%0 Conference Proceedings %T Robust FinFET Schmitt Trigger Designs for Low Power Applications %+ PgMicro - Instituto de Informática [UFRGS] (PGMICRO) %+ Catholic University of Pelotas (UCPEL) %+ Universidade Federal de Santa Catarina = Federal University of Santa Catarina [Florianópolis] (UFSC) %A Moraes, Leonardo, B. %A Zimpeck, Alexandra, Lackmann %A Meinhardt, Cristina %A Reis, Ricardo %< avec comité de lecture %( IFIP Advances in Information and Communication Technology %B 27th IFIP/IEEE International Conference on Very Large Scale Integration - System on a Chip (VLSI-SoC) %C Cusco, Peru %Y Carolina Metzler %Y Pierre-Emmanuel Gaillardon %Y Giovanni De Micheli %Y Carlos Silva-Cardenas %Y Ricardo Reis %I Springer International Publishing %3 VLSI-SoC: New Technology Enabler %V AICT-586 %P 45-68 %8 2019-10-06 %D 2019 %R 10.1007/978-3-030-53273-4_3 %K Process variability mitigation %K Schmitt Trigger %K Low power %K FinFET technology %Z Computer Science [cs]Conference papers %X The IoT development alongside with the more pronounced impact of process variability in modern technology nodes, is the central reason to control variability impact. Given the broad set of IoT devices running on battery-oriented environments, energy consumption should be minimal and the operation reliable. Schmitt Trigger inverters are frequently used for noise immunity enhancement, and have been recently applied to mitigate radiation effects and variability impact. Yet, Schmitt Trigger operation at nominal voltage still introduces high deviation on power consumption. Thus, the main contribution of this work is to identify the relationship between transistor sizing, supply voltage, energy, and process variability robustness to achieve a minimal energy consumption circuit while keeping robustness. On average, scenarios with a lower supply voltage applied on layouts with a smaller number of fins, presented adequate robustness in high variability scenarios. Exploring voltage and transistor sizing made possible a reduction of about 24.84% on power consumption. %G English %Z TC 10 %Z WG 10.5 %2 https://inria.hal.science/hal-03476603/document %2 https://inria.hal.science/hal-03476603/file/501403_1_En_3_Chapter.pdf %L hal-03476603 %U https://inria.hal.science/hal-03476603 %~ IFIP %~ IFIP-AICT %~ IFIP-TC %~ GENCI %~ IFIP-WG %~ IFIP-VLSISOC %~ IFIP-TC10 %~ IFIP-WG10-5 %~ IFIP-AICT-586