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Chapter 6

DETECTING ATTACKS ON A WATER
TREATMENT SYSTEM USING ONE-
CLASS SUPPORT VECTOR MACHINES

Ken Yau, Kam-Pui Chow and Siu-Ming Yiu

Abstract

Critical infrastructure assets such as power grids and water treatment
plants are monitored and managed by industrial control systems. At-
tacks that leverage industrial control systems to disrupt or damage in-
frastructure assets can impact human lives, the economy and the en-
vironment. Several attack detection methods have been proposed, but
they are often difficult to implement and their accuracy is often low.
Additionally, these methods do not consider the digital forensic aspects.
This chapter focuses on the use of machine learning, specifically one-
class support vector machines, for attack detection and forensic investi-
gations. The methodology is evaluated using a water treatment testbed,
a scaled-down version of a real-world industrial water treatment plant.
Data collected under normal operations and attacks are used in the
study. In order to enhance detection accuracy, the water treatment
process is divided into sub-processes for individual one-class support
vector machine model training. The experimental results demonstrate
that the trained sub-process models yield better detection performance
than the trained complete process model. Additionally, the approach
enhances the efficiency and effectiveness of forensic investigations.

Keywords: Machine learning, one-class SVM, forensics, water treatment system

1.

Introduction

Industrial control systems, which combine distributed computing and
physical process monitoring and control [9], are commonly used to oper-
ate critical infrastructure assets such as power grids and water treatment
plants. Industrial control systems make it convenient to operate infras-
tructure assets remotely, but the added convenience comes at the cost
of increased vulnerabilities [13]. Specifically, an attacker can compro-
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mise a corporate network using conventional network security attacks
and leverage the access to pivot and target industrial control systems.
A widely-reported attack on a Ukrainian power grid in December 2015
caused a power outage to more than 200,000 customers [10]. The at-
tackers leveraged spear phishing email, variants of the BlackEnergy 3
malware and Microsoft Office documents containing malware to pene-
trate information technology networks and launch attacks on electrical
substations.

Digital forensics is increasingly engaging artificial intelligence to ana-
lyze large amounts of complex data [11]. Meanwhile, machine learning
techniques have been shown to be very effective at detecting anoma-
lies and attacks in industrial control systems. Supervised learning has
yielded results with high precision, but the approach requires labeled
(normal and attack) data for training. Class labeling is a challenging
task because it is time consuming for large datasets and often requires
manual efforts of the part of control system experts. Moreover, it is
difficult or impossible to collect attack data. While some attacks may
be simulated, it is not possible to simulate all possible attacks [19].

To address these challenges, this research employs a semi-supervised
machine learning methodology in which a one-class support vector ma-
chine (OC-SVM) model is trained using normal data, following which
data that deviate from the trained model are identified as attacks. This
methodology does not need class labeling. Moreover, normal data for
training is readily obtained.

An important aspect of the proposed methodology is that the physi-
cal process is divided into sub-processes and a one-class support vector
machine model is created for each sub-process, which improves attack
detection performance. Additionally, the division renders forensic in-
vestigations more effective. Instead of investigating the entire system at
one time, a forensic practitioner can focus on individual sub-processes as
needed. Since each trained sub-process model is responsible for detecting
specific attacks, the practitioner is able to narrow the scope to perform
data collection and investigate each sub-process individually. Experi-
ments with a water treatment testbed demonstrate the improvements in
attack detection and effectiveness of incident investigations.

2. Related Work

Attack detection in industrial control systems has been the subject
of considerable research. Machine learning is one of the successful ap-
proaches for implementing attack detection.
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Yau et al. [21, 22] have proposed forensic solutions for a simulated
traffic light system that leverage machine learning techniques. They cap-
tured the values of relevant memory addresses used by the programmable
logic controller that monitored and managed the traffic light system.
The memory values were stored in a log file for model training and the
trained model was used to identify anomalous programmable logic con-
troller behavior. Although the solutions achieved high attack detection
accuracy, the simulated system used in the research did not approach
the scale and complexity of a real-world traffic light system.

Inoue et al. [8] have evaluated the application of unsupervised ma-
chine learning methods to anomaly detection in cyber-physical systems.
Specifically, they compared two methods, deep neural networks and one-
class support vector machines, for detecting anomalies in the same water
treatment testbed used in this research. The results reveal that the two
methods have various advantages and disadvantages with regard to de-
tection performance and accuracy.

Mounce et al. [12] have employed supervised machine learning with
support vector regression to detect novel events in time series data per-
taining to water flow and pressure. The novel events include pipe bursts,
hydrant flushing and sensor failure. Their research demonstrates that
the methodology provides faster alert generation than approaches using
artificial neural networks and fuzzy inference.

Schuster et al. [15] have applied one-class support vector machines to
a number of real-world industrial control system traffic traces. Their
experimental results show that one-class support vector machines are
effective at analyzing network packets and packet sequences to detect
anomalies.

Kravchik and Shabtai [9] have developed a methodology for detecting
anomalies and attacks in industrial control systems using a 1D convolu-
tional neural network and autoencoders. Convolutional neural networks
are a popular machine learning technique used in image processing appli-
cations. An autoencoder is a neural network that is trained to reproduce
its input, thereby learning useful properties of the data. Applications of
the methodology to several popular public datasets reveal that the detec-
tion results match or exceed previously-published results while featuring
a small footprint and short training and detection times, and providing
more generality.

The methodology presented in this chapter is distinct from other ap-
proaches in that it divides a complex process into sub-processes for one-
class support vector machine model training in order to increase attack
detection performance and accuracy. The data used in this research was
collected from a testbed that closely mimics a real-world water treat-
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Figure 1. Secure Water Treatment (SWaT) testbed [3].

ment plant. A sliding window method is employed to process time series
datasets for one-class support vector machine model training. Addi-
tionally, the methodology enhances forensic investigations of industrial
control system incidents.

3. Secure Water Treatment Testbed

The Secure Water Treatment (SWaT) testbed shown in Figure 1 is
set up at the iTrust Centre for Research in Cyber Security at Singapore
University of Technology and Design. The testbed closely mimics a real-
world water treatment plant [3]. The testbed takes raw water as input,
executes a series of treatments and outputs recycled water.

The water treatment process comprises six sub-processes or stages P1
through P6 (Figure 2) [20]. Raw water enters the raw water tank (P1)
from where it is pumped to chemical tanks. After chemical dosing and
static mixing (P2), the water is passed to an ultrafiltration (UF) system
(P3) and ultraviolet (UV) lamps (P4). Following this, the water is fed to
a reverse osmosis (RO) system (P5). Finally, a backwash process cleans
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Figure 2. Six-stage water treatment process [3].

the membranes of the ultrafiltration system using the water produced
by the reverse osmosis system (P6).

Sensors are employed at each sub-process; the sensor values are passed
to a programmable logic controller, which monitors the states of the sub-
processes. Based on the sensor values, the programmable logic controller
directs actuators to manipulate the states of the sub-processes. For
example, in the case of sub-process P1, the sensor LIT101 monitors the
water level in the raw water tank. The programmable logic controller
reads the sensor value and decides whether or not to change the state
of the actuator, valve MV-101. If the LIT-101 sensor value is above a
threshold, the programmable logic controller may deactivate valve MV-
101, which stops raw water flow into the tank.
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4. Data Collection

The data collection process lasted 11 days. The testbed was operated
continuously 24 hours/day during the entire period. During the first
seven days, the testbed operated under normal conditions (i.e., without
attacks).

Attacks were launched during the last four days of the data collection
process [7]. The attacks were created systematically from an attack
model [1] that considers attacker intent. A total of 36 distinct attacks
were launched on the SWaT testbed. The attacks fell in the following
four categories [7]:

= Single Stage Single Point (SSSP): This type of attack targets
one point in a single stage (sub-process).

= Single Stage Multi Point (SSMP): This type of attack targets
two or more attack points in a single stage (sub-process).

= Multi Stage Single Point (MSSP): This type of attack targets
one point in multiple stages (sub-processes).

= Multi Stage Multi Point (M\SMP): This type of attack targets
two or more points in multiple stages (sub-processes).

Data from all the testbed sensors and actuators was logged every sec-
ond and stored in a historian. A total of 946,722 data samples involving
51 attributes (e.g., FIT101, LIT101 and P101) were collected over the
11-day period. Figure 3 shows sample data that was collected during
the experiments.

5. One-Class Support Vector Machine

Machine learning builds an automated analytical model using algo-
rithms that learn from data iteratively. Based on the model, machine
learning enables the automated discovery of hidden insights without ex-
plicit programming [14]. A one-class support vector machine is a semi-
supervised learning model that is widely used to detect anomalous eve-
nts. The one-class support vector machine essentially finds the maximal
margin hyperplane using an appropriate kernel function to map most of
the training data to one side of the hyperplane [2]. Thus, it is trained
using only data from only one (normal) class. After being trained with
normal data, the one-class support vector machine classifies test data as
normal data or abnormal (i.e., attack) data.
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Timestamp FIT101(LIT101 MV101|P101|P102|AIT201 AIT202  |AIT203  [FIT201
22/12/2015 4:30:00 PM 0 124.3135] 1 1 1 | 251.9226( 8.313446| 312.7916| O
22/12/2015 4:30:01 PM 0 124.392 1 1 1 | 251.9226] 8.313446| 312.7916| 0
22/12/2015 4:30:02 PM 0 124.4705[ 1 1 1 | 251.9226] 8.313446| 312.7916| 0
22/12/2015 4:30:03 PM 0 124.6668| 1 1 1 | 251.9226( 8.313446| 312.7916] O
22/12/2015 4:30:04 PM 0 124.5098| 1 1 1 | 251.9226] 8.313446| 312.7916| 0
22/12/2015 4:30:05 PM 0 123.921 1 1 1 | 251.9226] 8.313446| 312.7916| 0
22/12/2015 4:30:06 PM 0 123.5284| 1 1 1 | 251.9226( 8.313446| 312.7916| O
22/12/2015 4:30:07 PM 0 123.4107| 1 1 1 | 251.9226] 8.313446| 312.7916| 0
22/12/2015 4:30:08 PM 0 123.2144| 1 1 1 | 251.9226] 8.312805| 312.7916| 0
22/12/2015 4:30:09 PM 0 123.3322| 1 1 1 | 251.9226( 8.310242| 312.7916| O
22/12/2015 4:30:10 PM 0 123.7247| 1 1 1 | 251.9226| 8.30896| 312.8685| 0
22/12/2015 4:30:11 PM 0 124.2742 1 1 1 | 251.9226] 8.30896| 312.9198| 0
22/12/2015 4:30:12 PM 0 124.4705] 1 1 1 |251.9226( 8.30896| 312.9198| 0
22/12/2015 4:30:13 PM 0 124.863| 1 1 1 | 251.9226| 8.30896| 312.9198| 0
22/12/2015 4:30:14 PM 0 125.0593| 1 1 1 | 251.9226| 8.30896| 312.9198| 0
22/12/2015 4:30:15 PM 0 124.5883| 1 1 1 | 251.9226( 8.30896| 312.9198| O
22/12/2015 4:30:16 PM 0 124.392| 1 1 1 | 251.9226| 8.30896| 312.9198| 0

Figure 3. Sample data.

6. Methodology

In the experiments, data from the first seven days (without attacks)
was used to train the one-class support vector machine. Data from the
last four days (with attacks) was used to evaluate the one-class support
vector machine performance.

Since the scales of the various testbed features (attributes) were dif-
ferent (Figure 3), the min-max scaling method was used to normalize
the values of the features to a scale of 0 to 1 in order to achieve better
model training performance. Min-max scaling is performed as follows:

R min(x)

maz(x) — min(z)

where z is the original value and z’ is the normalized value.

Since the data was logged as a time series, the sliding window method
was used to convert the data into individual feature vectors [6, 8]. As-
sume that I; is the ¥ log entry and w is the window size, then the
window W; is given by:

I/I/’i:lialiJrlu ceey l’ierfl

If there are k entries 1,1, ...,[;, then K — w + 1 windows W;, W, ...,
Wi _wyt1 are generated. A window is labeled as an attack window if at
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Wi = <lI3, Iy, Is>, Attack

Timestamp AT101_[uTi01  [Mvi01 [p1o1  [Pt02 ATe01 [Ps01  [Pe02  [P603  [Normal/Attack
28/12/2015 10:29:10 AM | 2.428979] 815.9471 0.000128 Normal Wi = <ly, I, >, Normal
28/12/2015 10:29:11 AM | 2.424174] 816.1041 0.000128 Normal T W= <bs, Is, Is>, Normal
28/12/2015 10:29:12 AM | 2.424174] 816.3788] 0.000128 Normal

]

Normal
Attack

. 0.000128
0.000128

28/12/201510:29:13 AM | 2.447234| 816.8499
28/12/2015 10:29:14 AM | 2.493675| 817.6742

28/12/2015 10:29:15 AM | 2.535951| 817.9490 0.000128 Attack
28/12/2015 10:29:16 AM | 2.535951| 817.9490 0.000128 Attack
28/12/2015 10:29:17 AM | 2.569900( 818.4592 . 0.000128} Attack
28/12/2015 10:29:18 AM | 2.610575| 818.8911 . 0.000128} Attack
28/12/2015 10:29:19 AM | 2.635557| 818.6948) 0.000128 Attack
28/12/2015 10:29:20 AM | 2.657336| 819.3228) 0.000128 Attack

oo frofrofro o fro [ I fro [ |

28/12/2015 10:29:21 AM | 2.663741| 819.7938) 0.000128] Attack

Figure 4. Sliding log entries into windows of size three.

least one of the log entries l;,l;11, ..., litw—1 in the window is labeled
as an attack; otherwise, the window is labeled as a normal window.

Figure 4 shows how the log entries slide into windows of size three.
Each window is fed to the trained model to classify it as normal or attack.
The experiments compared the trained model performance achieved for
different window sizes.

Trained Normal
Normal data without OC-SVM | 3. Classify
attacks using all 1. Trai Model
features - ram Attack

2. Test

Normal data with
attacks using all
features

Figure 5. Approach 1: Model training for the entire SWaT process.

In general, there are two approaches for model training. Approach 1
creates a trained a model using the entire process with all the data
features (Figure 5). The trained model is then used to determine if any
attacks were launched against the water treatment system. However,
this approach cannot identify the sub-processes that were attacked.

The second approach, Approach 2, trains the models for the sub-
processes separately using their own features. Figure 6 shows the details
of the approach. For example, the model Mp; is trained using only
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Normal data with
attacks using P1
features
P1 Normal
- Trained
Normal data without Model My, Classify
attacks using P1 .
features Train for P1 P1 Attack
Normal data with
attacks using P2
features
. Trained P2 Normal
Normal data without Model My, Classify
attacks using P2 . for P2
features Train P2 Attack
" " Normal data with "
attacks using P6
features
. Trained P6 Normal
Normal data without Model My, Classify
attacks using P6 . for P6
features Train P6 Attack

Figure 6. Approach 2: Model training for each of the six SWaT sub-processes.

P1 features (FIT101, LIT101, MV101, P101 and P102). The trained
model Mpq is then used to detect attacks on sub-process P1. The one-
class support vector machine used in the experiments was implemented
using the scikit-learn machine learning library [16] on TensorFlow [18],
an end-to-end open source machine learning platform.

Optimum one-class support vector machine classifiers for attack de-
tection were realized using the parameters: (i) nu = 1075; (ii) gamma
= auto; and (iii) kernel = sigmoid. Note that nu is an upper bound
on the fraction of training errors and a lower bound on the fraction of
support vectors; gamma defines the influence of a single training sample
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(default value is auto, which corresponds to the reciprocal of the number
of features); and the kernel type may be linear, poly, rbf or sigmoid.

7. Evaluation and Experimental Results

This section describes the evaluation procedure and the experimental
results.

7.1 Evaluation

Since an imbalance exists between normal and attack data in the
testing dataset, it is not appropriate to measure the performance of a
one-class support vector machine model using the accuracy metric (i.e.,
number of correct predictions from among all predictions made). In
the case of imbalanced datasets, when the minority (attack) class is an
important class, the performance metrics suggested by Bekkar et al. [4]
are more appropriate. These metrics are based on a confusion matrix
that reports the number of true positives (TP), true negatives (TN),
false positives (FP) and false negatives (FN).

Precision, recall and F-score were used to evaluate the performance
of a classifier on the minority class [5, 17]:

m Precision: This measure is defined as the number of correctly
classified positive samples divided by the number of samples la-
beled by the system as positive:

TP

P .. _
recision 7TP TFP

m Recall: This measure is defined as the number of correctly classi-
fied positive samples divided by the number of all relevant samples
(i.e., all the samples that should have been identified as positive):

TP

l= ——
Reca TP TN

m F-score: This measure is defined as the harmonic mean of the
precision and recall:

Precision x Recall

F- =2 X
seore Precision + Recall

7.2 Experimental Results

According to Dietterich [6], the sliding window method converts a
sequential supervised learning problem into a classical supervised learn-
ing problem, which yields adequate performance in many applications.
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Table 1. Approach 1 classification performance.

Window Size Precision (%) Recall (%) F-score (%)

N/A 88.07 99.96 93.63
3 88.08 99.96 93.64
5 88.08 99.96 93.64

Table 2. Approach 2 classification performance.

Sub-Process Window Size Precision (%) Recall (%) F-score (%)

N/A 98.28 99.86 99.07

P1 (5 Features) 3 98.28 99.86 99.06
5 98.28 99.86 99.06

N/A 99.25 100.00 99.63

P2 (11 Features) 3 99.25 100.00 99.63
5 99.25 100.00 99.63

N/A 90.29 100.00 94.89

P3 (9 Features) 3 90.44 99.98 94.97
5 90.47 99.95 94.98

N/A 99.07 99.89 99.48

P4 (9 Features) 3 99.07 99.89 99.48
5 99.08 99.89 99.48

N/A 99.49 99.91 99.70

P5 (13 Features) 3 99.49 99.91 99.70
5 99.49 99.91 99.70

N/A 99.82 99.99 99.91

P6 (4 Features) 3 99.82 99.99 99.91
5 99.82 99.99 99.91

However, the experimental results demonstrate that the sliding window
method applied to the entire process (Approach 1 in Table 1) and to
individual sub-processes (Approach 2 in Table 2) does not improve the
performance of the one-class support vector machine classifiers for at-
tack detection when the window sizes are set to three and five. On the
other hand, the precision and F-score values are significantly increased
for Approach 2 (Table 2), which divides the entire process into six sub-
processes for model training. Note that identical parameter settings (nu
= 107, gamma = auto and kernel = sigmoid) were employed for one-
class support vector machine training in Approach 1 and Approach 2.
An advantage of the proposed methodology is that the parameter set-
tings can be adjusted individually for training each sub-process classifier
in order to achieve the best performance. Moreover, this methodology re-
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sults in better attack detection performance, and increases the efficiency
and effectiveness of forensic investigations. Since the timestamps, dura-
tions and activity sequences of sub-process attacks are recorded in a log
file during the classification process (Figure 6), a forensic investigator is
able to obtain more evidence about the case from the classification log
file when the attack log activities and time sequences are correlated with
other system /network logs and the activity logs on a suspect’s computer.

8. Conclusions

Detecting and investigating attacks on industrial control systems are
vital to securing critical infrastructure assets. This chapter has described
a semi-supervised machine learning methodology in which a one-class
support vector machine model is trained using normal data, following
which attacks are identified as data that deviates from the trained model.
The methodology eliminates the need to employ labeled (normal and
attack) data for training — class labeling is time consuming for large
datasets and it is difficult, if not impossible, to collect attack data. An-
other important aspect is that the methodology divides a physical pro-
cess into sub-processes, and a one-class support vector machine model
is created for each sub-process.

Experimental results using a water treatment testbed demonstrate
that the trained sub-process models yield better attack detection per-
formance than the trained complete process model. Additionally, the
division into sub-processes renders forensic investigations more effective.
Instead of investigating the entire system at one time, a forensic prac-
titioner can focus on individual sub-processes as needed. Since each
trained sub-process model is responsible for detecting specific attacks,
the practitioner is able to narrow the scope to perform data collection
and investigate each sub-process individually.

Future research will attempt to improve attack detection performance
using machine learning on large, real-world datasets. Additionally, it is
will attempt to use artificial intelligence techniques to support forensic
investigations of industrial control systems.
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