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Abstract. Graph network analysis (GNA) showed a remarkable role
for understanding brain functions, but its application is mainly nar-
rowed to fMRI research. Connectivity analysis (CA) is introduced as
a signal-to-graph mapping in a time-causality framework. In this paper,
we investigate the application of GNA/CA in fNIRS. To solve the inher-
ent challenges of using CA, we also propose a novel metric: a maximum
cross-lag magnitude (MCLM) that efficiently extracts major causality in-
formation. We tested MCLM in four types of cognitive activities (mental
arithmetic, motor imagery, word generation, and brain workload) from 55
participants. CA/MCLM showed a compelling modeling capacity and re-
vealed unexpected cross-subject network patterns. We found that motion
imagery and mental arithmetic share a background network structure,
and that the right prefrontal cortex, in AFp8, is an invariable destina-
tion for information flows in every stimuli and participant. Therefore,
CA/MCLM-fNIRS showed potential for its use along with fMRI in clin-
ical studies.

Keywords: Brain signals, {NIRS, graph network analysis, connectivity
analysis.

1 Introduction

Time-frequency analysis of biomedical signals is a traditional and fundamental
mechanism in the evaluation and interpretation of brain activity [20]. In the past
decade, the advances in computing processing increased the interest of further
types of analysis, in particular those that offered models of the connections
between brain regions. Thus, outcomes from classical graph theory could be
used in biomedical research. Graph, a.k.a network, analysis (GNA) represents
the relationships between node entities (electrode channels, or brain regions in
biomedical signals). However, the method to convert multivariate time series
into a single network graph is an open problem, because compared with other
types of data, interpretability is highly relevant and essential. GNA in brain



research, mostly in functional magnetic resonance imaging (fMRI) studies, relies
on connectivity analysis (CA) for this mapping. CA is a robust technique that
can map any time series (under mild conditions) through cross-time dependencies
between a set of signals. In this mapping, a link (edge) between a node A and
B describes an amount of signal causal information that circulates from A to B
[23]. This relationship with causality in the time series domain is based on the
Granger’s definition of causality: a measure of the influence of a time series on
the future values of another signal that cannot be explained the latter itself [9].
This joint use of GNA/CA has shown an impressive role in understanding and
describing brain functions and dynamics [1].

We can distinguish three levels of connectivity: a) structural connectivity
(SC) that is associated to the anatomical or physical linkages among brain re-
gions; b) functional connectivity (FC) as the undirected, or symmetric, inter-
action map generated by the linear correlations between unexplained stochastic
oscillations in the observed time series; and c) effective connectivity (EC) as the
directed graph network constructed by measures of the time-causality (Granger-
causality) that each signal has over the other observed channels [23,1]. These
three degrees of connectivity yield practical knowledge about the underlying
brain interactions from different viewpoints. EC and FC show the information-
level dynamics inside the brain (FC highlights the correlation between channels,
while EC focuses on their non-symmetric time-causality). Both are highly time-
varying because of their dependency on external (stimuli) and internal factors.
However, SC is the sole type of connectome that is almost constant over time,
and it can only be reliably estimated through structural magnetic resonance
imaging (sMRI) [8]. Nevertheless, we can infer EC and FC through (mid- or
high-frequency sampled) electrical, magnetic, or optical signals [1].

Functional near-infrared spectroscopy (fNIRS) is a noninvasive method to
quantify the hemodynamic changes in the brain using the absorption properties
of the near-infrared (NIR) light waves (the spectral region in the range of 700nm
and 900nm) [14]. Even though that fNIRS and fMRI shared the same goal of
estimating hemodynamic changes, connectivity analysis has been widely used in
fMRI, but only in a few studies with fNIRS signals: Liu et al. compared the sta-
tistical difference between the functional connectivity maps in a driving context
against a resting state [13]; Behboodi et al. analyzed functional connectivity over
fNIRS filtered through neural networks [3]. However, some recognized software
packages, as the NIRS AnalyzIR toolbox, have also integrated some functions
for inferring FC [18].

In this paper, we explore the use of connectivity analysis and GNA in fNIRS
in order to reveal underlying brain dynamics. This application is not straight-
forward because of the processing challenges that are inherent to fNIRS with
respect to fMRI: ten times higher sampling rate and high dimensionality. Even
though that fMRI data is highly dimensional, the extracted time courses are
restricted and summarized using specific regions of interest, typically defined
through parcellation maps [6]. This anatomical clustering reduces the signal di-
mensionality substantially. However, in fNIRS, there is no standard anatomical



map that can be used for the same dimension-reduction purpose. Therefore, CA
models incorporate a larger set of parameters when applied in fNIRS, and con-
sequently, introduce interpretability issues. To solve this issue, we also propose
a novel metric denoted as maximum cross-lag magnitude (MCLM) that summa-
rizes CA parameters extracting the most significant causality information.

The rest of this paper is organized as follows: in section 2, we describe the
formulation of CA and MCLM in a graph network framework. Later, in section
3, we describe the {NIRS data (4 cognitive activities, 9 events in 55 participants)
where we tested our connectivity analysis proposal. In section 4, we describe the
outcomes of our model and its implications. Finally, in section 5, we summarized
the conclusions of our study.

2 Method

2.1 Model

Compared with machine learning methods, traditional time series models offer
a slightly lower performance in prediction [10], but the latter keeps a robust
and understandable model of the signals. This robustness property is advanta-
geous in the analysis of biomedical signals because of the presence of several
sources of artifacts, i.e., biological interference, device’s mechanical noise, or
other types of external noise [1]. In CA, the kernel technique is the vector (or
multivariate) autoregressive model (VAR) [9] that models a set of M channels
{X1(t),X2(t),...,Xn (t)} sampled every Ts seconds. Under this method, the
observed value for a channel 7 at a time ¢ is considered to be generated as a
linear combination of the previous p points, of all M channels, and a stochastic
increment ¢; (¢):

p M

Xit) =336\ X;(t— (T +ei(t) i=1,....M (1)

(=1 j=1

()

In this notation, ¢,,; measures the effect of the channel j at the time (T on

channel i. The stochastic component  (t) = (g1 (t), 2 (t),...,ea ()" is a mul-
tivariate white noise € (t) ~ N (0, X)) with X, as the variance-covariance noise
matrix, and Xe (t) is uncorrelated with any previous point, E [¢ (t) ™ (t — (T})] =
0ve > 0.

For a vectorial notation, let us define the multivariate recording at ¢ as
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Then, the VAR model of Equation 1 can be expressed as a linear matrix
combination,

X(t):iégX(t—ETs)—i—E(t) i=1,...,M (3)
=1

We should remark that 3. measures the linear covariance between the stochas-
tic variations in the channels that are not explained by this model, i.e., it serves
as a quantification of the functional connectivity among the measured channels
[1].

The set of matrices ¢ = {P1,Ps,..., Py} describes the magnitude of non-
symmetrical temporal dependencies among the channels in the dataset. There-
fore, these pieces of information can be employed to quantify the effective connec-
tivity in the set of signals: a) in the time domain, these coeflicients can estimate
the time information flow between channels; b) in the frequency domain, these
matrix set can estimate the cross-spectrum and determine the magnitude of
information that circulates through frequency bands [1,23]. These possibilities
allow us to use different metrics: partial directed coherence [2], directed transfer
function [12], as well, other improved formulations [17].

Due to our current interest in time-domain characteristics, we introduce a
simple metric derived from the VAR model: the maximum cross-lag magnitude
(MCLM). MCLM is an operator RP*P*M _; NPXP » RP*P that maps the set ®
into a tuple (L, ©) where L is the max-lag matrix, and © is the max-dependency
matrix. L is defined as a p X p matrix where each item [; ; is the time lag with
the strongest absolute coefficient ¢:

lij = arg ma ¢§2j‘ (4)

{=1,...,p
O is defined as a pXp matrix where each item is the cross-lag maximum coefficient
between channel ¢ and j:

l; J
0 = ¢§_;j) (5)

Sample estimators of both parameters, ZZ] and é” can be estimated from the
data and their confidence interval obtained through subsampling Monte Carlo
simulations given that the distributions of gZ;Z(Q] are known [4,16,15].

The MCLM max-lag matrix, @, can be interpreted as an adjacency matrix of
a weighted graph network. Therefore, a graph Gg = (V, E,w) can be constructed
where V' =1, ..., M is the set of channels in the observations as vertices; E is the
ordered set of edges or links £ € V x V', and the weight function w : ' — R that
assigns the maximum dependency magnitude 6¢; ; as weight for the link 7 — j.
Furthermore, >, can also be reinterpreted as an undirected graph G5 = (V, E, w)
under a similar formulation.

Considering that a specific event for each subject 7 will be associated with a
matrix ©(7), we introduce two terms for further cross-subject analysis: a repre-
sentative max-dependency matrix @) as the average of all ©(7); and a coverage



Experiment Events Dataset Eg:ltlsm_ fNIRS Channels

N-back (NB)  0-back Pre-frontal (16): AF1, AF2,
2-back NBWG 26 AF5h, AF6h, AF7, AFS,
3-back AFF3h, AFF4h, AFF5, AFF6,

AFFz, AFp3, AFp4, AFp7,
AFp8, AFpz.

Central region (8): C3h, C4h,
Cbh, C6h, FCC3, FCC4,

CCP3, CCP4.
Centro-parietal (6): , CPP3,
CPP4, P3h, P4h, P5h, P6h.
Parieto-occipital (6): PO1,
PO2, POOz, PPO3, PPO4,
PPOz.

Word WG
Generation WG baseline

(WG)

Motor Imagery Right MI MIMA 29 Pre-frontal (7): AF1, AF2,
(MI) Left MI AFp5h, AFp6h, AFp7, AFpS,
AFpz.
Central region (26): C3h, C4h,
C5h, C6h, CCP1, CCP2,
CCP3, CCP4, CCP5, CCP6,
Mental MA CP3h, CP4h, CP5h, CP6h,
Arithmetic MA baseline FC3h, FC4h, FC5h, FC6h,
(MA) FCC1, FCC2, FCC3, FCCA,
FCC5, FCC6, Fplh, Fp2h.
Occipital (3): Olh, O2h, POOz.

Table 1. Experiments and events recorded in the two datasets. The number of partic-
ipants and channels employed in the dataset are also indicated. Each fNIRS channel
corresponds to the midpoint between the optical source and detector with the equiva-
lent label according to the extended 10-20 EEG standard layout.

metric of each magnitude 95:;-) defined as the proportion of connections that are
non-null:

(g o)

o717}

coverage {9(*») } =

,J

(6)

2.2 Data description

In order to show the expressiveness and capabilities of the model in f{NIRS sig-
nals, we used two recorded datasets by Shin et al. [19,11] . These sources of data
are publicly available and contribute to the reproducibility of the results with
the presented model. Even though that both datasets contain other non-optical
biomedical signals, we restricted to the analysis of their {NIRS time series.



In the first dataset (NBWGQG), twenty-six participants were requested to per-
form three cognitive activities (n-back, word generation, and discrimination /selection
response task) from which we selected two relevant activities for our goals [11]:

— N-back tasks (NB). In this exercise, every participant performed a 0-, 2-; or
3-back task during 60 seconds (40 seconds for the activity, and 20 seconds for
the resting period). The experiment is organized in three sessions, wherein
each session, nine n-back tasks were performed (3 times per n-back type) in
a counter-balanced order per session.

— Word generation activity (WG). In three sessions, consisting of twenty trials
each one, the subjects were presented a single letter for WG or a fixation-
cross in a screen for baseline. The task included 10 seconds for the task and
13-15 seconds for a resting interval.

In the second data source (MIMA), twenty-nine subjects performed two types of
activities that represent typical mental tasks commonly used in brain-computer
studies [19]:

— Motor imagery (MI). M1 is a classical test for brain-computer interfaces for
different purposes: computer-assisted rehabilitation, games, and virtual real-
ity systems. In MIMA, all participants performed a mental process consisting
of imaging the scene of opening and closing their hands while grabbing a ball.
They were also requested to imagine this movement with a speed of one cycle
per second. The experiment was organized in three sessions, with ten trials
for left hand MI, and ten trials for right hand MI.

— Mental arithmetic (MA). In this activity, the subjects were requested to
subtract a one-digit number from a three-digit number in the lapse of twelve
seconds (two seconds for displaying the instruction, and ten for solving it)
with a resting time of 15-17 seconds. This session was repeated 20 times per
subject.

Further details about the datasets, and experimental designs, we refer to [11]
and [19].

2.3 Data analysis

The biomedical signals from MIMA and NBWG datasets were processed accord-
ing to the steps as follows:

1. Signals are subsampled in MIMA from 12.5Hz to 10Hz in order to ensure
the same sampling frequency across datasets.

2. Time series are frequency filtered in the range 0.01-0.1Hz using a finite im-

pulse filter of 100th order. The extracted spectral range is typically associated

with cerebral autoregulation, cognition, and neural activity [14].

Signals are partitioned into sections according to their recorded time events.

4. A VAR(20) model is fit for each segment allowing to model dependencies
up to 2 seconds in the past, removing the estimated parameters with p-
values greater than 0.0001. The remaining estimated components have strong
evidence to be non-null, and therefore, are appropriate for our analysis.

©w



A) Left MI B) Right MI C) Mental arithmetic D) MA baseline E) WG baseline
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Fig. 1. General connections in the functional connectivity.
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Fig. 2. General connections in the effective connectivity using MCML. Note that
MCLM as a connectivity metric is able to capture the same links than raw effective
connectivity, as it is shown in Figure 1.

5. Matrix © and L, and the link coverages are calculated according to Equations
4, 5 and 6.

6. The approximate distribution for each coefficient 6;; was estimated using a
Monte Carlo simulation and a subsampling as described in [15] and [16].

7. The mean magnitude for each link is estimated across all subjects as well as
their approximated distribution.

8. For our exploratory analysis, we calculate two primary metrics: centrality
and information flow. We refer to [8] for a more comprehensive review of
alternative network graph metrics.

3 Results and discussion

Based on the described procedure, a network map was estimated for each event
and person (246 networks in total). This large amount of data motivated us



to reduce the parameters to analyze and describe in a concise but informative
manner.

3.1 Cross-subject general connections

A link was considered general if their coverage is above the 95% percentile in the
network graph related to a specific stimulus/event. No general coverage thresh-
old was used because the maximum coverage in the data can be lower than
100% (as a direct consequence of the p-value filtering of step 5 in section 2.3).
Although the uncertainty-based filtering increased the confidence of the link
magnitudes estimated, it also removed relevant connections that present high
levels of uncertainty.

The most significant directed and undirected connections (effective and func-
tional connectivity) are displayed in Figure 2 and Figure 1, respectively. Most
connections in both types of connectivity metrics were similar. Moreover, this
analysis allowed us to interpret the effect of the information flow between brain
regions using the directed links:

— In MI activites, it is observed that data flows were originated in the opposite
hemisphere of the imagined motion hand, i.e., the left MI had a dependency
link from the right to left hemisphere, and vice-versa.

— MA tasks always exhibit a link in the right hemisphere between the central-
parietal region towards the prefrontal cortex. In comparison, its baseline MA
denoted a similar link but starting from the left hemisphere.

— WG experiment shows relevant flows in the right central, parietal, and left
prefrontal cortex, but with an additional link from the left prefrontal cortex.
We should emphasize that the activity on the central-parietal region was
confirmed as activated areas in WG tasks through an fMRI study by Brannet
el al. [5],

— Attention tasks (0-back) appeared to have similar information flows com-
pared with MA, while mental workload (2-back and 3-back) data flows were
strongly evident only in the prefrontal cortex.

— It is worth mentioning that, in all cases, numerous data flows seemed to
be oriented towards the right hemisphere. This phenomenon can be associ-
ated with the fact that the participants were mostly right-handed. However,
further research is needed to ratify this hypothesis.

3.2 Cross-subject common connections

We define a link as common if their coverage in the dataset is above the median
of the signal amplitude on the event’s coverage. The common links in effective
connectivity are shown in Figure 3. Compared with the network maps in Figure
2, these maps can be slightly different, because of the presence of frequent, but
not general, links.

Maps of common links allowed us to observe more details about the recon-
figuration of the connectivity in the brain under different experimental tasks.



A) Left MI B) Right MI C) Mental arithmetic D) MA baseline E) WG baseline
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Fig. 3. Common connections in the effective connectivity

Signal flow
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Fig. 4. Net information flow. The most significant NIF values (NIF > 2) are displayed
(channel AFp8, C6h, CCP5, CPP4, P6h) and classified according to the datasets’
events: A) Left MI, B) Right MI, C) Mental arithmetic, D) MA baseline, E) WG
baseline, F) Word generation, G) 0-back, H) 2-back, and I) 3-back.

Connectivity maps showed a natural organization intro three large groups,
or clusters, of tasks: mental activity (mental imagery and arithmetic), verbal
fluency (word generation and its baseline), and mental workload (0-, 2-, and 3-
tasks).

All connectivity maps showed a "gravity effect” of the electrode AFp8 (right
prefrontal cortex): it is the preferred destination point for all the data flows in
every event of each subject in the datasets. The influence of the right prefrontal
cortex was denoted in MA tasks by Tanida et al. [21], in MA in a study by
Ehrlichman et al. [7], and in n-back tasks according to Vermeij et al. [22].

3.3 Net information flow

For a node (channel) ¢, net information flow (NIF) is defined as the total flow
that enters into the node (out-flow) subtracted from the total flow originated in



Degree centrality

Lo = A) Left MI
== 8) Right MI

B C) Mental arithmetic
EEN D) MA baseline
B E) WG baseline
B3 F) Word generation
=31 6) 0-back

B H) 2-back

3 1) 3-back

0.4- n

Rl Frommrs

.
£

AFp3
AFpa
AFp8
ccpe
cpp3
[
FCC6
P6l

Fig. 5. Network degree centrality. The most significant NDC values (NDC > 0.2) are
shown (channels AFp3, AFp4, AFp8, AFpz, C6h, CCP6, CPP3, CPP4, FCC6, and
P6h). Each bar corresponds to the NDC of datasets’ event: A) Left MI, B) Right
MI, C) Mental arithmetic, D) MA baseline, E) WG baseline, F) Word generation, G)
0-back, H) 2-back, and I) 3-back.

the node (in-flow):

NIF; =Y Oiny— Y Oy (M)

veV veV

This property estimates the final impact that the electrode had in the connec-
tivity network. The electrode channel shows a higher dependency on the other
channels when the net flow is negative; otherwise, it exhibits a particular im-
pact on the network. The most relevant channels’ NIF is shown in Figure 4.
As it was discussed before, AFp8 was the electrode that is more influential on
the network. However, its dependency magnitude varies according to the type of
activity, demanding mental tasks, and effortless lexical tasks. It is also remark-
able that the net information flow can provide insights to identify the type of
task: lexical activities have a notable dependent effect in the right hemisphere
(channel CPP4 and P6h), while mental tasks have a more role as sources’ flow
in the left hemisphere (channel CCP5).

3.4 Network degree centrality

For each node i, degree centrality (NDC) is defined as the proportion of infor-
mation flows that have i as a source or destination with respect to the total links
in the network:

Z'UEV I [ei—w 7é 0] - ZUEV I [‘gv—n‘ 7é O}

NDC; =
ZieV ZjeV I [eiaj 7é 0]

(®)

1 =z is true
where I[-] is the indicator function: I [z] = o
0 otherwise

The results are shown in Figure 5. In concordance with the previous assess-
ments, the centrality role of the channel AFp8 is general across all experimental



tasks. However, a partial relevance is displayed for channel AFpz, CPP4, and
CCP6, in mental workload, lexical, and MI/MA tasks, respectively.

4 Conclusions

Biomedical time series are often analyzed through their time changes or their
spectral responses. Other types of analysis, such as network analysis, are usually
only performed in fMRI data, where cross-dependency patterns are used to create
and study brain graph networks. This signal-to-graph transformation is based on
connectivity analysis (CA) and allows us to create complex network structures
that associate sets of time series in a time-causality framework. Despite its proven
effectiveness in fMRI, this methodology was not completely explored in optical
biomedical signals.

In this paper, we investigated the possibilities of using CA with a new con-
nectivity metric based on the classical, but robust, multivariate autoregressive
model. This metric, a maximum cross-lag magnitude, relates each pair of signal
channels with a quantified inter-channel time-dependency measure. We applied
this formulation into fNIRS signals (from two different datasets) that contained
four types of cognitive activities (mental arithmetic, motor imagery, word gen-
eration, and brain workload) organized into nine different categories of events.
Each event was repeated at least four times in 55 participants (distributed in 26
participants in the first dataset and 29 in the second one).

Combining CA with our connectivity metric showed a compelling modeling
potential and allowed us to reveal unexpected cross-subject dynamic causality
patterns. Our results showed that motion imagery shares a similar background
structure with mental arithmetic tasks; while channel AFp8 is always a destina-
tion for information flows regardless of the stimuli or participant. Simultaneously,
the method provided event-related individual patterns that let to identify each
event individually using some simple network properties. These results offer ex-
citing possibilities for further extensions as complementary input in machine
learning algorithms as well as possible clinical applications due to the availabil-
ity of uncertainty measures of each dependency magnitude and the selection of
potential regions of interest for more comprehensive MRI analysis.
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