
HAL Id: hal-03659463
https://inria.hal.science/hal-03659463

Submitted on 5 May 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Cycle Based Clustering Using Reversible Cellular
Automata

Sukanya Mukherjee, Kamalika Bhattacharjee, Sukanta Das

To cite this version:
Sukanya Mukherjee, Kamalika Bhattacharjee, Sukanta Das. Cycle Based Clustering Using Reversible
Cellular Automata. 26th International Workshop on Cellular Automata and Discrete Complex Sys-
tems (AUTOMATA), Aug 2020, Stockholm, Sweden. pp.29-42, �10.1007/978-3-030-61588-8_3�. �hal-
03659463�

https://inria.hal.science/hal-03659463
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

This document is the original author manuscript of a paper submitted to an IFIP
conference proceedings or other IFIP publication by Springer Nature. As such, there
may be some differences in the official published version of the paper. Such
differences, if any, are usually due to reformatting during preparation for publication or
minor corrections made by the author(s) during final proofreading of the publication
manuscript.

Cycle based Clustering using Reversible Cellular
Automata

Sukanya Mukherjee1?, Kamalika Bhattacharjee2, and Sukanta Das3

1 Department of Computer Science and Engineering, Institute of Engineering and
Management, Kolkata, West Bengal, 700091, India

sukanya.mukherjee@iemcal.com
2 Department of Computer Science and Engineering, Indian Institute of Information

Technology Ranchi, Jharkhand, 834010, India
kamalika.it@gmail.com

3 Department of Information Technology, Indian Institute of Engineering Science and
Technology, Shibpur, Howrah, West Bengal, 711103, India

sukanta@it.iiests.ac.in

Abstract. This work proposes cycle based clustering technique using
reversible cellular automata (CAs) where ‘closeness’ among objects is
represented as objects belonging to the same cycle, that is reachable
from each other. The properties of such CAs are exploited for group-
ing the objects with minimum intra-cluster distance while ensuring that
limited number of cycles exist in the configuration-space. The proposed
algorithm follows an iterative strategy where the clusters with closely
reachable objects of previous level are merged in the present level using
an unique auxiliary CA. Finally, it is observed that, our algorithm is at
least at par with the best algorithm existing today.

Keywords: Reversible Cellular Automata, Reachability, Large length
cycle, Level-wise clustering, Connectivity, Silhouette score, Dunn index

1 Introduction

Clustering technique [10, 12, 13] is a well studied research topic when no class
information is provided for grouping the available objects (data records) based
on some closeness measuring metric. It also exploits the inherent anatomy of
data objects for partitioning the dissimilar objects into separate clusters. Till
date, a varied collection of well accepted algorithms for clustering [10, 12] have
been developed. Such clustering techniques aim to gather alike data objects for
producing ‘good’ clusters where intra-cluster and inter-cluster isolation, based
on feature space should be lower and higher respectively. Maintaining less intra-
cluster distance between any two objects intrinsically means the alike objects are
interconnected. This interconnectivity in clustering motivates us to use cellular
automata (CAs) as natural clusters.

In a cellular automaton (CA), the configurations within a cycle are reachable
from one another, whereas the configurations of different cycles are not-reachable.

? Corresponding author

Moreover, the locality property of CA influences that the related configurations
are reachable. This ‘reachability’ is the key of clustering using CA as reachable
configurations form cycle(s). Therefore, CA can act as a function that maintains
bijective mapping among the configurations which are reachable or connected
and gathers similar objects (configurations) into same cluster (cycle). This work
reports reversible non-uniform CAs as the proposed model, where each configu-
ration x (object) is reachable (connected) from the remaining configurations of
that cycle (cluster) where x belongs to. Hereafter, if not otherwise mentioned,
by a ‘CA’, we shall mean a reversible non-uniform CA under null-boundary
condition which uses Wolfram’s rules [11].

Ideally, a CA of size n can distribute 2n configurations among m cycles where
m ranges from 1 to 2n. To an extreme degree, a CA based clustering can attract
all target objects in one cluster or distribute among m clusters where the count of
target objects is m (≤ 2n) – both of which are not desirable for good clustering.
Therefore, a CA is said to be effective for clustering if it can distribute the target
objects among a limited number of clusters. This limited number of clusters is
not necessarily the only primary objective for efficient CA based clustering – the
feature based distances among the reachable configurations of each cluster should
also be as minimum as possible. So, clustering can be viewed as an optimization
problem where there is a trade-off between these two facets.

To incorporate this idea in CA based clustering technique, this work proposes
an intelligent arrangement of CA rules for generating an n-cell candidate CA
which is capable of maintaining less intra-cluster distance among objects and
generates limited number of cycles. (Here, n is determined based on the number
of features owned by the target objects which is always finite.) For ensuring that
this CA has limited number of cycles, we use the framework of a related prob-
lem – CA with large cycles (introduced in [1]). However, to guarantee that for
the candidate CA, the configurations inside a cycle maintain minimum possible
hamming distance (as binary CA is considered for this research), we propose
a scheme to select significant rules which contribute minimum change in cell’s
state value when transition occurs between configurations (Section 3.2). Next,
the proportion of such significant rules for designing an n-cell (non-uniform) CA
for clustering is evaluated to ensure optimal number of clusters (Section 3.3).

Definitely, generating a CA for a fixed n maintaining less intra-cluster dis-
tance and limited number of clusters is a very challenging problem; even if the
desired number of clusters is given, it is difficult to determine the corresponding
CA which can produce good clusters for the given dataset. The inherent hardness
of this problem motivates us to take an iterative strategy which distributes the
target objects in m clusters. In the proposed algorithm, the clusters of level i are
generated by merging a set of clusters of level i − 1 which are closely reachable
(Section 4). To measure the quality (goodness) of clusters, some benchmark clus-
ter validation indices (internal) [2] are used. Section 5 presents the performance
analysis of our proposed cycle based clustering algorithm on some real datasets
taken from ML repository (http://archive.ics.uci.edu/ml/index.php). Fi-
nally, we compare our proposed algorithm with some traditional benchmark clus-

http://archive.ics.uci.edu/ml/index.php

tering algorithms like centroid based clusterings, hierarchical clusterings [2, 12].
Our results indicate that, performance of our CA-based clustering technique is
at least as good as the best known clustering algorithm existing today.

2 Basics of CAs

In this work, we use one-dimensional three-neighborhood n-cell CAs under null
boundary condition, where each cell takes any of the states S = {0, 1}. The next
state of each cell is updated following an elementary cellular automaton (ECA)
rule. The present state of all cells at a given time is called the configuration of
the CA. Thus, evolution of a CA is determined by a global transition function
G such that G : C → C where C = {0, 1}n represents the configuration space.
Hence, if the next configuration of x = (xi)∀i∈n is y, then y = G(x) where
x, y ∈ C, y = (yi)∀i∈n and xi, yi are the present and next state values of cells i
respectively. Therefore, yi = Ri(xi−1, xi, xi+1) where Ri is the rule correspond-
ing to cell i and xi−1, xi, xi+1 is the neighborhood combination for cell i. This
neighborhood combination is named as the Rule Min Term (RMT) and repre-
sented by its decimal equivalent r = 22 × xi−1 + 21 × xi + xi+1. A rule vector
R = (R0, R1, · · · ,Rn−1) of length n is used to represent any arbitrary n-cell
non-uniform CA, where Ri 6= Rj for some i and j.

Present state 111110101100011010001000 Rule

(i) Next state i i i i 1 0 0 1 9(R0)
(ii) Next state 1 0 0 1 0 1 1 0 150(R1)
(iii) Next state 0 0 1 0 1 1 0 1 45(R2)
(iv) Next state i 1 i 0 i 0 i 1 65(R3)

Table 1: An 4-cell CA (9, 150, 45, 65).

Let us now present the rules in tabular form (see Table 1). Obviously, there
are 28 = 256 distinct rules. These rules are traditionally named by their dec-
imal equivalents. Since we are using null boundary condition, x−1 = xn = 0.
Therefore, for the first cell, y0 = R0(0, x0, x1), and for the last cell, yn−1 =
Rn−1(xn−2, xn−1, 0). So, for each of these terminal cells, only 24 = 16 distinct
rules are considered as valid. For these rules, next state values for the present
states (1, x0, x1) and (xn−2, xn−1, 1) respectively, are undefined and marked as
invalid (i) (see, for example, first row of Table 1).

In a CA, if Ri(xi−1xixi+1) = xi, the corresponding RMT of rule Ri is called
a self-replicating RMT. If all RMTs of a configuration x is self-replicating, then
its next configuration y is identical to it and they form a cycle of length one. The
number of self replicating RMTs for a rule plays a major role in cycle formation
– number of cycles and lengths of cycles. Let Ci ⊆ C = {0, 1}n be a set of
configurations such that Gl(x) = x, ∀x ∈ Ci, where l ∈ N and |Ci| = l. Then,
all configurations x ∈ Ci are cyclic and reachable from each other. The set of
l configurations which forms a single cycle is named as a cycle space. So, Ci
is a cycle space of the CA. For instance, in Figure 1, the configurations 1000,
0111 and 0001 are reachable from one another as they form a cycle space of
length 3. A CA is called reversible, if all configurations are part of some cycle.

0111 0001

0000

1011

0011

1111

1101

1010

0010
1110

1100

1001

0100

0101

0110

1000

Fig. 1: Transition diagram of the 4-cell reversible CA (9, 150, 45, 65).

Figure 1 represents a reversible CA. Therefore, configuration space of a CA can
be represented as a collection of cycle spaces.

Class Ri Class
of Ri of Ri+1

I

51, 204, 60, 195 I
85, 90, 165, 170 II

102, 105, 150, 153 III
53, 58, 83, 92, 163, 172, 197, 202 IV
54, 57, 99, 108, 147, 156, 198, 201 V
86, 89, 101, 106, 149, 154, 166, 169 VI

II
15, 30, 45, 60, 75, 90, 105, 120, I

135, 150, 165, 180, 195, 210, 225, 240

III

51, 204, 15, 240 I
85, 105, 150, 170 II
90, 102, 153, 165 III

23, 43, 77, 113, 142, 178, 212, 232 IV
27, 39, 78, 114, 141, 177, 216, 228 V
86, 89, 101, 106, 149, 154, 166, 169 VI

IV
60, 195 I
90, 165 IV
105, 150 V

V

51, 204 I
85, 170 II
102, 153 III

86, 89, 90, 101, 105, 106, VI
149, 150, 154, 165, 166, 169

VI
15, 240 I
105, 150 IV
90, 165 V

(a) Class relationship of Ri and Ri+1

Rules Class
for R0 of R1

3, 12 I

5, 10 II

6, 9 III

(b) First
Rule Table

Rule class Rule set
for Rn−1 for Rn−1

I 17, 20, 65, 68
II 5, 20, 65, 80
III 5,17, 68, 80
IV 20, 65
V 17, 68
VI 5, 80

(c) Last Rule Table

Table 2: Rules to generate a Reversible CA.

To synthesize an n-cell reversible CAs, we use the methodology described
in [4]. For ease of reference, the table describing the class information of the
participating rule Ri, 0 ≤ i ≤ n − 1, is reproduced here (see Table 2). The
generation of an n-cell reversible CA is guided by the rule of cell i and the
class information of the rule of cell i+ 1 (see [4] for more details). The following
example illustrates the process of synthesis.

Example 1. Let us design a 4-cell reversible CA. To select an arbitrary R0, the
first column of Table 2(b) is taken into consideration. Let rule 9 be selected as
R0 from Table 2(b) (the third row and first column of Table 2(b)). As the class
information of the next rule of rule 9 is class III (the second column and third row
of Table 2(b)), therefore, R1 is to be anyone from the pool of CA rules of class
III from Table 2(a). Let rule 150 be chosen as R1 (the first column of Table 2(a)

for rule 150 is class III). Now, the third column and the row corresponding to
rule 150 in Table 2(a) is class II, therefore, R2 is to be selected from class II from
Table 2(a). By repeating the same process, let us choose R2 as 45. Therefore,
the class information for rule R3 is class I. However, as, this is the last rule, we
need to select this rule from Table 2(c). Let R3 is 65 (second column and first
row of Table 2(c)). Therefore, the reversible CA is (9, 150, 45, 65) (see Figure 1).

3 The Mapping between CA and Clustering

This section introduces how an n-cell reversible CA can be used for clustering
problem with k target objects having p distinct features. As binary CA is to be
used as a tool, each target object needs to be mapped to a configuration. To do
that, data discretization should be done effectively.

3.1 The encoding technique

Let X = {X1, X2, · · · , Xk} be the set of target objects which are to be distributed
among m clusters and A1, A2, · · · , Ap are p distinct attributes (features) of the
objects where each Aj is a quantifiable property. This Aj is a finite set depicting
the range of values of each feature has. To measure closeness among the target
objects using hamming distance [12], each object (X) is converted into a binary
string x (where x ∈ {0, 1}n and n ∈ N). Now, let X = (x1x2 · · ·xp) where xj ∈ Aj .

If Aj is continuous attribute, the range can be partitioned into v disjoint
subsets Aj1, Aj2, · · · , Ajv such that Aj1 ∩Aj2 ∩ · · · ∩Ajv = ∅. Using frequency
based encoding [5] for each Aj , let the encoding function be M : Aj 7→ Aj

1, where
Aj

1 is a finite set of discretized elements. Here, M is surjective and |Aj | � |A1
j |.

As we use binary CA, therefore, Aj
1 ∈ {0, 1}i (where i > 1). In this work, we

consider v = 3, that is, three intervals, so, two bit representation is needed to
maintain a minimum hamming distance. Therefore, Aj

1 ⊂ {0, 1}2; we use binary
strings 00, 01 and 11 to refer the intervals [a1, as], [as+1, aw] and [aw+1, at]
respectively, where a1 < as < as+1 < aw < aw+1 < at. However, if Aj is
categorical attribute, then the length of the substring for encoding each element
of Aj is log2 u where |Aj | = u and each element of Aj is represented as a way
where there is only one 1 at some unique position. Therefore, the hamming
distance between any pair of elements for such qualitative Aj is always fixed i.e.
two. At a glance, to convert a target object with p features (where pqn and pql are
the count of quantitative and qualitative attributes [10]) into a configuration of n-
cell CA, the following mechanism is considered: For each quantitative attribute,
as two bits are used, therefore, n = (2∗pqn)+(u1+u2+· · ·+upql). If all attributes
are quantitative, then n = 2 ∗ pqn .

Example 2. Let us take a hypothetical set of books, where each book is iden-
tified by three attributes – number of pages, ratings by reviewers and type of
binding. The first two attributes are continuous whereas, the last one is categor-
ical. Table 3 shows the detailed encoding scheme for ten such objects into CA
configurations. Here, the categorical attribute values are encoded as 01 (hard) or
10 (soft). Whereas, the continuous attribute values are divided into three sub-
intervals to be represented by 00, 01 and 11 respectively. For example, values in

#Object
Continuous Attribute Categorical Attribute

Encoded CA configuration
#Pages Encoding Ratings Encoding Binding Type Encoding

1 300 01 9 11 Hard 01 011101

2 325 11 8 11 Soft 10 111110

3 40 00 9.5 11 Soft 10 001110

4 200 01 4 00 Hard 01 010001

5 129 01 4.5 01 Soft 10 010110

6 65 00 7 01 Hard 01 000101

7 319 11 6.8 01 Soft 10 110110

8 110 00 3 00 Soft 10 000010

9 400 11 2.6 00 Soft 10 110010

10 350 11 9.3 11 Soft 10 111110

Table 3: Encoding a set of hypothetical books into CA configurations

Ratings are divided into sub-intervals [2.6, 4], [4.5, 7] and [8, 9.5] depicted by 00,
01 and 11 respectively. Therefore, each object is mapped to a 6-bit string which
can be shown as a configurations of a 6-cell CA.

Hence, using the encoding function M, the set of target objects (X) is mapped
to the configurations C = {0, 1}n of an n-cell CA. This work also supports hard
clustering [3, 10] where each target object is assigned to a fixed cluster. Next,
the significance of CA rules in designing the desired clusters is depicted.

3.2 CA rules to maintain minimum intra-cluster distance

For our present objective, we need to select such rules where minimum changes
occur during state transition. Ideally, it means all RMTs of any configuration
is self-replicating. The intrinsic property of such an n-cell CA is that each cell
follows a special rule where all RMTs are self replicating - this is rule 204.
However, this CA is not effective as number of clusters is 2n. Therefore, we have
to restrict on the count of self-replicating RMTs for any configuration. If CA size
is n, it is expected that more number of cycles possess configuration pairs that
maintains as minimum as possible hamming distances, which eventually leads to
enrich preservation of less intra-cluster distance. To detect such significant rules,
we rank each rule of Table 2 based on the number of self replicating RMTs it
possesses when used in designing the rule vector of a reversible CA. If all 8
RMTs (resp. the 4 valid RMTs, if used in cell 0 or cell n−1) are self-replicating,
the rule is ranked 1. Similarly, a CA rule is ranked 2, 3, 4 or 5 depending on
whether it possess 6, 4 (resp. 2 for cells 0 and n − 1), 2 or 0 self-replicating
RMTs respectively. Table 4 shows this ranking. This rank determines how a rule
can act as an influencing factor for designing a cluster with more similar (less
hamming distance) data.

Evidently, rule 204 is ranked first (8 self-replicating RMTs), but as it is
already mentioned, if rule 204 is applied to every cell of an n-cell CA, then each
target object belongs to an unique cycle which is not desirable for clustering.
Similarly, rule 51 is the least significant rule for clustering (no self-replicating
RMTs), as, for an n-cell CA with rule 51 as the only rule, each cluster consists
of a pair of configuration with hamming distance n. Therefore, we need to select
rule 204 for as many cells as possible and just opposite strategy should be used for
rule 51. However, CAs with only rules 204 and 51 are not effective for clustering.

Hence, to design clusters of objects with less intra-cluster distance, we take the
following strategy of choosing rules for synthesizing a reversible CA:

1. Discard all rules with Rank 4 and 5 (that is, less than 4 self-replicating
RMTs) from Table 2. Seventeen rules (51, 53, 58, 83, 163, 54, 57, 99, 147,
23, 43, 113, 178, 27, 39, 114, 177) are discarded by this condition. Therefore,
currently, the rule space is reduced to 45.

2. For the n− 2 non-terminal cell positions (cell 1 to cell n− 2), at most 50%
rules with rank 2 (6 self-replicating RMTs) are to be selected.

If we process in this way, the configurations with lesser hamming distances
are placed on the same cycle. However, this scheme can not restrict the number
of cycles. Next, we focus on the design of CA with limited number of cycles.

3.3 Designing CA with optimal number of clusters

From the above discussion, it is obvious that, the consecutive configurations of
a cycle maintain minimum distance in feature space if more significant rules are
used in an n-cell CA. That is, the same cycle connects alike objects. However,
it may increase the number of cycles. So, there is a trade-off between these two
aspects of clustering technique - maintaining less number of cycles (clusters) and
less intra-cluster distance among the objects, that is, configurations with less
hamming distances are in the same cycle. In this section, we discuss a technique
to generate CAs with limited number of cycles, that is, more configurations
are to be placed on the same cycle. This requirement matches with an existing
problem statement, generation of large cycle CA, already studied in [1]. For ease
of understanding, we briefly recall the idea.

Category Ri Rank
Completely Dependent 90, 165, 150, 105 3

Partially Dependent 30, 45, 75, 120, 135, 180, 210, 225,
86, 89, 101, 106, 149, 154, 166, 169

3

Weakly Dependent
92,172, 197, 202, 108, 156, 198, 201,
77, 142, 212, 232, 78, 141, 216, 228,

2

53, 58, 83, 163, 54, 57, 99, 147, 23,
43, 113, 178, 27, 39, 114, 177

4

Independent
51, 5
85, 170, 102, 153, 60, 195, 15, 240 3
204 1

(a) Categories of reversible CA rules

Category R0 Rank Rn−1 Rank

Completely Dependent
5, 6,

3
5, 20,

3
9, 10 65, 80

Independent
3, 5 17, 5
12 1 68 1

(b) Categories of R0 and Rn−1

Table 4: Categories of reversible CA rules on the parameter P.

A CA is expected to have a cycle of large length, if its rules are dependent on
both of the left and right neighbors. To measure this dependence, a parameter
(P), called degree of dependence on both the neighbors, is defined which deter-
mines how much a cell is dependent on its neighbors for updating its state. For
a rule Ri, P(Ri) = Pr(Ri) ∗ Pl(Ri). Here, Pr(Ri) (resp. Pl(Ri)) is the degree
of right (resp. left) dependence, defined as the ratio of the number of combina-
tions of values of xi and xi−1 (resp. xi+1) for which the next state function on

xi depends on xi−1 (resp. xi+1). Evidently, P(Ri) can take values 0, 0.25, 0.5
or 1. Based on these values, the rules of reversible CAs are classified into four
categories – completely dependent (P = 1), partially dependent (P = 0.5), weakly
dependent (P = 0.25) and independent (P = 0) (see Table 4). It is observed that
in a CA with large cycle(s), majority of the participating rules are from the
completely dependent category, some are from the partially dependent category
and a few are from the category of weakly dependent, whereas, none are from
the Independent category. For more detailed discussion, please see [1].

Obviously, following the strategy mentioned in Section 3.2, sixteen rules from
weakly dependent category and all rules from independent categories are rejected
for clustering purpose as they produce more pair of configurations with high
hamming distances. The remaining sixteen rules of weakly dependent category
have rank 2, whereas, the rules of completely dependent and partially depen-
dent categories have rank 3. In the following section, our proposed clustering
technique, cycle based clustering using these CAs, is described in detail.

4 Cycle based clustering

Generating an n-cell CA with large number of cycles having less intra-cluster
distance is itself a very challenging problem. Moreover, even if desired number
of clusters are generated, then also it is difficult to ascertain that the produced
clusters are good for the given dataset. To deal with this issue, this section
describes a CAs based iterative algorithm which efficiently generates desired
number of good clusters.

In this algorithm, more than one CA can participate in designing the clusters
for a given dataset. However, any arbitrary CA is not acceptable as candidate;
such CAs need to maintain the necessary conditions described in Section 3.
Therefore, in our CA based clustering approach, the following characteristics
are to be maintained:
– Property 1: Participating CA of size n maintains rules at all cells from a

subset of rank 3 and at most one rule from rank 2.
– Property 2: Our technique converges by merging the clusters. To do that,

a hierarchy of levels has to be maintained.
– Property 3: Only closely reachable clusters of level i− 1 are to be merged

to generate the updated clusters of level i.
Let M(X) be the set of encoded target objects where M(X) ⊂ C and X =

{X1, X2, · · · , Xk} is the set of target objects. These encoded target objects are
named as target configurations. Let |M(X)| = k′ where k′ ≤ k. At any level, a
target configuration x ∈ M(X) is member of a distinct cluster c (a set of encoded
target objects) such that |

⋃
c| = |M(X)|.

Let mi be the number of primary clusters at level i. For level 0, the primary
clusters are c1

0, c2
0, · · · , cm00, where each cluster is a singleton set. Therefore,

k′ = m0. In general, for any level i, the primary clusters are c1
i, c2

i, · · · , cmi i.
To form these primary clusters of level i from level i − 1, a CA of size n is
selected uniformly random without replacement from a pool of candidate CAs
maintaining property 1. This process is maintained at every level i. Such a CA

is named as an auxiliary CA. This CA plays a major role in clustering. Firstly,
it is needed to compute the number of auxiliary clusters of such a CA, in which
the target configurations (k′) strictly belong to.

Definition 1 Let x be a target configuration and G : C 7→ C be an auxiliary
CA. If x ∈ Cj where Cj ⊂ C is a cycle space of G, then x strictly belongs to the
auxiliary cluster Cj.

Let the target configurations strictly belong to m′ number of auxiliary clusters
Ci1, C

i
2, · · · , Cim′ of level i. Our second step is to follow property 2, that is,

merging the primary clusters c1
i−1, c2

i−1, · · · , cm0 i−1 of level i − 1 using these
auxiliary clusters to get the resultant primary clusters of level i where mi ≤
mi−1. However, these clusters can not be merged arbitrarily; a pair of primary
clusters can be merged depending on their degree of membership of participation.

Definition 2 Let cj
i−1 be a primary cluster of level i− 1 where |cji−1| = vj.

Let Cit be an auxiliary cluster of level i. The degree of membership of partici-
pation of cj

i−1 in Cit , denoted by µ(Cit , cj
i−1), is defined as the availability of

configurations of cj
i−1 in Cit . It is computed as v′j/vj where v′j refers to the count

of target configurations from primary cluster cj
i−1 in auxiliary cluster Cit .

The configurations of cj
i−1 can strictly belong to more than one auxiliary cluster.

Similarly, Cit can possess target configurations from different clusters of level
i− 1. Let cl

i−1 and cj
i−1 be two primary clusters of level i− 1. These two

clusters may be merged if they are necessarily closely reachable (property 3).

Definition 3 Let cj
i−1, cl

i−1 and cs
i−1 be the clusters whose members strictly

belong to Cit . Now, clusters cj
i−1 and cl

i−1 are said to be closely reachable in
Cit if |(µ(Cit , cj

i−1)− µ(Cit , cl
i−1))| < |(µ(Cit , cj

i−1)− (µ(Cit , cs
i−1))|.

Therefore, for every Cit , we can get pairs of closely reachable clusters. The degree
of participation plays a vital role for selecting the closely reachable clusters which
are then merged. Next, we discuss the algorithm in detail.
1. Let c1

0, c2
0, · · · , cm00 (resp. c1

i−1, c2
i−1, · · · , cmi−1

i−1) be the primary clus-
ters of level 0 (resp. i− 1) where the count of clusters is m0 (resp. mi−1). Also
let C1

1 , C
1
2 , · · · , C1

m′ (resp. Ci1, C
i
2, · · · , Cim′) be the auxiliary clusters of level

1 (resp. i) where the count of auxiliary clusters is m′. For all t, 1 ≤ t ≤ m′,
compute µ(C1

t , cj
0) (resp. µ(Cit , cj

i−1)). For any given cj
0 (resp. cj

i−1), find
the auxiliary cluster of level 1 (resp. i) in which it has maximum participa-
tion, that is, its degree of participation is maximum. Obviously, for some
value of t, maximum participation of cj

0 (resp. cj
i−1) is in C1

t (resp. Cit).
2. Let C1

t1 (resp. Cit1) be the auxiliary cluster having maximum configurations
belonging from cj

0 (resp. cj
i−1). Therefore, cj

0 (resp. cj
i−1) can merge with

some of the clusters which have also participated in C1
t1 (resp. Cit1). However,

only those clusters are to be merged with cj
0 (resp. cj

i−1), which are closely
reachable to cj

0 (resp. cj
i−1). Hence, a new primary cluster cj

1 (resp. cj
i) is

formed as cj
i = cj

i−1∪cli−1 if and only if |(µ(Cit1 , cj
i−1)−µ(Cit1 , cl

i−1))| <

|(µ(Cit1 , cj
i−1)−µ(Cit1 , cs

i−1))|, for any s 6= l where cs
i−1 is another partic-

ipating cluster in Cit1 and max{µ(Cit , cj
i−1)(∀t)} = µ(Cit1 , cj

i−1). Therefore,
the newly generated cluster cj

i constitutes of a set of target configurations,
out of which some strictly belongs to a cluster (cycle) of the auxiliary CA of
level i. This instigates to name our approach as cycle based clustering.

3. If for any primary cluster cj
0 (resp. cj

i−1), there is no closely reachable
primary cluster in all auxiliary clusters, then the new primary cluster of
level i is cj

i = cj
i−1. Therefore, mi ≤ mi−1.

4. The algorithm stops when we reach the optimal number of clusters (m). The
test of optimality is determined either by arriving at the desired number of
clusters given by user or if mi = mi−1 after a fixed number of attempts.

Algorithm 1: Cycle based clustering algorithm

Input : A set of target objects X = {X1, X2, · · · , Xk}, number of quantitative and qualitative
attributes pqn and pql respectively, optimal number of clusters (m) and an
auxiliary CA space of size w

Output: The clusters {c1v, c2v, · · · , cmv} where c1
v ∪ c2

v ∪ · · · ∪ cm
v = X

Step 1 Set n← (2 ∗ pqn) + (u1 + u2 + · · ·+ upql
) ;

foreach j = 1 to k do Encode Xj into an n-bit binary string ;

Let M(X) be the set of encoded target objects {x1, x2, · · · , xk′} where |M(X)| = k′ ;
Step 2 Construct a set of n-cell CAs R from the given auxiliary CA space ;

Step 3 Set m0 ← k′, i← 1 and z← 1;
for j = 1 to m0 do

Set cj
0 ← {xj}; // Initialize primary clusters of level 0

Step 4 while (mi 6= mi−1)||(mi 6= m) do
Select R ∈ R and Set R← R \ {R} // Auxiliary CA is selected randomly at uniform

without replacement

Generate auxiliary clusters Ci
1, C

i
2, · · · , C

i
m′ for the CA R ;

Initialize a matrix A[atj]m′×mi−1
to 0;

for t = 1 to m′ do
for j = 1 to mi−1 do Set atj ← µ(Ci

t , cj
i−1);

foreach j = 1 to mi−1 do
// For each of the primary clusters of previous level

Let at′j = maximum of atj where 1 ≤ t ≤ m′ ; // Find the auxiliary cluster

with maximum participation of cj
i−1

for (j1 = 1 to mi−1)&&(j1 6= j) do
Find at′j′ = maximum of atj1 such that at′j′ 6= 0 ;

if no such at′j′ exists then continue ;

else
Set cz

i ← cj
i−1 ∪ cj′

i−1 and z← z + 1;

Mark cj
i−1 and cj′

i−1 as modified ;

Remove row t′ from A;

foreach unmodified clusters cy
i−1 do

Set cz
i ← cy

i−1 and z← z + 1 ; // move the unmodified primary cluster(s) of
previous level i1 to get a new primary cluster of level i and update cluster
number

Set mi ← z and i← i + 1 ;

Step 5 Report c1
i, c2

i, · · · , cmi
i as the final clusters at level i and Exit ;

Example 3. Let us consider the Iris dataset (http://archive.ics.uci.edu/
ml/index.php, see Table 5) where X = {X1, X2, · · · , X150} and each object has
four quantitative (pqn) and no qualitative attributes (pql). Hence, size of the CA

http://archive.ics.uci.edu/ml/index.php
http://archive.ics.uci.edu/ml/index.php

Name # of p # of pqn # of pql # of target objects CA size (n)

Iris 4 4 0 150 8

BuddyMove 6 6 0 249 12

Wholesale Customers 8 6 2 440 16

Seed 7 7 0 210 14

Table 5: Description of real datasets used for cycle based clustering.

for this data set is n = 2 ∗ 4 = 8. Now, let the desired number of clusters (m) is
two. Using the encoding technique, we get M(X) = {x1, x2, · · · , x24}.

Initially, at level 0, there exist twenty four primary clusters such that
c1

0 = {x1}, c20 = {x2}, · · · , c240 = {x24}, where m0 = 24. As m0 6= m, we select
an auxiliary CA R from the set of candidate CAs (satisfying Property 1) uni-
formly random without replacement. Let R = (9, 169, 150, 150, 165, 105, 165, 20).
This CA generates four auxiliary clusters - C0

1 , C
0
2 , C

0
3 , C

0
4 . Next, we find the

degree of participation of each cj
0 in these clusters. As we are at level 1,

µ(C1
1 , cj1

0) = 100% (∀j1 ∈ {1, 3, 4, 22, 13, 14}), µ(C1
2 , cj2

0) = 100% (∀j2 ∈
{2, 5, 6, 7, 8, 9, 10, 11, 12, 15, 17, 19, 20, 21, 23, 24}), µ(C1

3 , c16
0) = 100% and µ(C1

4 ,
c18

0) = 100%. So, we can merge the closely reachable primary clusters of level
0 to form the primary clusters of level 1. Here, auxiliary cluster C1

1 has maxi-
mum (and equal) participation of primary clusters c1

0, c3
0, c4

0, c22
0, c13

0 and
c14

0. Similarly, C1
2 has maximum participation of c2

0, c5
0, c6

0, c7
0, c8

0, c9
0,

c10
0, c11

0, c12
0, c15

0, c17
0, c19

0, c20
0, c21

0, c23
0 and c24

0. Therefore, the newly
generated primary cluster of level 1 is c1

1 = c1
0 ∪ c30 ∪ c40 ∪ c220 ∪ c130 ∪ c140.

Similarly, c2
1 can be generated. For the remaining two auxiliary clusters, new

primary clusters are formed as c3
1 = c16

0 and c4
1 = c18

0. As, the number of
primary clusters at level 1 (m1) is 4 6= m, we move from level 1 to level 2.

Let, at level 2, the selected auxiliary CA is (6, 232, 90, 90, 165, 90, 90, 20). This
CA generates six auxiliary clusters C2

1 , C2
2 , C2

3 , C2
4 , C2

5 and C2
6 . Like level 1,

here also, we compute the maximum participation of each primary cluster of
level 1 in auxiliary cluster C2

t , (1 ≤ t ≤ 6). It is found that µ(C2
1 , c1

1) = 16%,
µ(C2

2 , c1
1) = 33%, µ(C2

2 , c2
1) = 62%, µ(C2

2 , c3
1) = 100%, µ(C2

3 , c1
1) = 16%,

µ(C2
3 , c2

1) = 12%, µ(C2
3 , c4

1) = 100%, µ(C2
4 , c1

1) = 33%, µ(C2
5 , c2

1) = 18% and
µ(C2

6 , c2
1) = 6%. Hence, we can merge c2

1 and c3
1 with respect to the closeness

in the auxiliary cluster C2
2 . Similarly, c1

1 and c4
1 can be merged with respect

C2
3 . Hence, the newly generated primary clusters of level 2 are c1

2 = c2
1 ∪

c3
1 = {2, 5, 6, 7, 8, 9, 10, 11, 12, 15, 16, 17, 19, 20, 21, 23, 24} and c2

2 = c1
1 ∪ c4

1

= {1, 3, 4, 22, 13, 14, 18}. Therefore, m2 = 2. As desired number of clusters is
achieved at level 2, the algorithm exists.

Hence, our algorithm can not only generate the requirement based clusters,
but also it gives the direction of optimal count of the clusters. Our technique
uses v auxiliary CAs if the optimal number of clusters is achieved at level v.
Next, we test the competency of our proposed algorithm on real dataset.

5 Results and Discussion

This section reports the performance of our proposed cycle based clustering al-
gorithm on some real datasets (http://archive.ics.uci.edu/ml/index.php)

http://archive.ics.uci.edu/ml/index.php

using some benchmarks validation techniques [8,12]. Here, we use four datasets
Iris, BuddyMove, Wholesale Customers, Seed where each of them has
mostly quantitative attributes (see Table 5 for details).

Dataset Algorithm
Connectivity Dunn Index Silhouette Score

Score m Score m Score m

Iris

Hierarchical 0.0000 2 0.3389 2 0.6867 2

K-means 6.1536 2 0.1365 4 0.6810 2

DIANA 6.1536 2 0.1302 5 0.6810 2

PAM 3.9623 2 0.1235 5 0.6858 2

SOTA 11.5016 2 0.0582 5 0.6569 2

Proposed Algorithm 0.0000 2 0.3389 2 0.6867 2

BuddyMove

Hierarchical 2.9290 2 0.3146 2 0.4764 2

K-means 30.0881 2 0.0193 5 0.3492 3

DIANA 27.1242 2 0.0476 6 0.3020 2

PAM 41.6647 2 0.0178 3 0.3819 3

SOTA 44.4111 2 0.0666 3 0.3134 2

Proposed Algorithm 2.9289 2 0.3146 2 0.4763 2

Wholesale Customers

Hierarchical 2.9290 2 0.3853 2 0.7957 2

K-means 35.2032 2 0.0900 6 0.3492 3

DIANA 34.3694 2 0.0870 6 0.3020 2

PAM 38.3802 2 0.0511 5 0.3310 4

SOTA 43.8266 2 0.0061 2 0.3134 2

Proposed Algorithm 3.7329 2 0.0508 2 0.5257 2

Seed

Hierarchical 8.7861 2 0.1089 6 0.5248 2

K-means 21.3698 2 0.0855 3 0.5229 2

DIANA 19.1714 2 0.0743 6 0.5218 2

PAM 20.6762 2 0.0788 5 0.5175 2

SOTA 16.0179 2 0.0566 4 0.5049 2

Proposed Algorithm 3.6 2 0.09 2 0.5288 2

Table 6: Comparison of clustering techniques based on internal validation indices
for each of the available datasets of Table 5.

To measure the performance of our proposed cycle based clustering algorithm
on these datasets, we use the package clValid in R, using the implementation
available in the package [2]. Table 6 records the performance of this algorithm. In
Table 6, columns III & IV, V & VI and VII & VIII represent the optimal scores
and the optimal number of clusters (m) of the validation indices - connectivity [9],
silhouette score [7] and Dunn index [6] respectively. Our algorithm gives the
optimal score in each of the internal validation indices for the Iris dataset in
just 2 levels using the CA (10, 75, 166, 105, 105, 166, 150, 20) for level 0 and CA
(6, 166, 165, 154, 105, 165, 165, 65) for level 1. Similarly, the optimal results for
the BuddyMove dataset is found in 4 levels. For Wholesale dataset, the optimal
result on connectivity, Dunn index and silhouette score are observed in 2, 5 and
3 levels respectively. Whereas, for the Seed dataset, the optimal score is recorded
in just 1 level for Dunn index, whereas in 3 and 7 levels for silhouette score and
connectivity respectively.

To compare the performance of our algorithm, these datasets are tested on
five benchmark clustering algorithms – K-means (centroid based clustering) [2],
hierarchical (agglomerative hierarchical clustering) [2], DIANA (divisive hierar-
chical clustering) [2], PAM (Partitioning around medoids) (centroid based clus-
tering) [2] and SOTA (Self-organizing tree algorithm) (unsupervised network

with a divisive hierarchical clustering) [2] using the implementation in R [2].
Table 6 also reports result of this comparison. It can be observed that, among
the existing algorithms, performance of hierarchical algorithm is best with re-
spect to all datasets. However, our algorithm performs at par with this algorithm,
and even beats it for the Seed dataset. Therefore, from this table, it can be con-
cluded that our algorithm can easily compete with the highly efficient benchmark
algorithms and performance of our proposed cycle based clustering algorithm is
at least as good that of the best algorithm existing today.

References

1. S. Adak, S. Mukherjee, and S. Das. Do There Exist Non-linear Maximal Length
Cellular Automata? A Study. In Proceedings of 13th International Conference on
Cellular Automata for Research and Industry (ACRI), pages 289–297, 2018.

2. G. Brock, V. Pihur, S. Datta, and S. Datta. clValid: An R Package for Cluster
Validation. Journal of Statistical Software, 25(4):1–22, 2008.

3. F. Carvalho, Y. Lechevallier, and F. Melo. Partitioning hard clustering algorithms
based on multiple dissimilarity matrices. Pattern Recognition, 45(1):447–464, 2012.

4. S. Das. Theory and Applications of Nonlinear Cellular Automata In VLSI Design.
PhD thesis, Bengal Engineering And Science University, Shibpur, India, 2006.

5. J. Dougherty, R. Kohavi, and M. Sahami. Supervised and Unsupervised Dis-
cretization of Continuous Features. In Machine Learning Proceedings 1995, pages
194–202. Elsevier, 1995.

6. J. C. Dunn. Well Separated Clusters and Fuzzy Partitions. Journal on Cybernetics,
4:95–104, 1974.

7. J. C. Dunn. Silhouettes: A Graphical Aid to the Interpretation and Validation of
Cluster Analysis. Journal of Computational and Applied Mathematics, 20:53–65,
1987.

8. V. Estivill-Castro. Why so many clustering algorithms – a position paper. ACM
SIGKDD Explorations Newsletter, 4, 2002.

9. J. Handl, J. Knowles, and D. B. Kell. Computational Cluster Validation in Post-
Genomic Data Analysis. Bioinformatics, 21(15):3201–3212, 2005.

10. A.K. Jain, M.N Murthy, and P.J. Flynn. Data clustering: a review. ACM Com-
puting Surveys, 31(3):165–193, 1999.

11. S. Wolfram. Theory and applications of cellular automata. World Scientific, Sin-
gapore, 1986. ISBN 9971-50-124-4 pbk.

12. D. Xu and Y. A Tian. A Comprehensive Survey of Clustering Algorithms. Annals
of Data science, 2:165–193, 2015.

13. R. Xu and D. Wunsch. Survey of Clustering Algorithms. IEEE Transactions on
Neural Networks, 16(3):645–678, 2005.

	Cycle based Clustering using Reversible Cellular Automata
	Introduction
	Basics of CAs
	The Mapping between CA and Clustering
	The encoding technique
	CA rules to maintain minimum intra-cluster distance
	Designing CA with optimal number of clusters

	Cycle based clustering
	Results and Discussion

