
HAL Id: hal-03647273
https://inria.hal.science/hal-03647273

Submitted on 20 Apr 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

How the Cathedral Embraced the Bazaar, and the
Bazaar Became a Cathedral

Terhi Kilamo, Valentina Lenarduzzi, Tuukka Ahoniemi, Ari Jaaksi, Jurka
Rahikkala, Tommi Mikkonen

To cite this version:
Terhi Kilamo, Valentina Lenarduzzi, Tuukka Ahoniemi, Ari Jaaksi, Jurka Rahikkala, et al.. How
the Cathedral Embraced the Bazaar, and the Bazaar Became a Cathedral. 16th IFIP International
Conference on Open Source Systems (OSS), May 2020, Innopolis, Russia. pp.141-147, �10.1007/978-
3-030-47240-5_14�. �hal-03647273�

https://inria.hal.science/hal-03647273
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr


How the Cathedral Embraced the Bazaar,
and the Bazaar Became a Cathedral

Terhi Kilamo1, Valentina Lenarduzzi2, Tuukka Ahoniemi3,
Ari Jaaksi1, Jurka Rahikkala4, and Tommi Mikkonen5

1 Tampere University, Tampere, Finland; terhi.kilamo@tuni.fi, ari@linux.com
2 LUT University, Lahti, Finland; valentina.lenarduzzi@lut.fi

3 Tuxera, Espoo, Finland; tuukka.ahoniemi@iki.fi
4 Vaadin, Turku, Finland; jurka.rahikkala@vaadin.com

5 University of Helsinki, Finland; tommi.mikkonen@helsinki,fi

Abstract. Over the past 20 years, open source has become a widely
adopted approach to develop software. Code repositories provide soft-
ware to power cars, phones, and other things that are considered pro-
prietary. In parallel, proprietary development has evolved from rigid,
centralized waterfall approaches to agile, iterative development. In this
paper, we share our experiences regarding this co-evolution of open and
closed source from the viewpoints of tools, practices, and organizing the
development work, concluding that today’s bazaars and cathedrals have
much more common characteristics than those that separate them.

Key words: Open source, development tools, software business

1 Introduction

In 1997, Eric S. Raymond [1] juxtaposed two ways of software development: the
cathedral and the bazaar. The differences of the two have from the beginning
been in the development approach instead of the source code alone. The cathe-
dral model develops the software within a closed group of developers, and the
product is only released in structured intervals; in contrast, the bazaar keeps the
development process fast and visible to any interested party all the time.

Originally, the bazaar marked open source, and the cathedral proprietary.
Over time, things have changed however, making proprietary development re-
semble open source software and its development models. In parallel, open source
has grown to the level of importance where it has adopted many of the central-
ized development schemes traditionally associated with proprietary software.
Moreover, open source quality increased year after year [2, 3, 4], and producers
started to apply similar marketing models of proprietary [5]. As a result, compa-
nies started to consider open source as trustworthy of proprietary ones [6], and
opening proprietary software has become a viable option [7, 8, 9].

We approach this evolution with a retrospective view of the past 20 years of
software development, and find that the cathedral has turned into “a babbling
bazaar” while the bazaar has evolved towards “reverent cathedral-building” [1].



2 Terhi Kilamo et al.

2 Background

The origins of open source software can be traced back to 1974, when US Com-
mission on New Technological Uses of Copyrighted Works (CONTU) [10] decided
that software is a proper subject matter of copyright to the extent that it embod-
ies its authors’ original creation [11]. While previously code had been liberally
shared among different stakeholders largely ignoring IPR, this was no longer
an option, concerning in particular modifying program source code. This initi-
ated the movement to regain the original ‘freedoms’ of programmers, eventually
resulting in forming the Free Software Foundation (https://www.fsf.org).

The early years of open source software revolved around infrastructure soft-
ware, including operating systems, windowing systems, programming tools and
compilers, and other software that is commonly used to operate or program any
computer. A key milestone in this era is year 1989, when the first version of the
GNU General Public License (GPL) was published. It governs the use of open
source software, taking open source to the league of a ”serious” software system,
where formal governance and ruling existed.

By year 2000, as witnessed by Raymond’s essay [1], the focus was shifting to
development models where proprietary software was compared to carefully craft-
ing a pre-designed cathedral and open source was evolving organically based on
individuals’ desires in bazaars. In parallel, using open source as a part of busi-
ness and proprietary software gained widespread interest [12]. Soon, open source
become a viable business model [13], and it was adopted by various companies.

Today, open source is characterized by three key elements: (i) code comprising
the implementation, (ii) the licence under which the software is distributed,
and (iii) the community that maintains the code. Furthermore, open source
is viewed through its meritocratic nature of collaboration where anyone can
contribute, contributions are judged based on merit and the development is self-
organizing [14]. This characterization does not consider the cathedral and the
bazaar metaphor, and over time, the difference between the two has become a
fine line – companies extensively participate in open source development [15] and
open source communities and projects are organized and governed [16, 17]. The
beginning of this transformation was documented by Fitzgerald [18]; the trend
has since continued, making cathedrals embrace bazaars and bazaars to become
cathedrals.

3 Why the Cathedral Embraced the Bazaar?

Pre-open source software industry habits were very similar to the rest of the
industry, consisting of large enterprises that had very established ways and elab-
orated processes, to the brink of a disaster in their inability to adopt new prac-
tices [19]. For software development companies, this meant rigorous inspections
[20] to improve quality and process models such as CMM [21], where the organi-
zational capabilities were being improved without paying much attention to the
interests of individuals.



How the Cathedral Embraced the Bazaar... 3

Open source development challenged all the above. Since its humble ori-
gins, the power of open source has stemmed from programmers who choose to
contribute to projects of their interest, not by management control. To support
voluntary cooperation across the Globe, various tools were introduced, including
source control management tools such as Subversion and later Git. Distributed
version control systems have enabled the development through pulling code from
repositories to create software locally as a combination of several code sources.
The range of components from operating and windowing systems to tiny, almost
self-evident snippets have made open source systems an integral part of systems
[22], many of which we do not consider as open source, and these are also visible
in software architecture of many systems [23].

Open source also helped to shape new development processes, such as intro-
ducing the pull requests mechanism and the concepts of continuous integration,
deployment and delivery, as means for handling new contributions to the code
base. Similarly, issue tracking tools such as Bugzilla and review tools such as
Gerrit for collaborative handling of issues and reviewing code contributions in
turn stem from open source projects. New tools are continuously introduced into
the market, with the goal of supporting the developed product and the devel-
opment process [24]. Since these tools have largely been about ‘scratching one’s
own itch’, the developers working on proprietary software have quickly realized
that these tools really empower the developers. Hence, tools and processes made
familiar by open source development are used to distribute the development ef-
fort globally, to manage quality, and to enable agile development, manifesting
transparency in every development phase.

Furthermore, companies do not only apply open source tools and associ-
ated methods in their internal development, but also contribute directly to open
source projects. To this end, big closed source players such as Microsoft, Google,
Oracle, Facebook and Amazon are nowadays major open source contributors,
with a large open source codebase of their own [25]. For many companies, this
has meant a complete transformation from their organizational perspective and
operational culture – so-called agile transformation [26], increasing transparency
and empowering the developers in particular.

Finally, there are also more unscrupulous motives to embrace open source
than those above. For instance, large companies may contribute to OSS just
because they no longer see viable business around a product, to white-wash
their public picture of becoming a Linux/OSS lover, or simply because they
have to, as someone accidentally misused a GPL component.

4 How the Bazaar Turned into a Cathedral?

While anyone can start an open source project without commercial interests,
the fact is that many of the projects work well because someone is funding the
work. A common model is that an open source project is mainly a product of one
company that is hosting the infrastructure needed by the project, contributing
the biggest chunk and then inviting others to join in. Naturally, as the company



4 Terhi Kilamo et al.

seats most of the maintainer spots, it has a wide influence on what gets in to the
main branch of the project and what does not. Typically, the funder has its own
interests, although based on contributions also other stakeholders’ interests can
be identified – for instance, with respect to the Qt framework and open source
Qt Project, one can clearly see from the contribution timeline when eg. different
phone vendors have had their time in adopting the GUI framework to their own
platform-specific needs.

Today, it is easy to find big names in open source software. Linux has risen
as the de-facto OS for clouds, servers, and mobile and embedded devices alike,
and web browsers are predominantly open source due to the rise of Chromium
next to Firefox, and Microsoft letting go of their closed-source implementa-
tion [27]. With Linux at its core, Android now has the largest market share of
smartphone ecosystems. Recently Microsoft purchased the largest host of code
repositories GitHub (https://blogs.microsoft.com/blog/2018/10/26/microsoft-
completes-github-acquisition/). This rise to a key position in commercial set-
tings has strengthened the corporate role in open source. As the direction of
each project has significant commercial meaning, business stakes have become
too high for the development to take unexpected turns, following individual de-
velopers’ itch.

When growing in size and importance, many open source projects have
started to lose their bazaar development model. Decision-making has become
centralized, and processes are decided within a small group. For instance,
in the Linux community, which has been an example of the centralized ap-
proach from its start, there is a well-defined governance model instead of ev-
eryone directly contributing to the code base. Similarly, open source foun-
dations such as the Apache Software Foundation and the OW2 Consortium
have set rigorous “cathedral-like” processes to developers who want to have
their software in the foundation – a quality control process to follow, a pro-
gram of incubation, and an “attic” to keep track of unmaintained projects
(https://www.apache.org/foundation/how-it-works.html). In general, it is dif-
ficult to imagine any large-scale open source project that goes completely un-
governed.

Finally, stakeholder needs include ensuring the sustainability of the project as
several stakeholders have significant business based on key open source software
[28]. The recognition of IPR and the licence model are such key mechanisms. This
has resulted in acts that are based on business reasons rather than the software
itself. The selected licence itself acts as a cathedral-building mechanism and the
licence and the licencing model can have major business impacts. Especially as
not all licences can coexist within the same software, business drivers affect the
software [29].

5 What to Look for Next?

During the recent years, we have seen open source and proprietary software
come closer to each other and at the same time switch places. As a consequence



How the Cathedral Embraced the Bazaar... 5

of this convergence, the hybrid nature of open source is thriving. When the
open source community starts the development as a bazaar – like Linux for
example has – they evolve towards cathedrals as they grow, gain business impact,
and need to get organized to support the business stakeholders. On the other
hand, communities that originate from business needs move to the opposite
direction and adopt in part the bazaar model to get contributions from a wider
contributor community. Similarly, the distribution of contributors in open source
has turned towards corporate employed contributors instead of a buzzing group
of volunteers, and in some of the open source projects, it is not possible for a
volunteer to contribute any more [30] – you can fork individually but not join
back as the company managing the software does not embrace contributions
from other stakeholders, no matter how good they are. The issue is not only
about controlling the individual developers’ itch but also a wider perspective –
what is the general direction of the project?

The modern way of accepting contributions is no longer through a mono-
lithic project model but more from a distributed ecosystem marketplace re-
sembling an appstore of modules/features. Perhaps the most vital communi-
ties that truly embrace participation of everyone are the likes of the NodeJS
ecosystem (https://nodejs.org), where one can easily reuse or modify existing
components, contribute new ones, and mash them together to create new sys-
tems [31]. These are modern bazaars where ”capitalism of code” really rules
– the most well-received modules/add-ons thrive and get additional contrib-
utors (if allowed), whereas individual hobbyist experiments can still co-exist
but will eventually perish. Another example of this is the Microsoft VSCode
(https://code.visualstudio.com/) where the actual open source project is the
core platform, but the idea is actually not about the OS project (of developing
a dull code editor) but about the very inclusive ecosystem where everyone can
have a shot at creating an add-on. So, forget cathedral-like strict rules and CLAs
(contribution license agreements) and bully-like maintainers, but just create your
own ”app” to the ”store” and let’s have the markets decide what will work.

Finally, changes in the value chain have had an impact to open source. Today,
in many cases data, open APIs, and cloud services are far more important than
the code, which has become a commodity. This attitude is backed by the fact
that going for full open source means that one does not need to worry about
issues such as licence compatibility, liberating companies from considering them.

6 Conclusions

By now it is obvious that open source software has realized its fundamental reuse
promise. The many facets of software in general, together with the availability of
readily reusable open source components in particular, have woven open source
so deep in software industry that they are next to inseparable. The different kinds
of software endeavors can start from opposite ends of being open or closed, but
by now it seems that over time, the benefits of both worlds is something to seek
for for both small companies as well as giant enterprises.



6 Terhi Kilamo et al.

References

1. Raymond, E.: The cathedral and the bazaar. Knowledge, Technology & Policy
12(3) (1999) 23–49

2. del Bianco, V., Lavazza, L., Morasca, S., Taibi, D., Tosi, D.: The qualispo approach
to oss product quality evaluation. In: International Workshop on Emerging Trends
in Free/Libre/Open Source Software Research and Development. (2010) 23–28

3. del Bianco, V., Lavazza, L., Morasca, S., Taibi, D., Tosi, D.: An investigation of
the users’ perception of oss quality. In: International Conference on Open Source
Systems (OSS2010). (2010) 15–28

4. Rudzki, J., Kiviluoma, K., Poikonen, T., Hammouda, I.: Evaluating quality of
open source components for reuse-intensive commercial solutions. In: 2009 35th
Euromicro Conference on Software Engineering and Advanced Applications, IEEE
(2009) 11–19

5. del Bianco, V., Lavazza, L., Lenarduzzi, V., Morasca, S., Taibi, D., Tosi, D.: A
study on oss marketing and communication strategies. In: International Conference
on Open Source Systems (OSS2012). (2012) 338–343

6. del Bianco, V., Lavazza, L., Morasca, S., Taibi, D.: A survey on open source
software trustworthiness. IEEE Software 28(5) (2011) 67–75

7. Kilamo, T., Hammouda, I., Mikkonen, T., Aaltonen, T.: From proprietary to open
source—growing an open source ecosystem. Journal of Systems and Software 85(7)
(2012) 1467–1478

8. Kilamo, T., Hammouda, I., Mikkonen, T., Aaltonen, T.: Open source ecosystems:
a tale of two cases. In: Software Ecosystems. Edward Elgar Publishing (2013)

9. Sirkkala, P., Aaltonen, T., Hammouda, I.: Opening industrial software: planting
an onion. In: IFIP International Conference on Open Source Systems, Springer
(2009) 57–69

10. US Congress: National commission on new technological uses of copyrighted works.
1978. Final report of the National Commission on New Technological Uses of
Copyrighted Works (CONTU)

11. Keplinger, M.S.: Computer software–its nature and its protection. Emory LJ 30
(1981) 483

12. DiBona, C., Ockman, S.: Open sources: Voices from the open source revolution. ”
O’Reilly Media, Inc.” (1999)

13. Rolandsson, B., Bergquist, M., Ljungberg, J.: Open source in the firm: Opening
up professional practices of software development. Research Policy 40(4) (2011)
576–587

14. Riehle, D., Ellenberger, J., Menahem, T., Mikhailovski, B., Natchetoi, Y., Naveh,
B., Odenwald, T.: Open collaboration within corporations using software forges.
IEEE software 26(2) (2009) 52–58

15. Johri, A., Nov, O., Mitra, R.: ” cool” or” monster”? company takeovers and
their effect on open source community participation. In: Proceedings of the 2011
iConference. (2011) 327–331

16. Di Tullio, D., Staples, D.S.: The governance and control of open source software
projects. Journal of Management Information Systems 30(3) (2013) 49–80

17. Sadowski, B.M., Sadowski-Rasters, G., Duysters, G.: Transition of governance
in a mature open software source community: Evidence from the debian case.
Information Economics and Policy 20(4) (2008) 323–332

18. Fitzgerald, B.: The transformation of open source software. MIS quarterly (2006)
587–598



How the Cathedral Embraced the Bazaar... 7

19. Kanter, R.M.: When giants learn to dance. Simon and Schuster (1990)
20. Ackerman, A.F., Buchwald, L.S., Lewski, F.H.: Software inspections: an effective

verification process. IEEE software 6(3) (1989) 31–36
21. Paulk, M.C.: The capability maturity model: Guidelines for improving the software

process. Addison-Wesley Professional (1995)
22. Mikkonen, T., Taivalsaari, A.: Software reuse in the era of opportunistic design.

IEEE Software 36(3) (2019) 105–111
23. Lokhman, A., Mikkonen, T., Hammouda, I., Kazman, R., Chen, H.M.: A core-

periphery-legality architectural style for open source system development. In: 2013
46th Hawaii International Conference on System Sciences, IEEE (2013) 3148–3157

24. Sbai, N., Lenarduzzi, V., Taibi, D., Sassi, S.B., Ghezala, H.H.B.: Exploring in-
formation from oss repositories and platforms to support oss selection decisions.
Information and Software Technology 104 (2018) 104–108

25. Hoffa, F.: Who contributed the most to open source in 2017 and 2018?
Let’s analyze GitHub’s data and find out. FreeCodeCamp, Oct. 24,
2017, https://www.freecodecamp.org/news/the-top-contributors-to-github-2017-
be98ab854e87/

26. Fry, C., Greene, S.: Large scale agile transformation in an on-demand world. In:
Agile 2007 (AGILE 2007), IEEE (2007) 136–142

27. Warren, T.: Microsoft is building its own Chrome browser to replace Edge. The
Verge, Dec. 4, 2018, https://www.theverge.com/2018/12/4/18125238/microsoft-
chrome-browser-windows-10-edge-chromium

28. Nyman, L., Mikkonen, T., Lindman, J., Fougère, M.: Perspectives on code forking
and sustainability in open source software. In: IFIP International Conference on
Open Source Systems, Springer (2012) 274–279

29. Hammouda, I., Mikkonen, T., Oksanen, V., Jaaksi, A.: Open source legality pat-
terns: architectural design decisions motivated by legal concerns. In: 14th Interna-
tional Academic MindTrek Conference: Envisioning Future Media Environments,
ACM (2010) 207–214

30. Mäenpää, H., Kilamo, T., Mikkonen, T., Männistö, T.: Designing for participation:
three models for developer involvement in hybrid oss projects. In: IFIP Interna-
tional Conference on Open Source Systems, Springer (2017) 23–33

31. Hartmann, B., Doorley, S., Klemmer, S.R.: Hacking, mashing, gluing: Understand-
ing opportunistic design. IEEE Pervasive Computing 7(3) (2008) 46–54


