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Abstract. Digital low-dropout voltage regulators (DLDOs) have drawn
increasing attention for the easy implementation within nanoscale de-
vices. Despite their various benefits over analog LDOs, disadvantages
may arise in the form of bias temperature instability (BTI) induced per-
formance degradation. In this Chapter, conventional DLDO operation
and BTI effects are explained. Reliability enhanced DLDO topologies
with performance improvement for both steady-state and transient op-
erations are discussed. DLDOs with adaptive gain scaling (AGS) tech-
nique, where the number of power transistors that are turned on/off per
clock cycle changes dynamically according to load current conditions,
have not been explored in view of reliability concerns. As the benefits of
AGS technique can be promising regarding DLDO transient performance
improvement, a simple and effective reliability aware AGS technique with
a steady-state capture feature is proposed in this work. AGS senses the
steady-state output of a DLDO and reduces the gain to the minimum
value to obtain a stable output voltage. Moreover, a novel unidirectional
barrel shifter is proposed to reduce the aging effect of the DLDO. This
unidirectional barrel shifter evenly distributes the load among DLDO
output stages to obtain a longer lifetime. The benefits of the proposed
techniques are explored and highlighted through extensive simulations.
The proposed techniques also have negligible power and area overhead.
NBTI-aware design with AGS can reduce the transient response time by
59.5% as compared to aging unaware conventional DLDO and mitigate
the aging effect by up to 33%.

Keywords: NBTI, reliability, aging, steady state performance, tran-
sient performance, shift register, unidirectional control

1 Introduction

Semiconductor technology that enables rapid advancements in the design and
fabrication of nanoscale integrated circuits continuously improves while demand-
ing a higher amount of power per unit area [1]. Integrating voltage regulators
fully on-chip to provide robust power to the integrated circuits have been a
challenging design issue. Several techniques have been proposed in the litera-
ture to improve the power conversion efficiency, stability, and reliability of on-
chip voltage regulators or power delivery networks as a whole [2–14]. There is
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also an emerging trend to leverage voltage regulators to address security con-
cerns [15–23]. In addition to the existing challenges, bias temperature instability
(BTI) induced reliability concerns have recently drawn attention especially for
digital low-dropout regulators (DLDOs) [24–27]. Modern computing systems and
internet of things (IoT) devices require reliable operation and long lifetime of
on-chip voltage regulators [25,29,30]. Generating and delivering a robust output
voltage under highly dynamic workload conditions have become even more dif-
ficult with the variations in the environmental conditions. These environmental
conditions deteriorate the performance and lifetime of the transistors. Voltage
regulators suffer from the abrupt variations in the workload and may experience
serious aging phenomenon, necessitating reliability aware designs [25].

Transistor aging mechanisms such as BTI, hot carrier injection, and time-
dependent dielectric breakdown have become more important with the scaling
of transistor size. BTI is the major aging mechanism [31–37] where negative
BTI (NBTI) induces performance degradation of PMOS transistors. Various
studies have been performed to address the reliability issues of semiconductor
devices [28,38,39]. BTI-aware sleep transistor sizing algorithms for reliable power
gating design [38], integral impact of BTI and PVT variation [40], and impact
of BTI variations [41] have been investigated. A conventional DLDO has a bi-
directional controller which activates certain transistors frequently and leaves the
others unused. This reliability unaware control scheme makes the performance
degradation even worse because the activation pattern of PMOS is concentrated
on certain transistors, thus causing heavy electrical stress on these transistors.
The over usage of certain transistors degrades the performance significantly.
Distributing the electrical stress among all of the transistors can therefore be
effective. The primary literature that address the aging effects of on-chip DL-
DOs include a reliable digitally synthesizable linear drop-out regulator design,
a digitally controlled linear regulator for per-core wide-range DVFS of AtomTM

cores, and mitigation of NBTI induced performance degradation in on-chip DL-
DOs [25, 42, 43]. To evenly distribute the workload, a decoding algorithm for
DLDO is proposed in [42]. A code roaming algorithm with per-core dynamic
voltage and frequency scaling method is proposed in [43]. These techniques need
dedicated control algorithms to enhance the reliability of a DLDO. A unidi-
rectional shifter is proposed for conventional DLDOs in [25] to decrease the
electrical stress on transistors. A DLDO without AGS, however, suffers from
slow response time when there are large transitions in the load current. The
supply voltage should be robust as the operation of all of the on-chip devices
are sensitive to the variations at the output of the voltage regulators. Transient
performance enhancements and loop stability can be increased by utilizing a
barrel shifter as discussed in [44]. A barrel shifter which can perform the switch-
ing of two or three transistors within a single clock cycle improves the transient
response time significantly. A barrel shifter based DLDO design with a steady
load current estimator and dynamic gain scaling control is discussed in [45]. Al-
though there are benefits of the aforementioned techniques, a DLDO with AGS
still suffers from performance degradation due to NBTI. Additionally, a conven-



Reliability Enhanced Digital Low-Dropout Regulator 3

clk 

Vref 
Vcmp

D
ig

it
al

 
C

o
n

tr
o

lle
r

Q1

Q2

Q3

QN

M1

M2

M3

MN

Vin

Vout

Fig. 1. Schematic of conventional DLDO.

tional DLDO with AGS also does not consider aging effect. Gain scaling using a
bi-directional barrel shifter in [46,47] may not be directly applicable to add gain
scaling capability for a reliability enhanced DLDO. Therefore, further research
should be performed on AGS DLDO to mitigate performance degradation due
to NBTI. A novel aging aware DLDO with AGS and a steady-state detection
circuit to obtain fast transient response under abrupt changes in the load current
is proposed in this work.

The main contributions of this work are threefold. First, an NBTI-aware
DLDO with AGS is proposed. Second, a simple and effective steady state, over-
shoot, and undershoot detection circuit is proposed and verified. Third, extensive
simulations verify that the proposed circuit works effectively.

As an extension of [48], the rest of this Chapter is organized as follows. Back-
ground information regarding conventional DLDOs, steady state and transient
performance of DLDO, and BTI is discussed in Section 2. Existing NBTI-aware
DLDO topologies are explained in Section 3. The proposed NBTI-aware DLDO
with AGS is discussed in Section 4. Evaluation of the proposed technique and
simulation results are discussed in Section 5. Concluding remarks are given in
Section 6.

2 Background

In this section, background information on the design of conventional DLDO,
steady state performance and transient performance thereof, and BTI effects are
explained.
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Fig. 2. Schematic of bidirectional shift register [25, 29].

Q1 Q2 Q3 Q4 Q5 Q6 Q7 . . . . . . QN-1 QN

1 1 1 1 1 1 1 . . . . . . 1 1

0 0 0 0 0 1 1 . . . . . . 1 1

0 0 0 0 0 0 1 . . . . . . 1 1

0 0 0 0 1 1 1 . . . . . . 1 1

(1) Initialize: all Mis turned off

(2) Step k 

(3-a) Step k+1, if Vcmp is High: Shift right

(3-b) Step k+1,  if Vcmp is Low: Shift left

Fig. 3. Operation of bi-directional shift register.

2.1 Conventional DLDO

The schematic of a conventional DLDO [29] is illustrated in Fig. 1. The Vref
and clk are the inputs and Vout is the output of the conventional DLDO. The
schematic and the operation principle of a bi-directional shift register used in
the conventional DLDO are described in Figs. 2 and 3, respectively. The bi-
directional shift register consists of a multiplexer and a DFF in each stage.
The digital controller modulates the value Qi based on Fig. 3. The DLDO is
composed of N parallel PMOS transistors and a feedback control to adjust the
output voltage. A bi-directional shift register is implemented in conventional
DLDOs. Mi is the ith PMOS and Qi is the logic output of the digital controller.
i denotes the activation stage of the digital controller. The bi-directional shift
register switches the state of one of the power transistors according to Vcmp

at rising edge of each clock cycle. QN is the N th output signal of the digital
controller, as shown in Fig. 1. At step k+ 1, Qn+1 (Qn) is turned on (off) when
Vcmp is high (low) and the bi-directional shift register shifts right (left), as shown
in Fig. 3 where k is the activation step of the digital controller [25]. Each Mn is
connected to Qn. Since the activation scheme is bi-directional, this scheme leads
to heavy usage of M1 to Mn. DLDO performance degradation can occur due to
this power transistor activation and deactivation scheme as discussed in Sections
2.3 and 2.4.
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2.2 Bias Temperature Instability

BTI includes NBTI for PMOS transistors and positive BTI (PBTI) for NMOS
transistors. BTI leads to the increase of transistor threshold voltage |Vth|. NBTI
increases the |Vth| of PMOS transistors utilized in the DLDO power transistor
array, leading to slower response time and the decrease of load supply capacity
of the DLDO. The increase in |Vth| is related to the traps generated in Si/SiO2

interface at the gate when there is a negative gate voltage [49]. ∆Vth formula
is given in (1) where Cox, k, T , α, and t are the oxide capacitance, Boltzmann
Constant, temperature, fraction of time when the transistor is under stress, and
time, respectively. Klt and Ea are the fitting parameters to comply with the
experimental data [50].

∆Vth = Klt

√
Cox(|Vgs| − |Vth|)e−Ea/kT (αt)1/6 (1)

Considering the case of DLDOs, most practical applications need less than
average power, which leads to heavy utilization of certain transistors within con-
ventional DLDOs. The undamped voltage output of DLDO causes large swings
at the voltage waveform which leads to heavy use of certain transistors. The
operation of the regulator causes the heavy use of M1 to Mm and less or even
no use of Mm+1 to MN . Alternatively, certain transistors (i.e., the ones with
a lower index number) are almost always active whereas some other transistors
(i.e., the ones with a greater index number) are almost never active. This ac-
tivation scheme therefore induces serious non-symmetric degradation of PMOS
due to NBTI.

 	

M	=	1	

M	=	2	

M	=	3	

Fig. 4. Illustration of DLDO limit cycle oscillation mode.
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2.3 Steady State Performance of DLDO

Under a constant load current, DLDO reaches steady state operation as Vout
approaches Vref . Due to the discrete nature of digital control loop and the cor-
responding quantization error, limit cycle oscillation occurs during DLDO steady
state operation, which negatively affects output voltage ripple. The mode of limit
cycle oscillation M can be indentified through the output of bidirectional shift
register Q(t) as shown in Fig. 4. The period of limit cycle oscillation (LCO)
is 2MTclk, where Tclk is the clock period. Under a certain fclk, a larger LCO
mode typically leads to a larger amplitude of output voltage ripple. LCO mode
and output voltage ripple amplitude are largely affected by the unit current
provided by each power transistor, load capacitance, clock frequency, and load
current [51–54]. As NBTI can introduce PMOS |Vth| degradation, it can be also
detrimental to the existing LCO mitigation technique detailed in Section 3.

Vout	

t	

ΔV	

TR	

Fig. 5. Illustration of DLDO transient response.

2.4 Transient Performance of DLDO

Transient performance of a DLDO largely affects important application domains
such as dynamic voltage and frequency scaling (DVFS) and near-threshold com-
puting (NTC). A typical DLDO transient response is illustrated in Fig. 5. When
the load current of the DLDO increases, the DLDO output voltage Vout decreases
to Vout−∆V before recovering, where ∆V is the magnitude of the transient volt-
age droop and TR is the load response time. Smaller values of ∆V and TR are
desirable for better DLDO transient performance. ∆V and TR can be, respec-
tively, expressed as [25,55–58]

∆V = R∆iload − IpMOSfclkR
2Cln(1 +

∆iload
IpMOSfclkRC

). (2)
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(1) Initialize: all Mi turned off

1 1 1 1 1 1 1 1

(2) Step k

1 1 1 10 0

(3-a) Step k+1 if Vcmp=H: Shift right

1 1 10 0

(3-b) Step k+1 if Vcmp=L: Shift right

1 1 1 1

0

1

1

01 1

Fig. 6. Operation of the uni-directional shift register [25].

and

TR = RCln(1 +
∆iload

IpMOSfclkRC
) (3)

where IpMOS , ∆iload, C, and R are, respectively, the current provided by a
single active power transistor, load current change, load capacitance, and av-
erage DLDO output resistance before and after load current change. Due to
the NBTI induced |Vth| degradation, it is demonstrated in [25] that ∆V and
TR also degrade. Such DLDO performance degradation needs to be considered
when designing voltage regulators with a stringent lifetime requirement [59–61].

3 NBTI-Aware Digital Low-Dropout Regulators

Multiple NBTI-aware DLDO topologies have been proposed to mitigate steady
state and transient performance degradation [24–26,39]. The working principles
of these techniques are explained in this section.

3.1 NBTI-Aware DLDO with Unidirectional Shift Register

As illustrated in Fig. 3, the operation of a bi-directional shift register leads to
the heavy usage of the first few power transistors, which essentially increases
activity factor of these transistors and the corresponding |Vth| degradation. To
mitigate this side effect, NBTI-aware DLDO with a unidirectional shift register
control is proposed in [25, 62]. With minor changes of the control logic in each
stage, the power transistor activation and deactivation can be realized in the
same direction. In such a way, activity factor of each power transistor can be
effectively reduced and the resulting DLDO performance degradation can be
mitigated. Furthermore, the power and area overhead of the implementation are
negligible.
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Fig. 7. Schematic of reduced clock pulse width DLDO [24].

3.2 Reduced Clock Pulse Width DLDO

During steady state operation, the LCO can be an issue for DLDO as it af-
fects the amplitude of the output voltage ripple. It is demonstrated in [24] that
BTI induced threshold voltage degradation can lead to the propagation delay
degradation of the clocked comparator and shift register. Such delay degrada-
tion has a negative effect on the possible mode of LCO. Reduced clock pulse
width DLDO as shown in Fig. 7 is proposed in [24] to mitigate the side effects
of LCO. Minimum clock pulse width tc considering BTI induced propagation
delay degradation is adopted and a uni-directional shift register is utilized to
simultaneously improve steady state and transient performance of DLDO.
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Fig. 8. Schematic of NBTI-aware DLDO with LCO mitigation [39].
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3.3 NBTI-Aware DLDO with Limit Cycle Oscillation Mitigation

Due to the side effects of LCO on the DLDO steady state performance, it is
desirable to achieve the minimum LCO mode or even remove LCO to reduce
the steady state output voltage ripple. It is discovered in [63] that by adding
two additional parallel power transistors as shown in Fig. 8, minimum LCO
mode of one can be realized. However, due to NBTI induced |Vth| increase,
the current provided by a single additional power transistor deviates from that
provided by the original power transistor. Such deviation gradually nullifies the
effectiveness of the proposed technique. To more evenly distribute the electrical
stress among all of the N + 2 power transistors, NBTI-aware DLDO with LCO
mitigation is proposed in [39]. A dedicated digital controller is proposed to realize
unidirectional control among the N + 2 power transistors.

Q1 Q2 Q3 Q4 Q5 Q6 QN-1 QN

(1) Initialize: all Pi turned off
1 1 1 1 1 1 1 1

(2) Step 1
1 1 1 10 1 1 1

(3) Step 2: Shift right
1 1 10 0 1 1

(4) Step 3: Shift right
1 1 1 10 0 0 1

1

(5) Step 4: Shift right
1 1 10 0 0 0 1

(6) Step 5: Shift right
1 1 10 0 0 0 0

Q1 Q2 Q3 Q4 Q5 Q6 QN-1 QN

(1) Initialize: all Pi turned off
1 1 1 1 1 1 1 1

(2) Step 1
1 1 1 10 1 1 1

(3) Step 2: Shift right
1 1 11 0 0 1

(4) Step 3: Shift right
0 1 1 11 1 0 0

1

(5) Step 4: Shift right
0 1 11 1 1 0 0

(6) Step 5: Shift right
0 1 11 1 1 1 0

(a) (b) Fig. 9. Operation of the startup aware reliability enhancement controller [26].

3.4 NBTI-Aware DLDO with Improved Startup Performance

NBTI-Aware DLDO with unidirectional shift register is effective to more evenly
distribute electrical stress among all of the power transistors as compared to
bidirectional shift register control. However, for a special case when DLDO has to
be turned off before or shortly after reaching steady state operation, the first few
power transistors still undergo too much electrical stress as compared to the rest.
When utilized in cyclic power gating [64], DLDOs can be periodically turned off
when reaching around steady state. In this case, an unidirectional shift register
functions similar to a bidirectional shift register. To mitigate this drawback
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and enhance the reliability of DLDO during cyclic power gating operations,
NBTI-Aware DLDO with improved startup performance is proposed in [26]. The
operation of the startup aware reliability enhancement controller is demonstrated
in Fig. 9. When more number of power transistor needs to be turned on during
startup, two more power transistors are turned and one is turned off at the same
time. In such a way, electrical stress can be more evenly distributed among more
number of power transistors.

4 Proposed NBTI-Aware DLDO with AGS

Although there are respective advantages of the aforementioned DLDOs, the
techniques proposed in previous works cannot be directly applied to DLDOs with
AGS capability [65,66]. With AGS, DLDOs can adaptively change the number of
power transistor (de)activated per clock cycle to speed up the transient process.
NBTI-aware DLDO with AGS capability is proposed and investigated in this
work. This is the first work which designs a novel uni-directional barrel shifter
with AGS control.

4:1 
Mux

An+1

An-1

An-3

D MUX1

4:1 
Mux

Bn+1

Bn

Bn-1

D MUX2

D Q An

Fig. 10. Schematic of bi-directional barrel shifter.

4.1 Barrel shifter

Barrel shifter is the main component of the control loop. A simple schematic for
a barrel shifter is shown in Fig. 10. A barrel shifter can activate multiple power
transistors at the same clock cycle. For example, it can shift -3, -2, -1, 0, 1, 2,
3 stages at the same clock cycle. The magnitude of the shift in a barrel shifter
serves as a gain control knob in the forward activation pattern of a DLDO. The
barrel shifter in Fig. 10, is implemented using two levels of signal multiplexing
followed by a flip-flop. A is the output of D flip flop and B is the output of
the first level of MUX. The first level of MUX gives 0, 2, -2 and second level
of MUX gives 0, 1, -1 shifts to obtain -3, -2, -1, 0, 1, 2, 3 shifts at the output
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Fig. 11. Proposed NBTI-aware DLDO with AGS capability.

of the barrel shifter. The positive values mean a shift to the right and negative
values to the left. MUX1 and MUX2 are used to control the barrel shifter as an
output of up to three shifts. The first stage leads the input signals to the output
of the 4:1 mux. D is the comparator output which determines the direction of
the activation scheme. n is the stages of the barrel shifter. n − 1 determines
previous stage and n+ 1 determines forward stage similarly. The combination of
D, MUX1, and MUX2 determines the gain of the barrel shifter and direction
of the barrel shifter output activation scheme.

A bi-directional barrel shifter is proposed in [44] where the details can be
seen in Fig. 10. This barrel shifter operates by switching a maximum of three
transistors at the same clock cycle. 2N number of muxes and N number of D flip-
flops are housed in the barrel shifter. The operation is maintained by adjusting
the gain which can be adapted by selecting the logic inputs of the muxes. The
work in [45] improves the operation of conventional DLDOs by introducing a bi-
directional barrel shifter with steady-state load current estimator and a dynamic
bi-directional shift register gain scaling control which adjusts the barrel shifter
to obtain fast transient time. Steady-state load current estimator senses the load
current and adjusts the frequency of the digital controller to get damped behavior
of the voltage waveform. Dynamic bi-directional shift register gain scaling control
automates the eight different gain according to the predetermined conditions
which are studied in [45].

In this work, a new NBTI-aware DLDO with uni-directional barrel shifter
with AGS is implemented. Therefore, the performance mitigation due to NBTI
is maintained low and a good improvement in the transient response time has
been achieved.

DLDO has a slow transient response under large load current changes. A
trade-off exists between steady-state stability, transient response, and perfor-
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Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 . . . QN-1 QN

1 1 1 1 1 1 1 1 . . . 1 1

1 0 0 0 0 1 1 1 . . . 1 1

1 0 0 0 0 0 1 1 . . . 1 1

1 1 0 0 0 1 1 1 . . . 1 1

1 0 0 0 0 0 0 1 . . . 1 1

1 1 1 0 0 1 1 1 . . . 1 1

1 0 0 0 0 0 0 0 . . . 1 1

1 1 1 1 0 1 1 1 . . . 1 1

(3-b) Step k+1,  if Vout > Vref & mux1=L,  gain=1 shift

(3-d) Step k+1, if Vout > Vref and Vout < Vref + Δ, gain=2 shift 

(3-f) Step k+1, if Vout > Vref + Δ, gain=3 shift 

(2) Step k 

(1) Initialize: all Mi turned off

(3-c) Step k+1, if Vout < Vref and Vout > Vref - Δ, gain=2 shift 

(3-e) Step k+1, if Vout < Vref -  Δ, gain=3 shift 

(3-a) Step k+1, if Vout < Vref & mux1=L,  gain=1 shift

Fig. 12. Operation of uni-directional barrel shifter with AGS.

mance degradation due to NBTI. A new architecture is designed to reduce the
NBTI induced stress and to speed up the transient response.

Rotating the load stress among the power transistors enables the distribution
of the loading evenly and reduces the NBTI induced performance degradation
[67]. Furthermore, due to the steady-state gain control, settling time after the
overshoots and undershoots are reduced. The transient loading effects are also
minimized. As compared to a conventional DLDO, the transient loading response
is improved.

A uni-directional DLDO with a barrel shifter is implemented within the pro-
posed AGS. An enhanced AGS control manages all of the power transistors in
a way that shortens settling time under severe transient loading and reduced
aging for longer operation times have been achieved as compared to a conven-
tional DLDO. The Vcmp, mux1, and mux2 are the control signals generated by
the AGS. The details are depicted in Fig. 11.

4.2 Uni-directional shift register

The activation pattern of pass transistors in a conventional DLDO is typically
designed to serve bidirectional. This deactivation and activation of the PMOS
scheme can be observed in Fig. 12. The one-directional activation pattern can
be observed in Fig. 12 (3-a) and (3-b). The Mi represents the PMOS transistors.
In the first stage, all PMOS is deactivated. In the second stage, when the digital
controller reaches the k stage, the controller determines the output pattern ac-
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Fig. 13. Proposed uni-directional NBTI-aware DLDO with barrel shifter.

Fig. 14. Three stage adaptive gain scaling with steady state capture.
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cording to V out value. In Fig. 12 (3-a), the gain is one which leads to activation
of one transistor at the right boundary of the activation schema. In Fig. 12 (3-b),
the activation of PMOS is at the left boundary of activation schema. Similarly,
in Fig. 12 (3-c) and (3-d), the gain is two which activates two PMOS transis-
tors at the same clock cycle. In Fig. 12 (3-e) and (3-f), the gain is three and
causes the activation of three PMOS at the same clock cycle within the defined
boundaries. This activation pattern should be modified to mitigate the NBTI
induced performance degradation. Evenly distributing the electrical stress to all
of the transistors can decrease the degradation in the current supply capacity
of PMOS. Under transient loading, a uni-directional DLDO can activate and
deactivate the PMOS due to the increased load current.

4.3 Uni-Directional NBTI-Aware DLDO with Barrel Shifter

The uni-directional barrel shifter is shown in Fig. 13. The schematic and op-
eration of the proposed architecture are shown in Fig. 11 and Fig. 12. The
Comparator in adaptive gain scaling control produces the signal of Vcmp, mux1,
and mux2 which controls the uni-directional barrel shifter as the steady-state,
gain 2 and gain 3 regions are operated. The elementary D flip-flop (DFF) and
multiplexer within bi-directional shift register are replaced with T flip-flop and
simple logic gates within the proposed uni-directional shift register. A multi-
plexer and simple logic gates are designed for uni-directional barrel shifter. A
multiplexer and logic gates are added to get barrel shifter behavior in the uni-
directional controller. This controller is designed to toggle a maximum of three
gates at a single clock cycle, and it is the first time implementation of the uni-
directional barrel shifter controller. The parallel gates remain unchanged, and
uni-directional barrel shifter and AGS are added. The idea is to balance the
loading of each power transistors under all load current conditions. The Qi and
Qi−1 are gated using XOR gate to equate the output signal switched conse-
quently. Vcmp is gated with Qi−1 together with other Qi to determine the logic
Ti. Therefore, when Vcmp is high (low), inactive (active) power transistors at the
right (left) boundary is turned ON (OFF). A uni-directional barrel shift regis-
ter is realized through this activation/deactivation scheme, as demonstrated in
Fig. 12. Tb and Tc are added at the logic to prevent the conflicting situations.
Tb = Q1×Q2×...×QN×Vcmp and Tc = Q1 +Q2 + ...+QN + Vcmp [25]. During
transient state, three signals Vcmp, mux1, and Trans det are generated to adjust
the gain of the barrel shifter where mux1 is a steady-state indicator signal that
is generated by a novel steady-state detection circuit. After the system enters
the steady-state, the system adjusts the gain to one. For barrel shifter, one mux
and three additional gates are used in Fig. 14. Area overhead can be determined
by counting the additional transistors and compared to the conventional DLDO
per control stage. According to the previous definition, there is only a 4.5% area
overhead. As the bi-directional shift register consumes a few µW power, the uni-
directional shift register power overhear is also negligible [25], [50]. Additional
controllers consume low current, thus the power overhead is negligible for the
proposed design.
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Fig. 15. Vcmp and half clock cycle delay of Vcmp XORed.

4.4 Three Stage AGS with Steady-State Detection Circuit

The schematic of a three-stage AGS with steady-state capture is shown in Fig.
14. There are three voltage comparators, two OR gates, one XOR gate, one-
time delay, and one SR latch. There are two inputs and two outputs which are
Vref , Vout, mux1, and Trans det, respectively, for this circuit. Two comparators
provide overshoot and undershoot detection. One comparator senses the changes
in the Vout. Half cycle time delayed Vcmp is XORed with Vcmp to determine
the steady-state operation. AGS senses the changes in Vcmp during steady-state
operation. The operation of uni-directional barrel shifter starts to control the
oscillation at the output of DLDO due to limit cycle oscillation [68]. When Vcmp

starts to oscillate during the steady-state operation, Xa, the output of XOR gate
Xa is high, leading to the reset of SR latch. The Xa signal can be observed in Fig.
15. Thus, the output mux1 is low to enter a steady-state region. The variation
at the output of DLDO is minimum when the gain is one because the voltage
change of one PMOS activation is lower than two or more PMOS activation. If
the number of parallel PMOS increases, according to Kirchhoff’s voltage law,
the drop-out voltage decreased. When the DLDO enters out of the steady-state
region, Vcmp and time-delayed Vcmp are XORed giving logic low at Xa. Following
the output of the XOR gate, SR latch’s output is high which makes mux1 high
and the gain scaling circuit operates out of steady-state mode.

The circuit operates in three different modes in three different regions. The
first region is the highest gain area in which the circuit operates to provide high
in mux1 and Trans det and the gain is three, which means that barrel shifter
switches three consecutive power transistors at the rising edge of a single clock
cycle. Within the second region, the gain is two such that two power transistors
will be turned on/off at the same time. This region is for fast settling of the
output voltage. The third region is the gain one region where the steady state
voltage variation is achieved at the output by changing the minimum amount of
power transistor. For steady state operation mux1 and Trans det are logic low.
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4.5 Operation of the Proposed NBTI-Aware DLDO with AGS
Capability

The NBTI-aware uni-directional controller with AGS capability is shown in Fig.
12. When Vout is lower than Vref , the barrel shifter activates the power tran-
sistors at the right boundary. Similarly, when Vout is higher than Vref , the bar-
rel shifter deactivates the power transistors at the left boundary of the inac-
tive/active power transistor region. Depending on the value of gain, a maxi-
mum of three active (inactive) power transistors switch inactive (active) power
transistors at the boundary. The uni-directional barrel shifter always toggles
the power transistors at the right of the boundary. The switching of the power
transistors is always in one direction (right shift). Therefore, the stress on the
power transistors evenly distributed because the operation load of each PMOS is
distributed equally among each transistor. Furthermore, as compared to conven-
tional DLDO, the steady-state performance does not change and the transient
response time is decreased. During the design of the DLDO, being aware of NBTI
induced performance degradation is important. The reliability of DLDO can be
enhanced by implementing the method in this article. This work improves the
performance of AGS with respect to other works in Table 1 since the AGS has
three modes. The first mode is aggressive gain scaling. The second mode is slow
settling and the third mode is steady-state mode.

Steady-State Operation In the steady-state mode, the number of active and
passive PMOS is changing dynamically. Limit cycle oscillation leads to output
voltage ripple at steady-state. The number of active/inactive transistors are the
same for both NBTI-aware DLDO with AGS and conventional DLDO but the
gain is different while transient state resulting in faster settling time. In Fig. 12
(3-a) and (3-b), the operation of steady-state operation can be observed. The
PMOS at the right boundary changes its activity one transistor at each clock
cycle.

Slow Settling Operation In the slow settling mode, the barrel shifter gain
is two, meaning that PMOS transistors change their activity two transistors at
each clock cycle. The operation is quite different from conventional DLDO since
the gain of conventional DLDO is one in every loading case. The advantage of
this mode is that it reduces the overshooting and undershooting under transient
loading. In Fig. 12 (3-c) and (3-d), the slow settling operation can be observed.
The PMOS at the boundary changes its activity two transistors at each clock
cycle. Depending on Vout, the transistors at the left boundary or at the right
boundary change their operation from inactive to active.

Aggressive Gain Scaling In the aggressive gain scaling mode, the barrel
shifter gain is three. The advantage of this operation is that it reduces the settling
time significantly [45, 69]. Under transient loading, the load current changes
significantly. In Fig. 12 (3-e) and (3-f), the operation of aggressive gain scaling
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(a) Comparison of overshoot.

(b) Comparison of undershoot.

Fig. 16. Comparison of transient loading among aging-aware and aging-unaware DL-
DOs.

can be observed. The active PMOSs (shaded region) change their operation to
inactive depending on the Vout. The consecutive three transistors change their
operation in the same clock cycle.

5 Evaluation of the Proposed Circuit

In order to validate the effectiveness of the 1.1 V to 1.0 V DLDO, this on-chip
circuit is designed in a 32 nm standard CMOS process. The proposed DLDO can
supply a maximum of 124 mA current. The transient output voltage waveform
from 20 mA to 60 mA step load change and comparison of the results of the
conventional DLDO without AGS, the proposed NBTI-aware DLDO with AGS,
the proposed NBTI-aware DLDO with AGS after 10-year aging and the conven-
tional DLDO with AGS after 10-year aging are shown in Fig. 16. 1 MHz clock
frequency is applied and aging induced degradation is evaluated under 100◦C.
The settling time after load decrease is 4.5 µs and the settling time after load
increase is 4.2 µs for the conventional DLDO without AGS. The proposed NBTI-
aware AGS DLDO has 2.4 µs settling time after an overshoot and 1.7 µs settling
time after an undershoot. The proposed NBTI-aware DLDO with AGS after 10-



18 L. Wang et al.

Table 1. Comparison with Previous Aging-Aware On-Chip DLDOs

[42] [43] [25] This work

Year 2015 2017 2018 2019

Broad load range Yes Yes Yes Yes

Additional controller Yes Yes No No

Added overhead Multiple
decoders

Decoder Modification of
original controller

Modification
of conventional
DLDO

Topology Row rotation
scheme

Code roaming
algorithm

Uni-directional
shift controller

Uni-directional
shift controller
with barrel
shifter

Adaptive gain scaling
capability

Yes Yes No Yes

year aging has 2.8 µs settling time after an overshoot and 2.1 µs settling time
after an undershoot. The conventional DLDO with AGS after a 10-year aging
has 3.4 µs settling time after overshoot and 2.8 µs settling time after undershoot.
The results for conventional DLDO with AGS without aging is the same as the
results of proposed NBTI-aware DLDO with AGS. There is 46.7% decrease in
the settling time of overshoot of the proposed DLDO with AGS as compared
to the conventional DLDO. There is also a 59.5% decrease in the settling time
of undershooting of the proposed DLDO with AGS as compared to the con-
ventional DLDO. Furthermore, the settling time for the proposed DLDO with
AGS after 10-year aging is decreased by 59.5% as compared to the conventional
DLDO with AGS after 10-year aging.

Previous works are compared with this work in Table 1. The power overhead
in [42] is negligible since added decoders have little power consumption with re-
spect to power PMOS. Similarly, the power overhead in [43] and [25] is negligible
because the modifications add negligible power consumption. The works in [42]
and [43] have AGS capability.

6 Conclusion

In this work, an NBTI-aware DLDO with the AGS control is proposed to dimin-
ish the aging effect and to reduce the settling time. The settling time is reduced
by 46.7% and 59.5% for overshoot and undershoot without aging aware design,
respectively. The proposed circuit is NBTI-aware, thus, performance degrada-
tions due to NBTI are reduced. A novel uni-directional shift register with barrel
shifter is proposed to distribute the electrical stress among the power transistors
evenly. The proposed NBTI-aware DLDO with AGS control is efficient because
the settling time is reduced by 33% after 10-year aging.
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22. W. Yu and S. Köse, “Security-Adaptive Voltage Conversion as a Lightweight
Countermeasure Against LPA Attacks,” IEEE Transactions on Very Large Scale
Integration (VLSI) Systems, Vol. 25, No. 7, pp. 2183 – 2187, July 2017.
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