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Abstract. SoilGrids maps soil properties for the entire globe at medium
spatial resolution (250 metres cell side) using state-of-the-art machine
learning methods. The expanding pool of input data and the increasing
computational demands of predictive models required a prediction frame-
work that could deal with large data. This article describes the mecha-
nisms set in place for a geo-spatially parallelised prediction system for
soil properties. The features provided by GRASS GIS – mapset and re-
gion – are used to limit predictions to a specific geographic area, enabling
parallelisation. The Slurm job scheduler is used to deploy predictions in
a high-performance computing cluster. The framework presented can be
seamlessly applied to most other geo-spatial process requiring parallelisa-
tion. This framework can also be employed with a different job scheduler,
GRASS GIS being the main requirement and engine.

Keywords: Digital Soil Mapping · High-Performance Computing · GRASS
GIS.

1 Introduction

Soil is key in the realisation of a number of UN Sustainable Development Goals
by providing a variety of goods and services. Soil information is fundamental
for a large range of global applications, including assessments of soil and land
degradation, sustainable land management and environmental conservation. It
is important to provide free, consistent, easily accessible, quality-controlled and
standardised soil information. Spatial soil information is often available as maps
of soil properties, e.g. pH, carbon content, texture information. Soil is a 3D
body and the maps should describe the landscape (i.e. horizontal) variability as
well as the vertical (i.e. along the soil depth) variability. Often, such maps are
produced using a Digital Soil Mapping (DSM) approach [7], creating a statistical
model between the properties measured at known locations and environmental
covariates describing the soil forming factors [9]. In recent years machine learning
methods [4] were used to develop such models. Once the model is calibrated and
evaluated, it is used to predict soil properties at non visited locations.

SoilGrids is based on a DSM system that produces geo-spatial soil infor-
mation fulfilling two main goals: 1) be a source of consistent soil information to
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support global modelling, and 2) provide complementary information to support
regional and national soil information products in data deprived areas. The main
target user groups are policy makers and land management services in countries
that lack the means to produce such information, as well as scientists developing
other models and tools requiring soil data as input.

SoilGrids is of a series of maps for different soil properties following the
specifications of the GlobalSoilMap project [1]. The production of a soil property
map consists of different steps: the fitting of a model, the evaluation of that
model and finally the prediction for each raster cell at the global scale with
a spatial resolution of 250 metres. Six depth intervals are currently considered
and prediction uncertainty is quantified. The total computation time required
for a single soil property exceeds 1 500 CPU-hours. Parallelisation is therefore
fundamental, requiring up to hundreds of CPUs.

This article outlines the computational infrastructure (hardware and soft-
ware) employed to compute the latest SoilGrids products in a high-performance
computing (HPC) cluster, focusing in particular on the parallelisation and the
resource management for global DSM modelling.

2 General Framework

SoilGrids requires an intensive computational workflow, including different steps
and integrating different software. SoilGrids is entirely based on open source
software. The inputs to SoilGrids currently comprise observations from 250 000
soil profiles and a selection from over 400 global raster characterising soil form-
ing factors: morphology (e.g. elevation, landform), vegetation information (e.g.
NDVI and other indices), climate (e.g. precipitation, land surface temperature)
and human factors (e.g. land use/cover).

Gathering and harmonising soil profile observations is one of the core work-
streams performed by ISRIC, with the World Soil Information System (WoSIS) [2]
being its most visible product. These observations are maintained in a relational
database hosted by PostgreSQL [10], from which they are directly sourced for
modelling. Environmental covariates are ingested into GRASS GIS [6, 11], thus
being automatically normalised to a unique raster cell matrix (of 250 metres
cells). Previous SoilGrids releases were computed on the millenary Marinus of
Tyre map projection [16], a popular projection in environmental modelling. How-
ever, this projection expands the surface area of the globe by about 60%. With
the increasing size of inputs and outputs in SoilGrids, this overhead urged the
switch to an equal-area map projection. The Homolosine projection [5] was se-
lected, since among those projections supported by open source software, is the
one that best preserves the shapes of lands masses [17]. The size of each output
raster was thus reduced in over 1012 cells.

The general framework of SoilGrids is described in Figure 1. The main steps
are:
1. creation of a regression matrix that overlays soil profile data with environ-

mental covariates.
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2. fitting of the regression model. Currently this step is based on state-of-the-
art machine learning methods, able to produce a measure of the uncertainty
of the predictions, namely Quantile Regression Forests (QRF) [8].

3. prediction with the model at global scale.

Fig. 1: General framework of SoilGrids.

3 HPC infrastructure

SoilGrids is currently computed on Anunna, an HPC cluster managed by Wa-
geningen University and Research (WUR). Anunna provides more than 2 000
CPUs in an heterogeneous set of compute nodes. The majority of compute nodes
provide 12 GB of RAM per CPU. Storage is managed by the Lustre distributed
file system [15].

The Slurm Workload Manager [20] is used to manage the cluster workload.
Slurm offers a large range of flexibility. The user may restrict computation to a
specific type of node, require an exact number of CPUs to use in parallel, set the
number of CPUs required by each process, set a computation time limit, request
a specific amount of memory and declare the exact software packages to load at
computation time. These settings are defined in a configuration file (the Slurm
file), where the user sets the programmes to run and their parameters.

4 Parallelisation of global scale geo-spatial computations

SoilGrids requires the integration of a number of software. The two key compo-
nents are GRASS GIS [6, 11] and R [13]. GRASS GIS is used to store the input
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data and as the engine to control the parallelisation of the predictions. R is used
for the statistical modelling, i.e. to calibrate, fit and compute the predictions
using the QRF model.

The GRASS GIS mapset and region features are used to set up paralleli-
sation. Location is a directory which contains GRASS GIS mapsets, which are
its sub-directories. All data in one location must refer to the same spatial refer-
ence system (SRS).Mapsets contain the actual data, they are a tool for organ-
ising maps in a transparent way and provide isolation between different tasks
to prevent data loss. GRASS GIS is always connected to one particular mapset.
Mapsets are used to store maps related to a project, a specific task, issue or sub-
region. Besides the geo-spatial data, a mapset holds the resolution and extent of
the current computational region. In this version of SoilGrids, the SRS used for
the GRASS location is the Homolosine projection applied to the WGS84 datum.

Prior to prediction, a global tessellation is created dynamically using the
GRASS module r.tile, dividing land masses into square tiles of a given side
(Figure 2). Predictions are then executed independently, and in parallel, within
each of these tiles.

Fig. 2: Land masses tessellated with tiles of 450 km in side.

A Slurm file is used to start up each individual prediction process. The pre-
diction process receives as argument the identifier of one of the tiles in the
tessellation. The process then creates a temporary mapset, setting its region to
the extent of the tile it is tasked to process. The temporary mapset works as
a geo-spatial sand box for the prediction process. The prediction process loads
data from GRASS within the extent of the tile, as set by the GRASS region. The
prediction process is controlled by R software linked to GRASS with the rgrass7
package [3]. The result is saved to disk as a GeoTIFF file and the temporary
mapset deleted (Figure 3).
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Fig. 3: Predictions occur in parallel in each of these tiles.

5 Resources management with (sub-)tiling

Prediction models developed with the R language may require a large amount of
RAM, i.e. tens of GBs of RAM to execute predictions for a single tile under 1 MB
in size. The obvious strategy to tackle memory constraints would be to reduce
the size of the tiles used to set up the temporary GRASS mapsets. However, this
can soon result in tens of thousands of GeoTIFF files. Such large numbers can
be excessive for some file systems, and complicate the functioning of command
line tools [19].

In the case of SoilGrids, a different strategy was applied to address resource
constraints, i.e. sub-tiling. The prediction process sub-divides the tile in equal-
size sub-tiles. Within the temporary GRASS mapset, the prediction process suc-
cessively sets the region to each of these sub-tiles and invokes the general pre-
diction model. The output computed within each sub-tile is finally saved into a
folder named after the prediction tile. The end result is a collection of folders,
one per tile, each containing as many GeoTIFF files as the number of sub-tiles
contained in the tile.

6 Assemblage of prediction files

The sub-tilling strategy can result in a very large number of GeoTIFF files.
For example, a three-by-three sub-tiling matrix applied to tiles of 200x200 km
results in over 50 000 GeoTIFF files covering the globe’s land masses. All these
files must then be aggregated to produce a single asset, easily manageable by end
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users. The Virtual Raster Tiles (VRT) format [12] introduced by the Geospatial
Data Abstraction Library (GDAL) is a suitable solution, as it provides a simple
and lightweight way to mosaic geo-spatial data. A VRT is in essence a XML file
that patches together various contiguous rasters in the same SRS into a mosaic.
As the GDAL library is used as I/O driver by most GIS programmes this format
is widely supported.

GDAL provides a specific tool for the of creation of VRT mosaics: gdalbuildvrt.
It can take as input a file with the list of rasters to include in the output VRT.
Another GDAL tool, gdaladdo, can afterwards be employed to create overviews
for the VRT. These overviews are stored in a companion file to the original VRT.
The end user needs only to point a GIS programme to the VRT file to load the
full raster mosaic. With the overviews created, access is fast and fluid at different
map scales.

The VRT format is also useful to simplify the re-projection of large rasters.
Another GDAL tool – gdalwarp – can be applied directly to a VRT file, creating
a second VRT file encoding the parameters of the specified output SRS. No
transformations are conducted on the rasters themselves, thus a swift operation.

7 Reproducibility and Portability

The parallelisation scheme described in this article is directly portable to any
system using Slurm where GRASS GIS and R can be installed. It is also appli-
cable to any other system relying on a similar scheduling mechanism, such as
Son of Grid Engine or Mesos [14]. In essence, any system able to spawn pro-
cesses passing a tile identifier as parameter can be used to reproduce this set up.
This solution can also be easily adapted to run on single machines with a large
number of CPUs and managed by the GNU parallel tool [18].

While GRASS GIS is a key component in the approach described wherewith,
alternative software can be used to similar ends. Certain raster formats, like
GeoTIFF, store rasters in blocks of constant size. It is therefore possible to
parallelise spatial computation on the basis of such blocks. GDAL in particular
provides an API that facilitates the retrieval of these blocks. However, some pre-
processing might be necessary to guarantee that all rasters stack up, using blocks
of equal size and spatial extent. The mapset and region features in GRASS are
unique among open source software and perform this stacking of input rasters
in a seamless way.

The parallelisation approach reported in this article can be applied to other
types of modelling where results can be easily parallelised in space. The tiling
mechanism is fully dynamic and independent of the underlying SRS. The size of
both the main map tiles and its sub-tiles are parameters to the tiling routine, and
expressed in number of raster cells, not map units. It is therefore straightforward
to apply with different SRSs and computation extents. The main limitation of
this approach is with problems that can not be easily parallelised in space, such as
hydrological processes requiring continuity or interactions between catchments.
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