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Abstract. In this paper an adaptation of the Adaptive Large Neigh-
borhood Search (ALNS) to a patient's care planning problem is pro-
posed. We formalize it as an RCPSP problem that consists of assigning
a start date and medical resources to a set of medical appointments.
Di�erent intensi�cation and diversi�cation movements for the ALNS are
presented. We test this approach on real-life problems and compare the
results of ALNS to a version without the adaptive layer, called (¬A)LNS.
We also compare our results with the ones obtained with a 0-1 linear
programming model. On small instances, ALNS obtains results close to
optimality, with an average di�erence of 1.39 of solution quality. ALNS
outperforms (¬A)LNS with a gain of up to 18.34% for some scenarios.
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1 Introduction

Improving the health care system is one of the biggest challenges many countries
will have to face over the coming years. The complexity of scheduling problems
in the healthcare domain is an issue that is increasingly being highlighted by
healthcare facilities. This kind of problem belongs to the Resource Constrained
Project Scheduling Problem (RCPSP) family that is NP-Hard [7, 2]. The RCPSP
problem consists of �nding the best assignment of resources and start times to a
set of activities. In healthcare it usually involves �nding a starting date and med-
ical resources (medical sta�, rooms and medical equipment) for an appointment
with a patient.

Nowadays, planning the patient's care is mostly done by hand, a di�cult and
time-consuming task due to the number of appointments and resources to con-
sider, that can be challenged by various kinds of unexpected events. Scheduling
problems have been the subject of many studies for decades in various �elds [1,
3], and they are of increasing interest in the healthcare domain [6, 12]. The struc-
ture of considered problems di�ers according to the institutions, their size and
the number of resources taken into account. This article is focused on scenarios
designed with various planners from di�erent health care facilities in France who
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deal with real-life problems every day. These scenarios focus on the planning of
patient's care in di�erent kinds of institutions. In this work we propose an Adap-
tive Large Neighborhood Search (ALNS) metaheuristic able to deal with large
instances derived from these various real-world healthcare scenarios.

This article is structured as follows. In section 2 we describe our problem. In
section 3 we present our ALNS algorithm, with the di�erent movements used. In
section 4 we give further details on the scenarios and the corresponding results
obtained by the ALNS metaheuristic. We compare the results of this method
with the results obtained by the 0-1 linear programming model presented in [5].
In section 5, we conclude with some remarks and perspectives.

2 Problem de�nition

Our problem can be stated as follows. The horizon H is decomposed into time-
slots. We have a �nite set of resources R and each resource r ∈ R is characterized
by a set of properties Πr that determines which roles a resource will be able to
hold in an appointment. Availability of each resource is known. A is a set of
appointments to be planned, such that each appointment a ∈ A is characterized
by its duration durationa, a feasibility interval of time [ESa, LSa], qtreq

π
a the

amount of resources with property π required by a. Essentiala and Emergencya
are two coe�cients used to respectively quantify the importance and the urgency
of an appointment a. Both are used by planners to de�ne priorities on some
appointments and to specify which ones should be set as soon as possible within
their feasibility interval, therefore they both occur as penalties in the objective
function. PreAssigneda is a set of couples (resource, property) pre-assigned to
a. To each appointment a could be associated a set of appointments preda that
must be planned before a.

We de�ne the triplet (a, ta, Ra), where a is an appointment, ta the starting
date for a and Ra the set of resources assigned to a. A valid solution Sol is a set of
triplets that respect the hard time and resource constraints. We denote ASol the
set of scheduled appointments and ASol the set of unscheduled appointments.
The quality of a solution is evaluated by the objective function f that is the
sum of weights Essentiala of unplanned appointments a ∈ ASol plus the sum
of delay impacts of planned urgent appointments. The aim is to �nd a valid
solution while minimizing objective function f de�ned in equation 1.

f(Sol) =
∑

a∈ASol

Essentiala +
∑

a∈ASol

ta − ESa
LSa − ESa

× Emergencya (1)

3 Adaptive Large Neighborhood Search

Adaptive Large Neighborhood Search is based on the Large Neighborhood Search
framework de�ned in [10]. ALNS was �rst introduced in [9] and was applied on
various problems, such as scheduling problems [4, 8]. Di�erent movements are
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iteratively applied to a solution in order to explore its neighborhood. Basically,
a solution is partially destroyed then reconstructed using destruction and con-
struction heuristics. In a scheduling problem, it usually consists of removing a
number of appointments from a solution and then trying to reinsert them.

Algorithm 1: ALNS

1 begin

2 Sol← greedy() ;
3 Solbest ← Sol ;
4 ∀m ∈M,w0

m ← 1/|M | ;
5 while stopping criterion are not met do

6 for segment s do

7 m← RouletteWheel(M,ws) ;
8 Sol′ ← m(Sol) ;
9 πm is updated according to f(Sol′) ;
10 Sol′ ← diversification(Sol′) ;
11 Sol← Sol′ ;

12 if f(Sol) < f(Solbest) then

13 Solbest ← Sol ;

14 end

15 end

16 update weights ws+1
m for each movement m ;

17 end

18 return Solbest ;
19 end

The general algorithm of our ALNS based on [9] is given in Algorithm 1.
An initial solution is computed using a greedy algorithm described in Section
3.1. All movements m in the set of movements M are equally weighted at the
beginning of the algorithm. As suggested in [9], the search is divided into blocks
of consecutive iterations, called segments. For each iteration in a segment s, a
movementm is chosen with a roulette wheel selection according to its weight wsm
and is applied to the current solution Sol. During the course of a segment, a score
πm is associated with each movement m. πm represents the total reward of the
movement, relative to the results of its use. At the end of each segment s, weights
wsm are updated according to scores πm. If the search stagnates, diversi�cation
movements such as Swap or Left Shift can be applied to the solution. In an
extended period without improvement, a reset can also be performed on the
current solution Sol. This process is iterated until stop conditions are met. The
various movements that ALNS uses for diversi�cation are described below.
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3.1 Greedy Algorithm

To build the initial solution, a simple greedy algorithm is used. The order that
the greedy algorithm uses to schedule each unscheduled appointment is random.
For an appointment a the greedy searches for the �rst timeslot ta on which a set
of resources Ra that exactly matches its resource requirement is available. This
search starts either at ESa or at a random timeslot t ∈ [ESa, LSa].

3.2 Weight adjustment

As stated above, the search is divided into segments. The score πm of all move-
ments m is set to zero at the start of each segment. At each iteration within a
segment, the score πm of selected movement m is increased by adding a reward
σ according to the following conditions:

σ =


σ1, if the produced solution is a new best overall solution

σ2, if the produced solution is better than the current one

σ3, if the produced solution is worse than the current one

(2)

At the end of each segment s, weight ws+1
m is updated using formula 3:

ws+1
m = (1− r) wsm + r (

πm
θm

) (3)

where θm is the number of times movement m has been used during segment
s. The reaction factor r controls the strength of the adjustment from one segment
s to the following segment s + 1. If r = 0, there is no change and if r = 1,
the weights for the new segment s+ 1 only depends on the performance during
the previous segment. Movements are selected using a roulette wheel selection
method. The number of iterations of a segment, the di�erent scores σ1, σ2 and
σ3 and the reaction factor r are parameters of the ALNS algorithm.

3.3 Intensi�cation movements

We propose di�erent intensi�cation movements. These movements are assessed
by the ALNS and used according to their performance during execution.

Random destruction and greedy reconstruction This movement removes
a random number of appointments from the current solution. Then it tries to
plan all unscheduled appointments using the greedy algorithm described above.
Time complexity of this movement: O(|ASol| × |H| × |R|).
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Random destruction and optimal reconstruction This movement also
removes a random number of appointments and uses an optimal reconstruc-
tion to try to plan as many unscheduled appointments as possible. The or-
der in which the appointments will be considered is obtained by a roulette
wheel selection, its probabilities being calculated from the importance coe�-
cients Essentiala of unscheduled appointments a. For each a of them and for
each timeslot t ∈ [ESa, LSa], a heuristic searches for the best possible set of re-
sources Ra. This choice is based on a stress score αr for each resource r ∈ Ra. αr
increases each time a movement fails to assign r to an appointment. Conversely,
it decreases each time resource r is successfully assigned to an appointment.
The most requested resources will fail more often, and therefore have a higher
stress score. This allows the ALNS to keep track of the most stressed resources.
The heuristic favors for an appointment a the sets of resources Ra with the
lowest cumulated stress score. ta is chosen according to the stress score of Ra
and to Emergencya: if appointment a is urgent, earlier timeslots close to ESa
are preferred. Appointments that cannot be rescheduled remain in ASol. Time
complexity of this movement: O(|ASol| × |H| × |R|).

Di�culty based destruction and optimal reconstruction To each ap-
pointment a is associated a di�culty score δa. Whenever a movement fails to
schedule a, its di�culty score δa increases. Conversely, each time an appoint-
ment a is scheduled, its di�culty score δa decreases. This allows the ALNS to
keep track of the most di�cult appointments to schedule. Among all sched-
uled appointments, this movement uses a roulette wheel selection based on their
di�culty score to select one appointment to remove from ASol, the other are
randomly chosen in ASol. Then it tries to plan all unscheduled appointments
ordered by their decreasing di�culty score (the most di�cult being scheduled
�rst). Time complexity of this movement: O(|ASol| × |H| × |R|).

Targeted destruction This movement extracts one unscheduled appointment
a according to its di�culty score δa. Next it tries to �nd the best timeslot ta to
plan a by removing some scheduled appointments in order to satisfy all resources
needed by a. First we randomly select a set T ⊆ [ESa, LSa] of timeslots where a
could be scheduled by relaxing resource constraints. For each timeslot t ∈ T we
compute all combinations Cit of appointments whose removal frees up resources
that allow a to be planned. Next we select a timeslot t with a combination C∗t by
probabilistic rules based on Essential and Emergency factors of contributive
appointments. All appointments in C∗t are unplanned and a is planned on t.
Finally, the greedy algorithm is used to place as many unscheduled appointments
as possible. Time complexity of this movement: O(max(A,H)× |R| × |T |).

3.4 Diversi�cation movements

Two diversi�cation movements Swap and Left Shift are used during the execution
of the ALNS. They allow the current solution to be perturbed, lowering the odds
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that the search remains trapped in a local minimum. They are applied to the
current solution when a preset number of iterations without improvement is
reached.

Swap The Swap randomly chooses two triplets (a1, ta1 , Ra1) and (a2, ta2 , Ra2)
of Sol and exchanges their start date ta1 and ta2 , if the availability of resources
allows it. Otherwise the exchange is aborted. Time complexity of this movement:
O((durationa1 + durationa2)× |R|).

Left Shift This movement tries to shift the appointments of a subset of ran-
domly chosen resources so that their respective schedules are as compact as
possible. The start date ta of each a�ected appointment a is brought as close as
possible to its ESa date. Time complexity of this movement: O(|A|× |H|× |R|).

3.5 Restart

If the search stagnates for too long, the solution will undergo a complete restart.
All appointments a ∈ ASol are unscheduled, then the greedy algorithm described
above is used. However the greedy will consider appointments ordered by their
decreasing di�culty score δ. The most di�cult appointments will be processed
�rst. This way we expect to schedule di�cult appointments in priority. Time
complexity of this movement: O(|A| × |H| × |R|).

4 Experimentations & Results

4.1 Experimentations

We generated 80 instances from four scenarios presented in [5] to test our ALNS
algorithm. Instances are generated by varying some parameters: size of the in-
stance, essential and emergency coe�cients, precedence relationship and resource
availabilities. As suggested in [11], we compare the results of ALNS to a version
without the adaptive layer, called (¬A)LNS to assess the e�ect of the adaptive
layer. Both ALNS and (¬A)LNS were implemented in C# and tests were run
on an Intel i5-8350U processor. We also compare ALNS results to the optimal
solutions reached by the linear programming model 0-1 presented in [5] and
implemented under CPLEX 12.8.0.0.

We set the parameters of ALNS as follows. The maximum number of itera-
tions in a segment was set to 100. The rewards σ1, σ2 and σ3 were set respec-
tively to 75, 20, and 0. For the ALNS, the reaction factor r is set to 0.08. For the
(¬A)LNS, r is set to 0. The number of destroyed appointments mentioned in sec-
tion 3.3 is randomly picked between 5 and 15. For the ALNS and (¬A)LNS the
computation time was limited to two minutes when for CPLEX it was limited
to two hours.
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Table 1. Comparisons of ALNS results with optimal solutions

Instance
ALNS CPLEX

∆f Gapf
f(Solbest) |ASolbest

| f(Solbest) |ASolbest
|

SurgDep 1 0 0 0 0 0 0%
SurgDep 2 0 0 0 0 0 0%
SurgDep 3 1 1 0 0 1 100%
SurgDep 4 3.75 2 1.48 0 2.27 153.17%
SurgDep 5 14.54 3 9.54 0 5 52.4%
SurgDep 6 0 0 0 0 0 0%
SurgDep 7 4.31 2 1.48 0 2.83 196.13%
SurgDep 8 0 0 0 0 0 0%

Table 2. Comparisons of ALNS results with (¬A)LNS

Scenario |A| |H|
ALNS

Average Gapf

ALNS

Average ∆f

Average

|ASolbest | / |A|

SurgDep
16 52 -1.76% -0.14 93.06%

48 52 -12.61% 0.56 90.51%

RehabCenter
96 48 -5.26% -1.04 99.45%

288 48 -7.16% -11.02 99.38%

Admission
136 240 -18.34% -8.80 94.22%

408 240 -2.93% 24.41 95.66%

CardioRehab
160 240 -7.52% -2.61 98.62%

480 240 -17.92% 25.88 98.78%

4.2 Results

Our di�erent approaches have been applied to all generated instances. Compar-
isons between the optimal results obtained by CPLEX and those obtained by
ALNS are reported in Table 1. For CPLEX and ALNS we give f(Solbest) and
the number of unplanned appointments |ASolbest |, the di�erence ∆f between
CPLEX and ALNS results and the Gapf from CPLEX (Gapf = (ALNS −
CPLEX)/CPLEX). Not surprisingly, CPLEX cannot conclude on large in-
stances, and we can only obtain optimality on small instances (SurgDep scenario,
the smallest of our scenarios with 16 appointments to schedule on one day). We
note that ALNS obtains results close to optimality, with an average di�erence
of 1.39 of solution quality computed by Equation 1.

We next compare the results obtained by ALNS and (¬A)LNS. Results
are reported in Table 2. We give for each scenario the number of appoint-
ments |A|, the number of timeslots |H|, the average Gapf (Gapf = (ALNS −
(¬A)LNS)/(¬A)LNS) from (¬A)LNS, the average di�erence ∆f between
(¬A)LNS and ALNS and the average percentage of scheduled appointments
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|Solbest| / |A|. We see that ALNS outperforms (¬A)LNS on all scenarios, espe-
cially on the largest ones with an improvement of 17.92% on the scenario with
the highest number of appointments to schedule. The average gain obtained
with ALNS exceeds the average gain reported in [11]. These results suggest that
some combinations of movements may be especially e�cient depending on the
scenario. They are therefore favored by ALNS and thus lead to better solutions.

5 Conclusion & Perspectives

In this paper we presented an adaptation of the ALNS framework to a pa-
tient's healthcare planning problem. Such a method, whose execution times are
very short and provide solutions quite close to the optimum, is very interesting
for applications in the real world. Indeed, the �rst results of this approach are
promising especially on large instances. Further tests should be conducted to
study the impact of parameters on the performance of ALNS. We would also
investigate how the weights of movements evolve according to the scenarios in
order to understand why some of them seem more e�cient than others from one
scenario to another.
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