
HAL Id: hal-03659466
https://inria.hal.science/hal-03659466

Submitted on 5 May 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Self-stabilizing Distributed Algorithms by Gellular
Automata

Taiga Hongu, Masami Hagiya

To cite this version:
Taiga Hongu, Masami Hagiya. Self-stabilizing Distributed Algorithms by Gellular Automata. 26th
International Workshop on Cellular Automata and Discrete Complex Systems (AUTOMATA), Aug
2020, Stockholm, Sweden. pp.86-98, �10.1007/978-3-030-61588-8_7�. �hal-03659466�

https://inria.hal.science/hal-03659466
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

This document is the original author manuscript of a paper submitted to an IFIP
conference proceedings or other IFIP publication by Springer Nature. As such, there
may be some differences in the official published version of the paper. Such
differences, if any, are usually due to reformatting during preparation for publication or
minor corrections made by the author(s) during final proofreading of the publication
manuscript.

Self-stabilizing Distributed Algorithms
by Gellular Automata

Taiga Hongu(B) and Masami Hagiya

The University of Tokyo, Tokyo, Japan
hongu314@g.ecc.u-tokyo.ac.jp, hagiya@is.s.u-tokyo.ac.jp

Abstract. Gellular automata are cellular automata with the properties
of asynchrony, Boolean totality, and non-camouflage. In distributed com-
puting, it is essential to determine whether problems can be solved by
self-stable gellular automata. From any initial configuration, self-stable
gellular automata converge to desired configurations, as self-stability
implies the ability to recover from temporary malfunctions in transi-
tions or states. In this paper, we show that three typical problems
in distributed computing, namely, solving a maze, distance-2 coloring,
and spanning tree construction, can be solved with self-stable gellular
automata.

Keywords: Gellular automata · Solving a maze · Distance-2 coloring ·
Spanning tree construction · Self-Stability

1 Introduction

Many studies have been conducted to implement cellular automata using physi-
cal or chemical materials, such as [6,7,13]. These include recent efforts to imple-
ment cellular automata by reaction-diffusion systems in porous gels [4]. One
motivation for implementing cellular automata using gels is to develop smart
materials that can autonomously respond to external environments.

The term gellular automata (GA) was coined in [3], where the diffusion of
DNA molecules is controlled by opening and closing holes between cells. Gel-
lular automata were later formalized as cellular automata with the features of
asynchrony, Boolean totality, and non-camouflage in [10,11], where two types of
DNA molecules were assumed, one for states of cells and the other for signals
transmitting states.

In the research along the latter direction, the computational universality
of gellular automata was shown [10], and the computational power of gellular
automata as distributed systems was investigated in [9]. Self-stability is a crucial
factor in distributed computing. According to [1], self-stability is the ability of
a system to converge to states with desired conditions from any initial state. If
gellular automata are self-stable, they recover desired conditions even if tempo-
rary malfunctions occur in transitions or states. Smart materials are expected
to have this property.
c© IFIP International Federation for Information Processing 2020
Published by Springer Nature Switzerland AG 2020. All Rights Reserved
H. Zenil (Ed.): AUTOMATA 2020, LNCS 12286, pp. 1–13, 2020.
https://doi.org/10.1007/978-3-030-61588-8_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-61588-8_7&domain=pdf
https://doi.org/10.1007/978-3-030-61588-8_7

2 T. Hongu and M. Hagiya

In our previous study, we developed self-stable gellular automata that solved
a maze [12] using a distributed algorithm similar to Lee’s algorithm [5] under
the restrictions that the number of states is finite and state transitions are asyn-
chronous. However, this system takes time to detect undesired situations, such
as loops.

In this paper, we reconsider the transition rules and target configurations of
the gellular automata and present new transition rules that can solve a maze
in a relatively short time. Moreover, we examine two other typical problems in
distributed computing: distance-2 coloring and spanning tree construction. Like
solving a maze, we confirm that these problems can be solved with self-stable
gellular automata and explain how to design suitable systems for this purpose.

There are a number of studies on cellular automata solving maze problems
such as [8], but we could not find self-stable ones except ours. Self-stable cellular
automata for k-coloring are proposed by a very recent study [2], but typical
distributed problems such as mazes and spanning trees are not dealt with. We
conjecture that their definition of stability is derived from ours, but detailed
comparison is left for future work.

The gellular automaton for solving a maze and others are demonstrated by
the simulator available at https://cell-sim.firebaseapp.com/. Select “New Maze”
in “Simulation Target.”

2 Solving a Maze

2.1 Definitions

In this paper, a two-dimensional square lattice and von Neumann neighborhood
are assumed. Each cell in the square lattice has a state from the following set.

{W,B, S, T0, T
∗, T †, R} ∪ {P ′

i , P
′′
i , P

∗
i , P

†
i | i = 0, 1, 2, .., n − 1}

The states T0, T ∗, and T † are denoted T . The states P ′
i , P

′′
i , P ∗

i , and P †
i are

collectively denoted Pi. If i is arbitrary, Pi is simply denoted P . The parameter
n is the number of states in Pi and is equal to 5 in this section.

The state W denotes a wall of a maze, which does not make any transitions.
The state B denotes a blank, which may make a transition to P or R. The states
S and T are the starting point and the terminal point, respectively, and they
do not make any transitions. The state R indicates that it is reachable from the
terminal point, and a path consisting of P stretches on cells in R.

The superscripts ′, ′′, ∗ and † are used for detecting junctions by rules (9–21),
explained below, and the subscripts i are used for directing paths.

Definition 1 (transition rule). A transition rule consists of three compo-
nents: the current state of a cell that makes a transition, a condition to be
satisfied by the neighboring cells, and the next state that the cell will take.

https://cell-sim.firebaseapp.com/

Self-stabilizing Distributed Algorithms by Gellular Automata 3

Definition 2 (asynchrony, Boolean totality, non-camouflage). Cellular
automata are asynchronous if cells make transitions asynchronously, that is,
each cell may either make a transition by following a transition rule or do noth-
ing at each step. Cellular automata are Boolean totalistic if the conditions of
transition rules depend only on neighboring cells being in a particular state, not
on the direction or number of cells. Cellular automata are non-camouflage if no
conditions of transition rules contain the current state of the cell that makes a
transition.

A transition rule of asynchronous Boolean-totalistic non-camouflage cellular
automata is defined as follows.

s1 (t1 ∧ · · · ∧ tm ∧ ¬tm+1 ∧ · · · ∧ ¬tm+n) → s2

In this rule, s1 is the current state, t1 ∧ · · · ∧ tm ∧ ¬tm+1 ∧ · · · ∧ ¬tm+n is the
condition, and s2 is the next state. This means that a cell in state s1, whose
neighborhood contains cells in states t1, . . . , tn and does not contain cells in
states tm+1, . . . , tm+n, can make a transition to state s2. By the non-camouflage
property, s1 does not appear among t1, . . . , tm+n.

Definition 3 (configuration, run, step). A configuration is a mapping from
cells at lattice points in a square lattice to states, and a run is an infinite sequence
of configurations, each of which, except for the first one, is obtained by applying
the transition rules to the previous configuration. A transition step is the process
of transforming from configuration C1 to configuration C2, which is obtained by
having each cell in C1 make a single transition or do nothing. Due to asynchrony
and possibility that several rules can be applied to a state, a configuration some-
times has more than one next possible configuration. In this case, one of them
is chosen non-deterministically.

Definition 4 (passage, path, loop, junction). A passage is a sequence of
neighboring cells, each of which is in state B, R, or P . A maze is connected if
there is a passage from the starting point S to the terminal point T in the maze.

A path is a sequence of neighboring cells in states . . . , P0, P1, . . . ,
Pn−1, P0, . . . , where the indices are incremented in (Z/nZ).

If a path has both ends, that is, a head that is not adjacent to Pi−1 and a tail
that is not adjacent to Pi+1, we say that the path is maximal. If the head of a
maximal path is adjacent to T and its tail is adjacent to S, the maximal path is
called a solving path.

If a path has no ends, it is called a loop. In particular, if a loop has no
junctions (described later), we call that loop pure.

We say that a path has a junction if a cell in state Pi in the path is adjacent
to two or more different cells in Pi−1 (or S if i = 0) or two or more in Pi+1

(or T). Such a cell in state Pi is called a collision point, which is also called an
entrance in the former case and an egress in the latter case.

Definition 5 (solution). A solution of a maze is a configuration in which there
is only one maximal path, and its head (tail) is adjacent to the starting point S

4 T. Hongu and M. Hagiya

(the terminal point T , respectively). If the maze is connected, there are solutions,
and if it is not connected, there are no solutions (Fig.1).

Fig. 1. An example of solutions of a
maze (black cells denote W)

Fig. 2. Reduction of an entrance by
rules (7–12)

Definition 6 (fair run). A run R is fair if a certain configuration C appears
in R infinitely often, and any configuration C ′ that can be obtained from C by a
transition step also appears in R infinitely often.

Throughout this paper, we assume non-deterministic models of computation.
In probabilistic models such as Markov processes, probabilities of unfair runs are
zero, i.e., runs are fair with probability 1.

Definition 7 (target configuration, self-stability). Some configurations
that are desirable (for a specific purpose) are defined as target configurations.
Cellular automata are self-stable if in any fair run from any configuration, a
target configuration appears in finite steps, and only target configurations appear
after that.

The above definition of self-stability is generally adopted in the field of dis-
tributed computing [1]. Even when a perturbation occurs in a target configu-
ration, a new target configuration eventually appears if cellular automata are
self-stable, because we can start a fair run from the resulting non-target config-
uration.

Self-stabilizing Distributed Algorithms by Gellular Automata 5

2.2 Procedure for Solving a Maze

2.2.1 Transition Rules
We introduce 21 transition rules of gellular automata for solving a maze.

(1) B (T0) → R (12) P ∗
i (¬P ′′

i−1) → P ′
i

(2) B (R) → R (13) Pi (P ′
i+1 ∧ P ′′

i+1) → P †
i

(3) R (S) → P ′
0 (14) Pi (T ∧ P ′′

i+1) → P †
i

(4) R (Pi ∧ ¬Pi+2) → P ′
i+1 (15) P ′′

i (P †
i−1) → B

(5) Pi (¬T ∧ ¬R ∧ ¬Pi+1) → B (16) P †
i (¬P ′′

i+1) → P ′
i

(6) Pi (¬S ∧ ¬Pi−1) → B (17) T0 (Pi) → T ∗

(7) P ′
i () → P ′′

i (18) T ∗ (P ′
i ∧ P ′′

j) → T †

(8) P ′′
i () → P ′

i (19) P ′′
i (T †) → B

(9) Pi (P ′
i−1 ∧ P ′′

i−1) → P ∗
i (20) T † (¬P ′′) → T0

(10) P0 (S ∧ P ′′
n−1) → P ∗

0 (21) T ∗ (¬P) → T0

(11) P ′′
i (P ∗

i+1) → B

Each rule is actually a schema of rules and represents a number of concrete
rules. For example, rule (4) represents R (P ′

i ∧ ¬P ′
i+2 ∧ ¬P ′′

i+2) → P ′
i+1 and

R (P ′′
i ∧ ¬P ′

i+2 ∧ ¬P ′′
i+2) → P ′

i+1 for each i, because P ′
i and P ′′

i are collectively
denoted by Pi.

If a cell in state B is adjacent to T0 or R, rules (1–2) change its state to R. In
this way, we can detect all reachable cells from the terminal point T . Once a cell
in state B adjacent to the starting point S makes a transition to R, rules (3–4)
generate a path from S and extend it while making as few loops as possible by
preventing the path from joining to an existing path.

Rules (5–6) are intended to reduce dead ends of paths. If the head of a path is
not adjacent to T and cannot stretch any more because there are no neighboring
cells in state R, it changes back to state B. Similarly, if the tail of a path is not
adjacent to S, it changes back to state B.

We reduce entrances with rules (7–12). First, cells in state P ′
i or P ′′

i switch
their states from P ′

i to P ′′
i or P ′′

i to P ′
i . Next, a cell adjacent to both P ′

i and
P ′′
i finds itself being an entrance and makes a transition to state P ∗

i . Then, one
(or more) of the paths joining at the entrance cell disappears gradually, and the
entrance changes back to state P ′

i .
Figure 2 shows the procedure for reducing entrances. We also reduce egresses

with rules (13–16).
Rules (17–21) restrict the number of paths reaching the terminal point T to

fewer than one. If the terminal point T0 is adjacent to cells in state P , it makes
a transition to state T ∗, and no more cells in R are generated from it. As in the
case of junctions, if the terminal point T is adjacent to several cells in P , one
(or more) of the paths joining at T disappears gradually.

2.2.2 Self-stability of Solving a Maze
An initial configuration is a configuration that satisfies all of the following con-
ditions:

6 T. Hongu and M. Hagiya

(I-1) There is just one starting point S and one terminal point T , and these are
not adjacent.

(I-2) The number of cells not in state W is finite.

A target configuration is a configuration that does not satisfy the above con-
ditions for an initial configuration or that satisfies all of the following conditions:

(T-1) If the maze is connected, there is only one solving path from S to T ∗.
(T-2) There are no maximal paths except solving paths.
(T-3) There are no cells in R adjacent to S, P , or B.
(T-4) If the maze is not connected, there is a cell in T0 not adjacent to B or P .
(T-5) There are no junctions, that is, there are no cells in Pi adjacent to two

or more cells in Pi−1 (or S if i = 0), or two or more in Pi+1 (or T).
(T-6) There are no cells in P ∗

i or P †
i .

We now prove that these gellular automata are self-stable.

Theorem 1 (Self-stability of Solving a Maze). Gellular automata with the
above states, transition rules, and conditions of target configurations are self-
stable.

First, we show that from any initial configuration, a target configuration
appears after a finite number of steps. Second, we show that once a target con-
figuration appears, only target configurations appear afterward.

Lemma 1. Assume that from any initial configuration, a target configuration
can be obtained by some transition steps. Then a target configuration appears in
any fair run.

Proof. Assume that no target configuration appears in a fair run. As the cellular
space is finite, the number of possible configurations is also finite. Therefore,
there exists a configuration C that appears an infinite number of times in the
run, and because of fairness, any configurations that can be obtained from C,
including a target configuration, also appear in the run. This is a contradiction.

To prove the theorem, we first show that we can obtain a target configuration
from any initial configuration by the following operations (i)–(iv) in order.

(i) We spread R by rules (1–2) until they can no longer be applied, then spread
P by rules (3–4) until they can no longer be applied.

(ii) By applying rules (5–16), we remove all maximal paths except solving paths.
Then there are only solving paths without junctions and pure loops. If there
remain cells in P ∗

i or P †
i , we get rid of them by applying rules (8,12,16).

(iii) If the maze is connected and there are solving paths, we move to (iv).

If the maze is connected but there are no solving paths, because the terminal
point T is not adjacent to P , we change T to T0 by applying rules (20–21).
We then spread R from T0 only on the passage that will be a solving path
without junctions. When R is adjacent to P in a pure loop, we change all

Self-stabilizing Distributed Algorithms by Gellular Automata 7

R on the passage to P by applying rules (3–4) and remove the loop and the
resulting path using rules (5–16). By repeating this process, a single solving
path is obtained.

If there remain cells in P ∗
i or P †

i , we get rid of them using rules (8,12,16).
There should be no cells in R adjacent to B, S, and P because we spread R
only on the passage of a solving path, and there should be no junctions.

If the maze is not connected, we also change T to T0, as above. We then
spread R to all cells reachable from T while removing pure loops by rules
(3–4), (7–16). Then there should be no cells in R adjacent to B, S, and P
and no junctions. Moreover, T0 should not be adjacent to B, P .

(iv) If there are two or more solving paths, we keep one and remove the others
by applying rules (17–21). Because there are no junctions in the paths, we
can remove them by applying rule (5) until just one cell is adjacent to S.
Finally, we change T to T ∗ by rule (17).

Figure 3 shows the operations (i)–(iv).

Fig. 3. Procedure of the operation (i–iv)

We now show that only target configurations appear after a target config-
uration is obtained. Table 1 shows the conditions satisfied after each transition
step.

8 T. Hongu and M. Hagiya

Table 1. Conditions of mazes satisfied after each operation (init. denotes initial con-
figurations)

(I) (II) (III) (IV) (V) (VI) (VII) (VIII)

init. x x x x x x x x

(i) o o x x o x x x

(ii) o o o o x x x x

(iii) o o o o o o x x

(iv) o o o o o o o o

(I) There are no cells in R adjacent to S, P .
(II) There are no cells in B adjacent to R.
(III) There are no junctions and no cells in P ∗

i or P †
i .

(IV) There are no maximal paths except solving paths.
(V) If the maze is unconnected, there is a cell in T0 not adjacent to B, P .
(VI) If the maze is connected, there are solving paths.
(VII) If the maze is connected, each of the cells in S or T has just one neigh-

boring cell in P .
(VIII) If the maze is connected, there is a cell in T ∗.

After (iv), all of the above conditions (I–VIII) are satisfied. We can see that
the conditions of the target configurations are satisfied. (T-1) holds because of
(III), (VI), (VII), (VIII). (T-2), (T-3), (T-4), (T-5), and (T-6) hold because of
(IV), (II), (V), (III), and (III). (In fact, if and only if all of the conditions (I–
VIII) are satisfied, all of the conditions of target configurations (T-1–T-6) are
satisfied.) Then only rules (7–8) can be applied to cells under target configu-
rations, and they continue to satisfy (T-1–T-6). Therefore, after the first, only
target configurations appear.

3 Distance-2 Coloring

3.1 Definitions

The space of cellular automata for solving the distance-2 coloring problem is the
same as that for solving a maze. A state of a cell is either W , which represents a
wall, or a pair (c, conf) of a color state c and a conflict state conf . Cells whose
state is a pair (c, conf) is called colored.

A color state c is either c′
i or c′′

i (i = 1, 2, . . . , n), and cells whose color state is
c′
i or c′′

i are considered to have the same color i. They are sometimes collectively
denoted by ci or c, as in the case of automata for solving a maze. The parameter
n is the number of colors used, which is 13 in this section. A conflict state conf
is a list of 0 or 1, such as [0, 1, 0, ..., 1], whose length is n. The i-th element is
1 if there are two or more neighboring cells in the color i and is 0 otherwise. A
cell in the color i may change its color if conf [i] of any neighboring cell is 1 or
it has a neighboring cell in the same color i.

Self-stabilizing Distributed Algorithms by Gellular Automata 9

Definition 8 (distance-2 coloring). A colored cell is called unsafe if there is
a neighboring cell in the same color as the cell or a pair of neighboring cells in
the same color and safe otherwise. A configuration is called distance-2 colored if
there are no unsafe cells.

The color of any cell in a distance-2 colored configuration is different from
those of the cells within a distance of two cells from it.

Figure 4 shows distance-2 coloring with five colors. Cells with different letters
have different colors. Panel (a) shows a distance-2 colored configuration, but
panel (b) does not because there are colored cells adjacent to two cells in R.
(Note that cells W adjacent to more than two cells in the same color are allowed.)

Fig. 4. An example of distance-2 coloring of cells Fig. 5. 12-cells

3.2 Procedure for Distance-2 Coloring

In this section, we introduce the transition rules and the proof of self-stability
of the automata for distance-2 coloring.

3.2.1 Transition Rules
The automata for distance-2 coloring have the following seven transition rules.
The symbol ∗ expresses an arbitrary color state or conflict state. The symbol
conf |[i]=j is a conflict state such that conf [i] = j, that is, [∗, . . . , ∗, j, ∗, . . . , ∗],
where the i-th element is replaced by j.

(1) (c′
i, conf) () → (c′′

i , conf)
(2) (c′′

i , conf) () → (c′
i, conf)

(3) (ci, conf |[j]=0) ((c′
j , ∗) ∧ (c′′

j , ∗)) → (ci, conf |[j]=1)
(4) (ci, conf |[j]=1) ((¬c′′

j , ∗)) → (ci, conf |[j]=0)
(5) (c′

i, conf) ((c′′
i , ∗)) → (c′

j , conf)
(6) (c′′

i , conf) ((c′
i, ∗)) → (c′′

j , conf)
(7) (c′′

i , conf 1) ((∗, conf 2|[i]=1)) → (c′
j , conf 1)

10 T. Hongu and M. Hagiya

These transition rules work as follows.

– (1–2): They switch the color states of cells from c′
i to c′′

i or c′′
i to c′

i to enable
cells to recognize whether there are two or more neighboring cells in the same
color.

– (3–4): If a cell has two or more neighboring cells in the same color i, they
change conf [i] of the cell from 0 to 1. If not, they change it from 1 to 0.

– (5–6): If a cell is adjacent to cells in the same color, they change the color of
the cell to an arbitrary one.

– (7): If a cell is in a color state c′′
i and there is a neighboring cell whose conf [i]

is 1, they change its color to an arbitrary one.

3.2.2 Self-stability of Distance-2 Coloring
An initial configuration is a configuration in which the number of cells not in
state W is finite. A target configuration is a configuration that does not satisfy
the above condition for initial configurations or that satisfies all of the following
conditions:

(T-1) There are no colored cells whose colors are the same as one of their neigh-
boring cells.

(T-2) There are no colored cells that are adjacent to two or more neighboring
cells with the same color.

(T-3) There are no colored cells whose conflict states are not [0, 0, . . . , 0].

Now we show that these gellular automata are self-stable.

Theorem 2 (Self-Stability of Distance-2 Coloring). Gellular automata
with the above states, transition rules, and conditions of target configurations
are self-stable.

As in the case for solving a maze, we consider the following operations (i–iii).

(i) If there is a cell such that conf [i] = 1 for some i and there is at most one
neighboring cell in color i, we change its conf [i] from 1 to 0 by applying rule
(4).

(ii) If a cell and one of its neighboring cells are in the same color, we change
its color according to rules (5–6). Also, if two or more neighboring cells of
a cell are in the same color i, we first make both c′

i and c′′
i appear in the

neighboring cells by rules (1–2). We then change its conf [i] to 1 by rule (3)
and finally change c′′

i by rule (7). In both cases, we choose the color to which
the cell changes, except the color of neighboring cells and that of the cells to
which they are adjacent. As the number of colors we cannot choose is at most
12 (as in Fig. 5), which is less than the number of colors, 13, we can always
choose one, and the number of unsafe cells decreases.

(iii) By repeating (i–ii), we can change all of the unsafe cells to safe ones and
their conflict states to [0, 0, . . . , 0].

Self-stabilizing Distributed Algorithms by Gellular Automata 11

Through the above operations (i–iii), a target configuration is obtained. Then
only rules (1–2) can be applied to cells in target configurations, which does not
change conditions (T-1–T-3). Therefore, after the first, only target configurations
appear.

4 Spanning Tree

4.1 Definitions

The space of cellular automata for spanning tree construction is the same as
that for solving a maze. A state of a cell is either W , which represents a wall,
or a pair (P,C), which should belong to a spanning tree. Here P is called a tree
state and C is called a color-conflict state. A tree state P is one of the following
set:

{ri, ti[cj], li[cj] | i = 0, 1, . . . ,m − 1, j = 1, 2, . . . , n}
A cell whose tree state is ri, ti[cj], or li[cj] is called a root, an inner node, or
a leaf of a spanning tree. The index i is called a wave index, and cj is called
a parent color. If i or j are arbitrary, ri is denoted r, and ti[cj] is denoted by
ti, t[cj], and t (and similarly for li[cj]). A color-conflict state C is a pair of a
color state and a conflict state, similar to the case of distance-2 coloring. The
parameter m is the number of ri, which is 6 in this section.

If a tree state of a cell is ti[cj] or li[cj], it points to a neighboring cell whose
color is j as its parent. In this manner, we can define a parent-child relation
in the cellular space if the parent of each cell is uniquely determined. Figure 6
shows an example of the construction of a spanning tree.

Fig. 6. An example of a spanning tree construction

4.2 Self-stability of Spanning Tree Construction

As in the case of the other two problems, we can construct a spanning tree with
self-stable gellular automata. First, we construct the parent-child relation of cells

12 T. Hongu and M. Hagiya

by distance-2 coloring. If configurations are distance-2 colored, there are no cells
with a pair of neighboring cells of the same color, so the parent of each cell is
uniquely determined by designating the color of the parent. This enables us to
construct a tree in which no cells have two or more parents. Next, we propagate
a wave from a root to leaves and from leaves to a root. This enables us to detect
a pure loop as cells to which the wave does not propagate. We then add the cells
in the loop to the tree.

5 Conclusions

In this paper, we showed how to construct gellular automata that solve three
problems: solving a maze, distance-2 coloring, and spanning tree construction.
As self-stable gellular automata can recover from malfunctions of states and
transitions, materials that contain them are able to form structures like blood
vessels or neural networks that can repair themselves following external damage
or environmental changes.

By adding and changing some states and transition rules, we can also design
gellular automata for solving other problems. For instance, gellular automata
that solve the Hamiltonian circuit problem can be constructed by modifying
those for a maze. The actual construction of these gellular automata remains for
future studies. We also plan to improve the automata by decreasing the number
of states and transition rules and reducing the number of steps required for them
to converge to a target configuration.

Acknowledgements. We thank Akira Yagawa for valuable discussions and imple-
menting the simulator. We also thank the anonymous reviewers for improving the
paper. This work was partially supported by Grant-in-Aid for challenging Exploratory
Research 17K19961.

References

1. Dolev, S.: Self-Stabilization. MIT Press, Cambridge (2000)
2. Fatés, N., Marcovici, I., Taati, S.: Cellular automata for the self-stabilisation of

colourings and tilings. In: Filiot, E., Jungers, R., Potapov, I. (eds.) RP 2019. LNCS,
vol. 11674, pp. 121–136. Springer, Cham (2019). https://doi.org/10.1007/978-3-
030-30806-3 10

3. Hagiya, M., et al.: On DNA-based gellular automata. In: Ibarra, O.H., Kari, L.,
Kopecki, S. (eds.) UCNC 2014. LNCS, vol. 8553, pp. 177–189. Springer, Cham
(2014). https://doi.org/10.1007/978-3-319-08123-6 15

4. Hosoya, T., Kawamata, I., Nomura, S.I.M., Murata, S.: Pattern formation on dis-
crete gel matrix based on DNA computing. New Gener. Comput. 37(1), 97–111
(2019). https://doi.org/10.1007/s00354-018-0047-1

5. Lee, C.Y.: An algorithm for path connections and its applications. IRE Trans.
Electron. Comput. EC–10(3), 346–365 (1961)

6. Peper, F., Lee, J., Adachi, S., Isokawa, T.: Cellular nanocomputers: a focused
review. Int. J. Nanotechnol. Mol. Comput. (IJNMC) 1(1), 33–49 (2009)

https://doi.org/10.1007/978-3-030-30806-3_10
https://doi.org/10.1007/978-3-030-30806-3_10
https://doi.org/10.1007/978-3-319-08123-6_15
https://doi.org/10.1007/s00354-018-0047-1

Self-stabilizing Distributed Algorithms by Gellular Automata 13

7. Scalise, D., Schulman, R.: Emulating cellular automata in chemical reaction-
diffusion networks. Nat. Comput. 15(2), 197–214 (2016). https://doi.org/10.1007/
s11047-015-9503-8

8. Tsompanas, M.-A.I., Sirakoulis, G.C., Adamatzky, A.: Cellular automata models
simulating slime mould computing. In: Adamatzky, A. (ed.) Advances in Physarum
Machines. ECC, vol. 21, pp. 563–594. Springer, Cham (2016). https://doi.org/10.
1007/978-3-319-26662-6 27

9. Yamashita, T., Hagiya, M.: Simulating population protocols by gellular automata.
In: 57th Annual Conference of the Society of Instrument and Control Engineers of
Japan (SICE), pp. 1579–1585. IEEE (2018)

10. Yamashita, T., Isokawa, T., Peper, F., Kawamata, I., Hagiya, M.: Turing-
completeness of asynchronous non-camouflage cellular automata. In: Dennunzio,
A., Formenti, E., Manzoni, L., Porreca, A.E. (eds.) AUTOMATA 2017. LNCS,
vol. 10248, pp. 187–199. Springer, Cham (2017). https://doi.org/10.1007/978-3-
319-58631-1 15

11. Yamashita, T., Isokawa, T., Peper, F., Kawamata, I., Hagiya, M.: Turing-
completeness of asynchronous non-camouflage cellular automata. Inf. Comput.
274, 104539 (2020)

12. Yamashita, T., Yagawa, A., Hagiya, M.: Self-stabilizing gellular automata. In:
McQuillan, I., Seki, S. (eds.) UCNC 2019. LNCS, vol. 11493, pp. 272–285. Springer,
Cham (2019). https://doi.org/10.1007/978-3-030-19311-9 21

13. Yin, P., Sahu, S., Turberfield, A.J., Reif, J.H.: Design of autonomous DNA cellular
automata. In: Carbone, A., Pierce, N.A. (eds.) DNA 2005. LNCS, vol. 3892, pp.
399–416. Springer, Heidelberg (2006). https://doi.org/10.1007/11753681 32

https://doi.org/10.1007/s11047-015-9503-8
https://doi.org/10.1007/s11047-015-9503-8
https://doi.org/10.1007/978-3-319-26662-6_27
https://doi.org/10.1007/978-3-319-26662-6_27
https://doi.org/10.1007/978-3-319-58631-1_15
https://doi.org/10.1007/978-3-319-58631-1_15
https://doi.org/10.1007/978-3-030-19311-9_21
https://doi.org/10.1007/11753681_32

	Self-stabilizing Distributed Algorithms by Gellular Automata
	1 Introduction
	2 Solving a Maze
	2.1 Definitions
	2.2 Procedure for Solving a Maze

	3 Distance-2 Coloring
	3.1 Definitions
	3.2 Procedure for Distance-2 Coloring

	4 Spanning Tree
	4.1 Definitions
	4.2 Self-stability of Spanning Tree Construction

	5 Conclusions
	References

