimation of original data
distributions in LDP protocols. (2) is exactly input-manipulation described in
the previous subsection. Thus, it is sufficient that the ideal world in 2PC is
output-manipulation secure (see Def. 3) in the LDP protocols.

Considering the substituted cryptographic protocol π = (c, S), let client c
as prover P and server S as verifier V and π = (P,V). More specifically, we
should guarantee secure LDP under the worst case that both P and V be-
have maliciously. The case where P is malicious is obvious, considering output-
manipulation. Still, in the V’s case, it is because, given the original scenario of
LDP, we need to guarantee the privacy of P. And, we assume P is a polynomial
computational adversary and V is unbounded.

Following [4], the ideal world protocol can be substituted with protocol π if
(a) for any prover algorithm P∗, V who receives φ(v) = y accepts only when
P∗’s secret input is surely v, or otherwise halts with negligible error; (b) for any
prover algorithm P∗, y is indistinguishable from other categories; (c) for any
verifier algorithm V∗, v is indistinguishable from other categories. Additionally,
we need to verify that the randomization function φ used in the protocol does
indeed satisfy ε-LDP.

Let viewP (resp. viewV) as the set of messages generated by the protocol
that P (resp. V) can observe And let k as a security parameter that increases
logarithmically with cryptographic strength. Then, our security definitions are
reduced as following three properties:
– Verifiability: This property corresponds to the above-mentioned (a). We

consider the protocol is verifiable if it satisfies as follows;

Pr[V does not halts |y ← φ(∗)] = 1 and, (6)

1− Pr[V halts |y ← P∗] < negl(k) (7)

where negl(k) is negligible function in k, y ← φ(∗) means y is obtained by
correct execution of φ and y ← P∗ means y is obtained by P∗ other than
correct φ(v).

– Indistinguishability: This property corresponds to (b) and (c). (b) satisfies
if viewP∗ has indistinguishable distributions for any input category v ∈ [d].
Formally, we define this property as follows; for any adversary P∗,

|Pr[P∗(viewP∗ , v) = y]− Pr[P∗(v) = y]| < negl(k) (8)

where negl(k) is negligible function in k. This means that a malicious client
can use any information obtained from the protocol but only get negligible
information about the final output of the server side. Similarly, (c) satisfies
if, for any unbounded adversary V∗,

|Pr[V∗(viewV∗ , y) = v]− Pr[v|y]| < negl(k) (9)

– Local Differential Privacy: The randomization mechanism φ in the given
protocol must satisfy ε-LDP as shown in Def. 1. The verification of the
correct execution is performed in Eq. (6).
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4 Proposed Method

We design secure LDP protocols for kRR, OUE, and OLH, respectively, so that
we defend output-manipulations completely. In our method, a major building
block is Cryptographic Randomized Response Technique (CRRT) [4] which em-
ploys Pedersen’s commitment scheme [21] for secure verifiability using additive
homomorphic property, and Naor-Pinkas 1-out-of-n Oblivious Transfer (OT)
technique [22] for tricks for a verifiable randomization mechanism. Overall, the
proof of validity is based on disjunctive proof [23]. It is a lightweight interac-
tive proof protocol based on a secret sharing scheme and, can perform witness-
indistinguishable [31] proofs of knowledge (similar to zero-knowledge proofs).
Combined with the security of the encryption scheme proposed in [4], it is pos-
sible to securely prove that the output value y is obtained by sampling from a
probability distribution that satisfies the ε-LDP i.e. y = φ(v). For simplicity, we
explain several phases separately in the following protocol description (Protocol
1, 2), but they can be done simultaneously in the actual implementation.

Before explanation of the protocols in detail, we introduce the following cryp-
tographic setting. Assume that p and q are sufficiently large primes such that q
divides p − 1, Zp has a unique subgroup G of order q. q is the shared security
parameter between P and V. Security parameter k is k = log2 qmax such that
qmax is the maximum value of possible q. We select g and h as a public key.
They are two generators of G and, their mutual logarithms logg h and loghg are
hard to compute. We use this public key in the following protocols.

4.1 Secure kRR

Protocol 1 shows the details of the secure version of kRR, an extension of CRRT
[4] to satisfy LDP for multidimensional data. As a whole, in the setup phase,
both P and V prepare the same parameters l, n, z from accuracy parameter width
and privacy budget ε by Algorithm 1. l, n, z identify an categorical probability
distributions that satisfies LDP and we use it in 1-out-of-n OT for verifiable
random sampling. In mechanism phase, P creates a vector µ representing the
categorical distribution containing n data where each data µi corresponds to
one of the categories [d]. width (i.e., n) is the size of the vector and decides a
trade-off between accuracy to approximate LDP and overheads caused by the
protocol. For proof P2, we use zµi instead of µi. All zµi is encrypted to yi by an
encryption scheme that combines Pedersen’s commitment and OT. Only the µσ,
where σ is pre-chosen by V, can be decrypted correctly. Such a trick allows us
to surely perform random sampling from vector µ representing the categorical
distribution. In the proof phase, two proofs are verified in the protocol. The
first one is a disjunctive proof for each encrypted data yi belonging to one of
the categories [d] (P1) . The second one also uses a disjunctive proof that the
summation of the vector used as categorical distribution in the OT belongs to one
of the possible values (P2). There are just d possible values for the summation
of µ (4.(a)).
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Algorithm 1 DecideSharedParameters

Input: ε, width
1: i← b eε

(d−1)+eε
c // as an integer

2: while i > 0 do
3: if (width− i) divides (d− 1) then
4: g ← gcd(i, width, width−i

d−1
)

5: l, n← i
g
, width

g

6: break
7: end if
8: i← i− 1
9: end while

10: z ← max([l, n−l
d−1

]) + 1
Output: l, n, z

Here, we confirm Protocol 1 is secure. From the protocol, prover and verifier

get viewP = {ga, gb, gab−σ−1, xi, x} and viewV = {wi, yi, com(j)
i , c

(j)
i , h

(j)
i , comj , ci, hi}

for all i ∈ [n], j ∈ [d] respectively.
Firstly, we consider indistinguishability. Our encryption scheme (e.g., µi is

encrypted to yi) is the same as the one presented in [4], which has been shown
that a protocol using the scheme is sufficiently indistinguishable for P∗ and V∗.
That is, it is as hard for P∗ to know about the σ, and also hard for V∗ to guess
the distribution of µ and input v. Considering the attacker views, for P∗, calcu-
lating σ from viewP is as hard as the Decisional Diffie Hellman (DDH) problem.
And x and xi are completely random integers. For V∗, (wi, yi) of viewV is in-

distinguishable by the security of the cryptographic scheme, and (com
(j)
i , c

(j)
i )

is also indistinguishable because of the secret sharing scheme [23]. Verifiability
is satisfied by proofs, P1 and P2. If both P1 and P2 are verified, V itself selects
one value from the verified vector by OT. Then, for any operation by P∗, V can
confirm the correctness of the protocol. Hence, verifiability entirely depends on
the protocol that proves the P1 and P2. We use disjunctive proofs and Eq.(6)
and Eq.(7) are respectively satisfied by the completeness and soundness of the
disjunctive proofs shown in [23]. Lastly, Algorithm 1 definitely generates l, n
such that l

n ≤
eε

(d−1)+eε and n−l
d−1 ≥

1
(d−1)+eε . Hence, because random sampling

from µ is equivalent to kRR with p = l
n , q = n−l

d−1 , at least ε-LDP is satisfied.

4.2 Secure OUE

We show the secure version of OUE protocol in Protocol 2. Unlike kRR, OUE
sends a d-length bit vector where each i-th bit corresponds to that client likely
has the item i ∈ [d]. In OUE, mechanism φ performs random bit flips with given
constant probability independently for each bit. The Bernoulli distributions,
which determine the probabilities of each flip, are approximated by a distribution
of n-length bit vectors. As in the case of kRR, verifiable random sampling is
achieved by a trick using Pedersen’s commitment and OT. However, there are d
distribution vectors since it needs for each category.
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Protocol 1 secure kRR

Client c as prover P who holds an secret input v ∈ [d] and server S as verifier
V. ε is privacy budget and width is a parameter representing the degree of
approximation.

1. Setup phase.
(a) P and V run DecideSharedParameters(ε, width) and prepare l, n, z

as shown in Algorithm 1. This is an algorithm for approximating integers
l, n, z for given ε with as little degradation in accuracy as possible while
still satisfying privacy protection.

(b) V selects σ ∈ [n]. And P prepares a n-length random number vector
µ = (µ1, ..., µn) where for all 1 ≤ i ≤ n, µi ∈ [d], the vector satisfies
#{µi|µi ∈ µ and µi = v} = l and for all {v′|v′ ∈ [d] \ {v}}, #{µi|µi =
v′} = n−l

d−1 where #{·} returns count on a set.
2. Mechanism phase.

(a) V picks random a, b← Zq and sends ga, gb and gab−σ+1 to P.
(b) For all i ∈ {1, ..., n}, P performs the following subroutine; (1) Generate

(ri, si) at random; (2) Compute wi ← gri(ga)si = gri+asi and hi ←
(gb)ri(gab−σ+1gi−1)si = g(ri+asi)b+(i−σ)si ; (3) Encrypt µi to yi as yi ←
gz
µi
hi . Then, send (wi, yi) to V.

(c) V computes wbσ where σ is what V choose at setup phase, and computes
gµσ ← yσ

hw
b
σ

. And then, find µσ from the result and g. Thus, V receives

µσ as a randomized output from P.
3. Proof phase for P1.

(a) For all j ∈ [d] \ {µi}, for all i ∈ {1, ..., n}, P generates challenge

c
(j)
i and response s

(j)
i from Zq and prepares commitments com

(j)
i ←

hs
(j)
i /(yi/g

zj )c
(j)
i . For {µi} and for all i ∈ {1, ..., n}, P generates wi ← Zq

and let com
(µi)
i = hwi . Then, send com

(j)
i to V, for all i, j.

(b) V picks xi ← Zq for all i ∈ {1, ..., n} and sends it to P.

(c) For all i ∈ {1, ..., n}, P computes c
(µi)
i = xi −

∑
j∈[d]\µi c

(j)
i and s

(µi)
i =

vic
(µi)
i + wi. Then, send c

(j)
i and s

(j)
i for all i, j to V.

(d) Finally, V checks if hs
(j)
i = b(yi/g

zj )c
(j)
i for all j ∈ [d] and xi =∑

j∈[d] c
(j)
i , for all i ∈ 1, ..., n. Otherwise halts.

4. Proof phase for P2.
(a) For all j ∈ [d] \ {v}, P generates challenge cj and response sj from Zq

and prepares commitments comj ← hsj/(
∏
i∈{1,..,n}yi/gZj )cj where Zj =

n−l
d−1

(∑
k∈[d]\{j} z

k
)

+ lzj . And P generates w ← Zq and let comv = hw.

Then, send comj to V, for all j ∈ [d].
(b) V picks x← Zq and sends it to P.

(c) P computes cv = x−
∑
j∈[d]\{v} cj and sv =

(∑
i∈1,...,n vi

)
cv+w. Then,

send cj and sj for all j to V.
(d) Finally, V checks if hsj = b(

∏
i∈{1,..,n} yi/g

Zj )cj for all j ∈ [d] and x =∑
j∈[d] cj . Otherwise halts.
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Protocol 2 secure OUE

P, v ∈ [d], V, width, ε as with Protocol 1.

1. Setup phase.
(a) P and V set l, n as d 1

1+eε · widthe and width itself respectively.
(b) V selects d random numbers σ = {σ1, ..., σd} where 1 ≤ σj ≤ n. P

prepares d n-length random bit vectors ~µ = (µ1, ...,µn) such that µj =

(µ
(j)
1 , ..., µ

(j)
n ) where all µ

(j)
i ∈ {0, 1}, and the vector satisfies

∑
i µ

(j)
i =

n− l if j = v and
∑
i µ

(j)
i = l if j 6= v.

2. Mechanism phase.
(a) V picks random aj , bj ← Zq and sends gaj , gbj and gajbj−σj+1 to P for

all j ∈ [d].
(b) For all j ∈ [d] and i ∈ {1, ..., n}, P performs the following sub-

routine; (1) Generate (r
(j)
i , s

(j)
i ) at random; (2) Compute w

(j)
i ←

gr
(j)
i (gaj )s

(j)
i = gr

(j)
i +as

(j)
i and h

(j)
i ← (gbj )r

(j)
i (gajbj−σj+1gi−1)s

(j)
i =

g(r
(j)
i +as

(j)
i )bj+(i−σj)s(j)i ; (3) Encrypt µ

(j)
i to y

(j)
i as y

(j)
i ← gµ

(j)
i hh

(j)
i .

Then, P sends all (w
(j)
i , y

(j)
i ) to V.

(c) For all j ∈ [d], V computes g
µ(j)
σj ← y

(j)
σj /h

(w(j)
σj

)bj
. And then, find µσj .

Thus, V receives [µσ1 , ..., µσd ] as a randomized output from P.
3. Proof phase for P1.

(a) For all j ∈ [d], for all i ∈ {1, ..., n}, P generates challenge c
(j)

1−µ(j)
i ,i

and

response s
(j)

1−µ(j)
i ,i

from Zq and prepares commitments com
(j)

1−µ(j)
i ,i

←

h
s
(j)

1−µ(j)
i
,i/(y

(j)
i /gµ

(j)
i )c

(j)
i . Generate w

(j)
i ← Zq and compute com

(j)

(µ
(j)
i ),i

←

hw
(j)
i . Then, send com

(j)
{0,1},i to V, for all i, j.

(b) V picks x
(j)
i ← Zq for all j ∈ [d] and i ∈ 1, ..., n and sends it to P.

(c) For all j ∈ [d] and i ∈ {1, ..., n}, P computes c
(j)

µ
(j)
i ,i

= x
(j)
i − c

(j)

1−µ(j)
i ,i

and

s
(j)

µ
(j)
i ,i

= v
(j)
i c

(j)

µ
(j)
i ,i

+w
(j)
i . Then, send c

(j)
{0,1},i and s

(j)
{0,1},i for all i, j to V.

(d) Finally, V checks if h
s
(j)

{0,1},i = b(y
(j)
i /g{0,1})

c
(j)

{0,1},i and x
(j)
i = c

(j)
0,i + c

(j)
1,i ,

for all i ∈ {1, ..., n} and for all j ∈ [d]. Otherwise halts.
4. Proof phase for P2. (Simplified because it is similar to P1.)

(a) P generates and sends all com
(j)
{p,q} to V.

(b) V picks xj ← Zq for all j ∈ [d] and sends it to P.

(c) P sends c
(j)
{p,q} and s

(j)
{p,q} for all j to V

(d) V checks if hs
(j)
p = b(

∏
i∈1,..,n y

(j)
i /gn/2)c

(j)
p and hs

(j)
q =

b(
∏
i∈1,..,n y

(j)
i /gl)c

(j)
q and xj = c

(j)
p + c

(j)
q for all j ∈ [d]. Other-

wise halts.
5. Proof phase for P3.

(a) P computes hsum ←
∑
i,j h

(j)
i and sends hsum to V.

(b) V checks if hhsumgn/2+l(d−1) =
∏
i,j y

(j)
i . Otherwise halts.
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In addition, each vector’s distribution is one of two types: j-th vector such that
secret input v = j or otherwise ( i.e., p or q in Eq. (4)). Thus, we perform
independent OT and decide 0 or 1 for d categories and finally, get randomized
output [µσ1 , ..., µσd ].

Then, similar to secure kRR, we must show that all Bernoulli distributions
represented by d vectors are correct. Specifically, the proofs are that all elements
of bit vectors ~µ are surely a bit (0 or 1) (P1) and distribution of the vectors
are surely equivalent to either of p or q of Eq. (4) (P2). The number of p and q
are 1 and d − 1 respectively (P3). If all these three proofs are verified, we can
confirm the OUE protocol is simulated correctly. Like kRR’s proofs, P1 and P2
are proved by d disjunctive proofs. P3 is based on hardness of discrete logarithm

problem. P cannot find hsum in polynomial time without all correct h
(j)
i that

is used when encrypting y
(j)
i . While P has to release hsum, this is information

theoretically indistinguishable from V for each h
(j)
i unless n = d = 1. Security

statements for the secure OUE protocol are similar to secure kRR. For LDP, as
we can see 1.(a) in Protocol 2, we set q = l/n such that l

n ≥
1

1+eε .

4.3 Secure OLH

To make OLH output-manipulation secure, basically, we can use Protocol 1
except that it requires sharing of a hash function and using reduced output
category space. As a first step, V generates and sends a seed s to P to initialize
hash function Hs : v → v′ where v ∈ [d] and v′ ∈ [g]. V and P use the same
Hs as a hash function. We can apply Protocol 1 to achieve secure OLH by using
category set [g] instead of [d] and sensitive input value v is handled as v′ = Hs(v).
The rest of the steps are almost the same as kRR.

Even if P∗, who does not use the hash function correctly, participates the
protocol, V can easily detect it if it sends the output of a different output space,
i.e. y /∈ [g]. If attacker does not use a different output space, the attack can only
be equivalent to input-manipulation because V verifies the correctness of the
categorical distribution used in random sampling after applying hash function.

5 Evaluation

In this section, we evaluate and analyze the performance of our proposed proto-
cols. The code in Python is available on github4.
Experimental setup. We use an HP Z2 SFF G4 Workstation, with 4-core 3.80
GHz Intel Xeon E-2174G CPU (8 threads, with 8MB cache), 64GB RAM. The
host OS is Ubuntu 18.04 LTS. The client and server exchange byte data serialized
by pickle (from Python standard library) over TCP. We use ε = 1.0 and in OLH,
set g = d/2 as the hashed space instead of g = beε + 1c for demonstration.
Parameter generator. First, we analyze the approximated probability distri-
bution generated by our proposed method. In secure kRR protocol, we approx-
imate the probability distribution where we generate data to satisfy LDP by

4 https://github.com/FumiyukiKato/verifiable-ldp

https://github.com/FumiyukiKato/verifiable-ldp
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Fig. 2. In secure kRR, with a sufficiently large width, categorical distribution by Algo-
rithm 1 can accurately approximate the LDP distributions (left and middle). In secure
OUE, it is almost exact discrete approximation with relatively small width. (right)

Algorithm 1. Figure 2 shows how accurate the algorithm generates discrete dis-
tribution for ε = (0, 5] and for width = {100, 1000}. The red curve represents
probability p for the normal mechanism, and the blue one represents the approx-
imated one. When the width is small, there is a noticeable loss of accuracy due
to approximation. However, with a sufficiently large width, the approximated p
has a sufficiently small loss. As the width increases, the performance degrades,
indicating that there is a trade-off between the accuracy of the probability ap-
proximation and the performance. This is true not only for kRR but also for
OUE and OLH. For secure OUE, in the right-side of Figure 2, we compare prob-
ability q because p is constant in OUE. It is almost exact discrete approximation
with small width. This is due to the difference in the structure of the vectors
that form the probability distribution, with OUE having a simpler structure.

Performance. We evaluate performances of our proposed method. Figure 3
shows total bandwidths, caused in communications of the total protocol, of each
three methods for different category sizes. Generally, when increasing category
size, total bandwidth also increases. While it increases linearly in OUE, there
are fluctuations in kRR and OLH. This is because the probability value that Al-
gorithm 1 approximates may have a smaller denominator (i.e., n) by reduction,
which can make the distribution vector smaller. Overall, larger width gener-
ates almost linear increases in bandwidth. And for the same width, secure OUE
causes larger communication overhead than others. However, as mentioned in
the previous paragraph, secure OUE can approximate the probability distribu-
tion with high accuracy using smaller width. Hence, in particular, when the
number of categories is large, secure OUE is considered to be more efficient by
using smaller width. Figure 3 shows that, comparing kRR with width = 1000
and OUE with width = 100, many categories require several times more band-
width. On the other hand, when the discretized probability distribution can be
approximated with a small denominator by reduction, kRR and OLH show a
very small bandwidth. When comparing kRR and OLH, OLH is smaller overall.
This is due to the fact that the output space is reduced by hashing.

Figure 4 shows total execution time from the time the client sends the first
request until the entire protocol is completed. Most of the characteristics are
similar to those of bandwidth. As the size of the proofs that need to be computed
increases, the execution time is also expected to increase. The only difference is
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Fig. 3. With the same width, the communication costs of kRR and OLH are small.
However, OUE can approximate LDP accurately with small widths (Fig. 2).

Fig. 4. The characteristics of runtime is similar to bandwidth. OLH takes a little longer
because of the hashing.

OLH, which takes extra time to execute the hash function. However, as the
number of categories becomes larger, the influence becomes smaller.

Therefore, the overhead can be minimized by providing a privacy budget
for optimal efficiency for kRR and OLH, and by using different methods for
different width. The overhead is expected to increase as the number of categories
increases, but since the limit on the number of categories is determined to some
extent by the use of LDP, we do not think this is a major problem.

At the end, impressively, our method is algorithm-only, making it more feasi-
ble than alternatives that assume secure hardware [30] or TEE [29]. Nevertheless,
overall, we believe the overhead is acceptable. We believe this is due to the fact
that we use relatively lightweight OT techniques as a building block.

6 Conclusion

In this paper, we showed how we prevent malicious clients from attacking to LDP
protocol. An important observation was the effectiveness of output-manipulation
and the importance of protection against it. Our approach was verifiable random-
ization mechanism satisfying LDP. Data collector can verify the completeness
of executing an agreed randomization mechanism for every possibly malicious
data provider. Our proposed method was based on only lightweight cryptogra-
phy Hence, we believe it has high feasibility and can be implemented in various
and practical data collection scenarios.
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19. Tianhao Wang, Milan Lopuhaä-Zwakenberg, Zitao Li, Boris Skoric, and Ninghui
Li. Locally differentially private frequency estimation with consistency. In NDSS,
2020.

20. Gennaro, Rosario, et al. Quadratic span programs and succinct NIZKs without
PCPs. Annual International Conference on the Theory and Applications of Cryp-
tographic Techniques. Springer, Berlin, Heidelberg, 2013.

https://www.eugdpr.institute/
https://iapp.org/media/pdf/resource_center/Brazilian_General_Data_Protection_Law.pdf
https://iapp.org/media/pdf/resource_center/Brazilian_General_Data_Protection_Law.pdf
https://en.wikipedia.org/wiki/Facebook%E2%80%93Cambridge_Analytica_data_scandal
https://www.securitymagazine.com/articles/94076-the-top-10-data-breaches-of-2020
https://www.securitymagazine.com/articles/94076-the-top-10-data-breaches-of-2020


18 Fumiyuki Kato, Yang Cao, and Masatoshi Yoshikawa

21. Pedersen, Torben Pryds. Non-interactive and information-theoretic secure verifi-
able secret sharing. Annual international cryptology conference. Springer, Berlin,
Heidelberg, 1991.

22. Naor, Moni, and Benny Pinkas. Efficient oblivious transfer protocols. SODA. Vol.
1. 2001.

23. Cramer, Ronald, Ivan Damg̊ard, and Berry Schoenmakers. Proofs of partial knowl-
edge and simplified design of witness hiding protocols. Annual International Cryp-
tology Conference. Springer, Berlin, Heidelberg, 1994.

24. Bellare, Mihir, and phillip Rogaway. Random oracles are practical: A paradigm for
designing efficient protocols. Proceedings of the 1st ACM Conference on Computer
and Communications Security. 1993.

25. Oded Goldreich. Secure Multi-Party Computation. Final (Incomplete) Draft, Oc-
tober 27 2002.

26. Do, Cuong T., et al. Game theory for cyber security and privacy. ACM Computing
Surveys (CSUR) 50.2 (2017): 1-37.
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