
HAL Id: hal-03647271
https://inria.hal.science/hal-03647271

Submitted on 20 Apr 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

The Strategic Technical Debt Management Model: An
Empirical Proposal

Paolo Ciancarini, Daniel Russo

To cite this version:
Paolo Ciancarini, Daniel Russo. The Strategic Technical Debt Management Model: An Empirical
Proposal. 16th IFIP International Conference on Open Source Systems (OSS), May 2020, Innopolis,
Russia. pp.131-140, �10.1007/978-3-030-47240-5_13�. �hal-03647271�

https://inria.hal.science/hal-03647271
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr


The Strategic Technical Debt Management
Model: an Empirical Proposal

Paolo Ciancarini1 and Daniel Russo2

1 University of Bologna - Italy and Innopolis University - Russia,
paolo.ciancarini@unibo.it

2 Dept. of Computer Science Aalborg University, Selma Lagerlöfs Vej 300. 9000,
Aalborg, Denmark daniel.russo@cs.aau.dk

Abstract. Increasing development complexity in software applications
raises major concerns about technical debt management, also in Open
Source environments. A strategic management perspective provides orga-
nizations with an action map to pursue business’ targets with limited re-
sources. This article presents the Strategic Technical Debt Management
Model (STDMM) to provide practitioners with an actionable roadmap to
manage their technical debt properly, considering both social and techni-
cal aspects. To do so, we pursued a theoretical mapping, exploiting a set
of interviews of 124 carefully selected and well-informed domain experts
of the IT financial sector.

Keywords: Technical Debt · Strategic Management · Empirical Soft-
ware Engineering.

1 Introduction

Software development is a complex social task, undertaken by groups of people
who have to cope with existing legacy requirements, which need to evolve ac-
cording to market expectations. Software is rarely developed from scratch, and
its design integrity is shared among different people; moreover it changes in time,
according to new and unpredictable requirements.

A primary concern of each organization which uses software is typically re-
lated to the maintenance of its assets, and the evolution of its products to deal
with market competition [8]. This is the most common situation were shortcuts
are undertaken for several reasons, typically related to budget or schedule con-
strains. Long-term software maintainability is often neglected, and a short-term
perspective is pursued. Architectural layering and code smells are the typical
results of such management, which drifts to poor software quality. This kind of
pattern is well-known: it was named by Cunningham as Technical Debt (TD) [4].
A growing community holds that software quality practices to improve systems’
sustainability (e.g., refactoring) is ultimately a business decision [10]. Even in
the domain of open source software there is a trend into exploiting the concept
of technical debt as intentional, hence strategic: see for instance the study on
self-admitted technocal debt found in [7].



2 Ciancarini & Russo

A support model is needed to allow developers and managers to make choices,
i.e., whether or not to refactor [18]. The idea itself of debt, taken from finance,
implies to manage with limited resources and make the best out of it. This has
the following implications.

Firstly, it relates to a rational trade-off between quality and budget. This
idea is deeply rooted in software managers. Maturity models (e.g., CMMI) are
valuable frameworks to predict software quality according to the minimal soft-
ware process requirements. Typically, for critical software, a CMMI level of 4 or
5 is required by contract. It should assure the customer that the software house
undertakes full refactoring. Accordingly, the price per LOC incorporates this
effort, increasing the value of software. On the contrary, to secondary software
systems, which will be replaced soon, will be devoted less budget. Indeed, there
is no economic rationality to assign the same relevance to a system’s applica-
tion or component. Thus, in a situation of limited resources, ones have to make
choices and assign priorities. This means that not all software components will
receive the same amount of resources, leading to different levels of quality within
the same information system. Hence, it needs to be adequately managed, mak-
ing such choices rational. Technical debt may arise from random processes and
poorly managed development. Therefore, a management model helps to identify
the sources of technical debt, so to assign them the respective priority.

Secondly, it is quantifiable. Once you take a bank loan, you have to repay it
with interest rates. Interests are not always negative when the need is to deploy
some secondary code good-enough-to-work and focus on strategic applications.
Nevertheless, it should also be clear that, at a certain point in time, one has to
repay the debt with its interests.

Thirdly, it permits to make investments. We do not always have enough
budget or time to implement all requirements. However, if stakeholders consider
one application of strategic value to exploit competitive advantages, organiza-
tions need to make investments. So, they will earn much more than they have
to pay for interests. Subsequently, software houses are willing to deploy some
applications, also with high technical debt, since the earnings from their use will
fully repay their later refactoring, letting make them profit.

Fourth, debt management needs to be considered. Issuing any debit note
has its cost because it implies some operations which have to be undertaken to
grant the loan. Typically, the investment needs to be planned, the debt traced,
repaid, and managed. It is the same for software projects. Once the need for
investments emerges, what does it mean in terms of technical debt management?
So, questions like where is the debt, how and when are we going to repay it, and
who should do that - have to be taken into great care.

In our research journey, we experienced all those issues in highly complex
banking information systems [16, 17]. Also, we modeled those concerns in an on-
tology to make such knowledge representation inter-operable with other similar
systems [1].



The Strategic Technical Debt Management Model: an Empirical Proposal 3

It is quite usual for a large organization to exploit different software houses
for the evolution and maintenance of the information systems. This is a typical
situation were technical debt emerges for several reasons:

– Architectural stratification as a consequence of a lack of conceptual integrity.
– Applications become rapidly outdated, afflict by high maintenance cost, and

difficult to evolve.
– Market competition pushes for new applications.
– Core System Optimization is costly, and the skills to evolve old mainframes

are lacking.

The management of an information system’s quality is, with such a setting,
a challenging effort. Still, it is a pivotal task.

From a software management perspective, the four outlined financial implica-
tions suggest that the literature about technical debt [12, 9] is unable to provide
enough explanatory power of this phenomenon since the social part is missing.
The reason is that technical debt is a socio-technical matter, and as such com-
prehensive handling is needed to address its complexity. In the end, managing
technical debt means to control people.

To get a deep understanding of this crucial issue, we developed an innovative
research design and involved 13 top managers of the IT banking industry for
the items identification and 124 IT banking domain for the item validation and
construct definition. We asked them to outline the most relevant software quality
concerns related to banking information systems. We obtained 28 unique fac-
tors through the Delphi-like research design, which we mapped in the proposed
managerial model.

The main contribution of our paper is the Technical Debt Management
Model, gathered by highly relevant empirical research to provide the practi-
tioner’s community with a valuable tool to manage technical debt in a structured
way.

In the rest of this paper, we will contextualize the metaphor of technical debt
through the Agile triangle in Section 2. Moreover, we will briefly explain how
we elicited software quality concerns by a high-level panel of banking industry
experts in Section 3. After mapping the items, we propose a model to manage
technical debt in Section 4. Finally, we conclude our study in Section 5.

2 The Technical Debt Triangle

The idea of technical debt is not a radically new one. In software engineering,
we are well aware of software deterioration problems, where the complexity of
software raises along with its evolution [11], and reuse [2, 3]. Similarly, software
ages when it is not able to cope with new requirements due to irreconcilable
technology paradigms [15].

To better explain the concurrent drivers of technical debt, we elaborate on the
idea of the Agile Triangle [6]. The three different dimensions of technical debt are
budget, time, and scope. They are conflicting since it is not feasible to develop



4 Ciancarini & Russo

Fig. 1. Technical Debt Triangle

high-quality software with a low budget in a short time. This assumption is the
baseline for any strategic software development model since you typically have to
deal with limited resources. In an ideal situation, where resources are unlimited,
there is no need for any strategic management effort, since strategic choices are
simply not necessary. So, if we are focused on one corner, we are going to weaken
the other two. If we are concerned about the scope, the relevant budget must be
planned and sufficient time should be devoted to the project.If we need some new
functionalities in a short time, it will have a high cost (since unplanned tasks
require the organization to reschedule the work-flow), and quality will suffer
from necessary fine-tuning before deployment, e.g., minor bug fix or refactoring.
Finally, in case of a low budget, the project will last reasonably for an extended
period, since few people can work on it. Moreover, the quality will also probably
decrease since the most skilled (and paid) developers will work on other projects.

These last two cases, which are the most frequent ones, typically lead to
technical debt. Often, technical debt is beneficial because it permits to make
investments in case of a project’s budget, which is lower than that effectively
needed. It is a continuous trade-off between long and short term perspectives.
However, it needs to be a strategic (i.e., rational) decision. Often, technical debt
is caused by subsequent uncontrolled, unplanned, and irrational tasks, which led
to an explosion of its interests. At that point, organizations typically struggle
because they feel to be on a sinking ship, were new applications just increase
the debt, and no exit strategy is planned because they often do not know where
to start to repay it [16].



The Strategic Technical Debt Management Model: an Empirical Proposal 5

A strategic management model is a roadmap, where any organizations, ac-
cording to its internal and external constraints, plan the (i) what, (ii) how, (iii)
when, and (iv) where the technical debt should be managed.

Several mapping studies of the literature have been pursued, to identify and
analyze the elements required to manage technical debt [5]. These studies have
proposed some taxonomies, which could be useful to understand the most im-
pelling issues while dealing with technical debt. However, a taxonomy is not a
management model.

Other scholars introduced a maturity model for technical debt management,
where they identified three levels of awareness in software factories; see for in-
stance [20]. Still, a proposal for a strategic management model is missing.

3 Research Design

Defining technical debt is hard [10]. In our research we identified the proxy-
construct of Software Quality Concern. Our domain experts were able to express
openly, in a structured scientific procedure, all concerns regarding the software
quality of the information systems they were working on.

To do so, we first identified 13 top managers of the IT financial industry to
cover in, a representative way, the entire the addressed problem. Those experts
were able to elicit several concerns, and, using the Delphi methodology, they were
able to reach full consensus about the solicited items. Afterward, we identified
other 124 domain experts through a stratified random sampling technique and
asked them to express their level of agreement with the proposed items and to
add personal opinions on every single item.

In that way, we were able to identify the 28 concerns, namely: (1) Mod-
ule interfaces complexity, (2) Interfaces architectural complexity, (3) Custom
software quality, (4) Increase of maintenance costs, (5) Quality vs. Time & Bud-
get, (6) Quality vs. System analysis, (7) System analysis vs. Documentation,
(8) Documentation vs. Time & Budget, (9) New packages functionalities vs.
complexity, (10) Packages vs. Documentation, (11) Packages documentation vs.
System analysis, (12) Application & Maintenance contracts vs. Documentation,
(13) International applications vs. Quality & Maintainability, (14) Domestic ap-
plications vs. Quality & Maintainability, (15) Measurement of software qual-
ity, (16) Lower developers’ expertise and professionalism, (17) Contracting &
Skills, (18) Lacking tools & Methodologies, (19) Establishment of internal and
external development processes, (20) Developer’s professionalism vs. Skills, (21)
Developer’s professionalism vs. Rates, (22) Web technologies vs. Methodologies,
(23) Quality vs. Requirements, (24) Requirements vs. Methodologies, (25) Re-
quirements vs. Technical jargon, (26) Data analysis vs. Functional analysis, (27)
Functional analysis vs. Data modeling, (28) Documentation standards and tools.
For a better understanding of the concerns and the research design, refer to [16,
17].

After the elicitation and validation of the relevant concerns, we mapped them
within an established technical debt management taxonomy [13]. Interestingly,



6 Ciancarini & Russo

Fig. 2. Software Quality Concerns

the technical one has already been explored and led to the development of the
SQALE method [12]. Indeed, SQALE identifies several technical sub-dimension
and their related software metrics. However, we did not find in the scientific
literature any similar framework addressing the social dimension. Therefore, we
proposed a comprehensive managerial model. We pursued a theoretical mapping
of the items within their related sub-dimensions. The outcome of the theoretical
mapping for both technical and social dimensions is listed in Table 1.

Social Technical [13]
TD Type Items TD Type Items

Staffing & Seniority 20, 21 Requirements 6, 14, 23, 24, 25
Skills & Training 16, 17, 21, 22 Design & Architecture 1, 2, 4, 6, 9, 11, 26, 27
Risk & Contracting 3, 5, 12, 17, 19, 20 Code 1, 4, 5, 10, 19, 23
Stakeholder involvement & Outsourcing 14, 17, 19, 25 Test & Defect 3, 4, 5, 6, 13, 15, 16

Build & Versioning 4, 15, 18
Documentation 4, 7, 8, 10, 11, 12, 28

Table 1. Technical Debt type mapping

Finally, we were able to relate the empirically gathered items within a rel-
evant managerial concept, which is the base of our Strategic Technical Debt
Management Model, described in the next section.



The Strategic Technical Debt Management Model: an Empirical Proposal 7

4 Strategic Technical Debt Management Model

The essential elements of any strategic management model are: situation anal-
ysis, strategy formulation, strategy implementation, and evaluation & control
[19]. Such a model is typically non–linear since the surrounding environment
changes more or less rapidly according to exogenous market-related factors.
Consequently, we build our STDMM on such assumptions, fine–tailoring the
evaluation and control phase, as represented in Figure 3.

Fig. 3. Strategic Technical Debt Management Model

Thus, to strategically manage technical debt means to take into account:

1. Situation analysis (Environmental Scanning). The first step should
raise awareness within the organization about its external and internal envi-
ronment. Benchmarking competitors is always a good idea since there is no
such absolute baseline. Indeed, markets that experience continuous require-
ments adaptations at high velocity may generate more TD concerning those
who have to follow standardized quality processes (e.g., CMMI). Therefore,
identifying External Opportunities & Threats supports effectively manage-
ment decisions. This enables an organization to position itself to the market.
Relevant questions might be: how does the market manage TD? Or where do
competitors invest their debt? Afterward, Internal Strengths & Weaknesses
have to be analyzed. In particular: how good is my organization in managing
TD, or where go my investments, are fundamental questions to scan the in-
ternal environment. Typically, the first quantification of the already existing
debt happens in this phase.



8 Ciancarini & Russo

2. Strategy Formulation. After the assessment phase, the organization should
draw its strategy to manage technical debt. Each strategy has four main pil-
lars [19]. To make it self-evident, we propose key questions, useful to draw
a strategy:

– Mission: why should an organization exploit TD?
– Objective: which results do we want to accomplish, and by when?
– Strategy : which plan do we define to achieve mission & objectives?
– Policies: which internal guidelines for TD decision making do we want

to have?

Of course, these are high-level questions, which need to be tailored to any
organization. However, they provide good–enough fit for every organization
which aim is to manage its TD strategically.

3. Strategy Implementation. Once the planning activity has been concluded,
the strategy should carry on.
In particular, specific programs and activities needed to manage effectively,
TD has also to be outlined and followed. Continuous code inspection with
quality metrics is a valuable example of this step.
These kinds of plans have a price, which needs an ad hoc budget. Notably,
every activity with no budget is poorly effective; thus, every organization
should allocate enough resources. Otherwise, an STDMM is rather useless.
Finally, procedures, intended as a sequence of steps needed to manage TD,
are also part of the model. The aim is to leverage on TD to finance ur-
gent software development needs or to repay it. However, how to manage
these decisions in a complex organization is not trivial. Therefore, internal
procedures guide both developers and management to use TD strategically.

4. Evaluation & Control. The last phase accounts for the continuous follow
up of the strategy. Although the technical dimension of TD is a well known
one [14], we introduced here also social aspects, which are equally important
for an effective management strategy. We were able to elicit and validate
through or research journey [16, 17] relevant social dimension regarding TD
management, which is described in Table 1.
In particular, staffing and seniority impacts on TD, since a right mix of
senior and junior developers enhances code quality. Moreover, the project
team should be as stable as possible in time, as also suggested by Brook’s
law. Skilled developers on ongoing training are educated to deal with new
complex tasks and technologies. For example, the presence of a training
plan is a positive software quality indicator. Risk mitigation through con-
tracts, which transfer TD to contractors (like Service Level Agreement), is
a common practice for most organizations. These aspects poorly relate to
technical assessment techniques of TD, although they have an impact on
organizations. Thus, to effectively manage TD means to include risk and
contracts within the strategy. Finally, any software is a collective product,
which can be developed in different ways (e.g., internally or externally to
the company). The involvement of stakeholders, especially outsources is a
key quality issue. Continuous interaction is an effective way to have a com-
plete overview of the development process and the use of TD. This is even



The Strategic Technical Debt Management Model: an Empirical Proposal 9

more important for an outsourced project, where the customer typically has
poor visibility about what is happening.

5 Conclusions

To conclude, this paper provides three main contributions. Firstly, it maps the
social dimension of TD. Secondly, it proposes a strategic approach to manage
TD. Finally, STDMM is a first attempt to include the social dimension of TD
within a strategic technical debt management model.

Future works will focus on the extension and validation of the proposed
model.

Acknowledgments

This work was partially funded by the Institute of Cognitive Sciences and Tech-
nologies (ISTC) of the Italian National Research Council (CNR), and the Con-
sorzio Interuniversitario Nazionale per l’Informatica (CINI).

References

1. Ciancarini, P., Nuzzolese, A.G., Presutti, V., Russo, D.: Squap-ont: an ontol-
ogy of software quality relational factors from financial systems. arXiv preprint
arXiv:1909.01602 (2019)

2. Ciancarini, P., Russo, D., Sillitti, A., Succi, G.: A guided tour of the legal implica-
tions of software cloning. In: Proceedings of the 38th International Conference on
Software Engineering Companion. pp. 563–572. ICSE ’16, ACM (2016)

3. Ciancarini, P., Russo, D., Sillitti, A., Succi, G.: Reverse engineering: a European
IPR perspective. In: Proceedings of the 31st Annual ACM Symposium on Applied
Computing. pp. 1498–1503. ACM (2016)

4. Cunningham, W.: The WyCash portfolio management system. ACM SIGPLAN
OOPS Messenger 4(2), 29–30 (1993)

5. Fernández-Sánchez, C., Garbajosa, J., Yagüe, A., Perez, J.: Identification and anal-
ysis of the elements required to manage technical debt by means of a systematic
mapping study. Journal of Systems and Software 124, 22–38 (2017)

6. Highsmith, J.: Agile project management: creating innovative products. Pearson
Education (2009)

7. Huang, Q., Shihab, E., Xia, X., Lo, D., Li, S.: Identifying self-admitted technical
debt in open source projects using text mining. Empirical Software Engineering
23(1), 418–451 (2018)

8. Khadka, R., et al.: How do professionals perceive legacy systems and software mod-
ernization? In: Proc. of the 36th International Conference on Software Engineering.
pp. 36–47. ACM/IEEE (2014)

9. Kruchten, P., Nord, R., Ozkaya, I.: Technical Debt: From Metaphor to Theory and
Practice. IEEE Software 29(6) (2012)

10. Kruchten, P., Nord, R., Ozkaya, I.: Technical Debt: Reducing Friction in Software
Development. Addison-Wesley (2019)



10 Ciancarini & Russo

11. Lehman, M.M., Belady, L.A.: Program evolution: processes of software change.
Academic Press Professional, Inc. (1985)

12. Letouzey, J., Ilkiewicz, M.: Managing technical debt with the sqale method. IEEE
Software 29(6), 44–51 (2012)

13. Li, Z., Avgeriou, P., Liang, P.: A systematic mapping study on technical debt and
its management. Journal of Systems and Software 101, 193–220 (2015)

14. Li, Z., Liang, P., Avgeriou, P.: Architectural technical debt identification based on
architecture decisions and change scenarios. In: Software Architecture (WICSA),
2015 12th Working IEEE/IFIP Conference on. pp. 65–74. IEEE (2015)

15. Parnas, D.: Software aging. In: Proc. of the 16th International Conference on Soft-
ware Engineering. pp. 279–287. ACM/IEEE (1994)

16. Russo, D., Ciancarini, P., Falasconi, T., Tomasi, M.: Software quality concerns in
the italian bank sector: the emergence of a meta-quality dimension. In: Proc. of
the 39th International Conference on Software Engineering. pp. 63–72. ACM/IEEE
(2017)

17. Russo, D., Ciancarini, P., Falasconi, T., Tomasi, M.: A meta model for informa-
tion systems quality: a mixed-study of the financial sector. ACM Transactions on
Management Information Systems 9(3), 1–38 (2018)

18. Tempero, E., Gorschek, T., Angelis, L.: Barriers to refactoring. Communications
of the ACM 60(10), 54–61 (2017)

19. Wheelen, T.L., Hunger, J.D.: Strategic management and business policy. Pearson
(2017)

20. Yli-Huumo, J., Maglyas, A., Smolander, K.: How do software development teams
manage technical debt?–an empirical study. Journal of Systems and Software 120,
195–218 (2016)


