
HAL Id: hal-03361900
https://inria.hal.science/hal-03361900

Submitted on 1 Oct 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Design of a Web-Service for Formal Descriptions of
Domain-Specific Data

Jannik Sidler, Eric Braun, Thorsten Schlachter, Clemens Düpmeier, Veit
Hagenmeyer

To cite this version:
Jannik Sidler, Eric Braun, Thorsten Schlachter, Clemens Düpmeier, Veit Hagenmeyer. Design of a
Web-Service for Formal Descriptions of Domain-Specific Data. 13th International Symposium on Envi-
ronmental Software Systems (ISESS), Feb 2020, Wageningen, Netherlands. pp.201-215, �10.1007/978-
3-030-39815-6_20�. �hal-03361900�

https://inria.hal.science/hal-03361900
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

Design of a Web-Service for Formal Descriptions
of Domain-Specific Data

Jannik Sidler1, Eric Braun1, Thorsten Schlachter1, Clemens Düpmeier1, and
Veit Hagenmeyer1

Institute for Automation and Applied Computer Science, Karlsruhe Institute of
Technology, Karlsruhe, Germany

{jannik.sidler, eric.braun2, thorsten.schlachter, clemens.duepmeier,

veit.hagenmeyer}@kit.edu

Abstract. The growing relevance of Big Data and the Internet of Things
(IoT) leads to a need for an efficient handling of this data. One key con-
cept to achieve efficient data handling is their semantic description. In
the environmental and energy domain, these issues become more relevant
since there are measurement stations that produce large amounts of data
that software systems have to deal with. In the context of cloud-based in-
frastructure and virtualisation via containers, microservice architectures
and scalability become important aspects in software engineering. This
article presents the design of a web service providing software systems
with semantic descriptions of data fostering a microservice architecture.
It implements key concepts such as domain modelling, schema version-
ing and schema modularisation. It is evaluated and demonstrated in the
context of a current environmental use case.

Keywords: JSON Schema · Semantic Description · Schema Service ·
Semantic Web Services · Big Data · Internet of Things

1 Introduction

In the past few years, Big Data and the Internet of Things (IoT) have become
topics of big significance. Consequently, many resources are invested in research
of concepts and technology to improve the overall ability to make use of them
in an efficient manner. One important aspect is the management and storage of
Big Data that comes along with modern data platforms. Problems of Big Data
storage are often symbolised by four words beginning with the letter ”v”: vol-
ume, velocity, variety and veracity. Especially, the variety of data semantics is
a key problem since Big Data storage solutions have to cope with many differ-
ent types of data, where each type has its own semantic structure. Therefore,
most Big Data storage solutions, for example NoSQL database systems such as
time series [13, ?] or document-oriented databases [15, ?], are schema-less, i.e. do
not enforce static schemas for data storage. Still, Big Data applications often
require a certain degree of structural and semantic understanding of the data,
which cannot be acquired by internal database schemas anymore. However, a

2 J. Sidler et al.

formal description of the structure of data can also be achieved by externaliz-
ing the semantic description and creating additional metadata schemas of the
respective data. This data is stored in an external schema service. This service
can deliver a description of how data of a certain type has to be interpreted and
therefore simplify data management and processing.

Furthermore, an external semantic schema description covers another im-
portant aspect: connections and relationships between data items. If relations
are not formally defined, it is difficult for humans and even more difficult for
machines to identify them. In software systems (for example search engines),
identifiable relations between data lead to a better search interface e.g. connect-
ing search results in a knowledge graph. By using schemas, such relations can
be formalised and consequently used by software that has the need for such in-
formation. Linked metadata schemas can be used to create Linked Data [19, 20],
e.g. the data providing services annotate the data with semantic description el-
ements from the schema descriptions. Externalised schemas are frequently used
in semantic web applications, in the context of IoT as described in [5–7], in the
context of big datasets [8], or for referring to comparability of data [9].

Another very popular approach in software development is the microservice
architecture [24]. The main idea of this architecture is to divide functionality
into blocks of a reasonable small size and make these blocks part of a greater,
overall functionality, but keeping them independent of each other. This principle
contrasts to monolithic architectures, where functional blocks are not imple-
mented independently and the implementations of different functionalities are
closely linked to each other. While separating functionality of an application
into separate services, single microservices can be far more generic. They can
be used even in different application contexts. This advantage of the microser-
vice architecture becomes relevant in many projects and applications today. In
environmental projects, it is often necessary to measure various properties of
the environment, for example, air pollution properties, such a carbon dioxide
emissions, water quality or radioactivity. If the application-specific part of the
semantics of such measurements is separated from the meta information such as
a metric identifier (identifying the property), a timestamp and a value, a generic
time series service can be used to store many different kinds of measurements.
Similarly, the important aspects of the measured physical property (name, unit
identifier, relation to a measurement device) can be stored in a separate generic
service called master data service (more details can be taken from [23]). There-
fore, a schema service can provide a formal semantic description of how time
series data is structured within the time series service [23], how corresponding
master data is structured in the master data service and how certain master data
is related to a time series metric. By doing this, it is possible to describe the
semantic interpretation context of the time series data, i.e. the physical property
and related information which is associated with time series data corresponding
to a certain metric.

Motivated by the previously mentioned problem setting, the goal of this ar-
ticle is to describe the design and basic concepts of a microservice that is able to

Design of a Web-Service for Formal Descriptions of Domain-Specific Data 3

manage and administer schemas describing the application semantics of specific
application domains. Such meta knowledge about data is relevant for many mod-
ern application areas like Big Data and IoT, as mentioned before [5–9] and fur-
thermore, the importance of generic microservices which can be used, deployed
and executed in a cloud-based environment in a generic application independent
way rises continuously. For the design of such microservices and their interoper-
ability with a schema service adding application-specific meta knowledge, there
are several requirements that have to be considered.

The first requirement is related to the basic functionality of the service. It is
intended to be used in a productive environment, which implies that it is neces-
sary to offer basic data operations for users who work with it. These operations
are derived from the CRUD principle (Create, Read, Update and Delete). In the
context of this article, schemas have to be accessible via an appropriate REST
API [12, 17] that offers such operations.

Additionally, it is necessary to control the formal correctness of metrics and
data in general. For this purpose, an automatic schema/metadata validation
mechanism is necessary. This mechanism has to supervise the formal correct-
ness of available data by validating it against an appropriate schema before a
create/update operation is executed. Consequently, an update of data is only
allowed to be executed if the validation of the data is successful.

Another requirement is the need for a versioning concept. Client applications
may have to work with a specific version of data, structured accordingly to a
certain version of the application schemas, while higher versions of the schema
are already created for working with next generation clients. In this case, in
order to provide backward compatibility, it is necessary that older data versions
are supported although a newer version is already available (and possibly even
recommended for usage). Versioning also guarantees the availability of a history
feature, which is crucial for supporting old data that still can be of interest. If
the data format changes in a certain period of time, old versions of data may
not be possible to be processed correctly anymore. In this case, the availability
of older schema versions is necessary to process old data.

To model relations between different schemas, it is necessary to include refer-
ences that point to related schemas. This is supported by the usage of a specific
vocabulary, for example JSON Schema [1, 2] It allows the usage of a special
keyword which offers the inclusion of external data in order to mark relations
between schemas and to enable a modular schema structure with low redun-
dancy. Linked resources are identified by a Uniform Resource Identifier (URI).
For an efficient usage of references, it is mandatory to have a suitable domain
concept that relates every resource to its corresponding domain.

The remainder of this article is organised as follows: Section 2 deals with
related work that examines similar content referring to this article. Section 3
describes solutions for the main concepts mentioned above. Section 4 evaluates
the presented concepts. In Section 5, a conclusion is given as well as an outlook
for further work.

4 J. Sidler et al.

2 Related Work

This section deals with publications that are related to the general idea of the
present article and to parts of the requirements.

The article by Chervenak, Foster & Co. [8] deals with the management of
datasets of large volume in scientific contexts. They describe the design of a data
grid and suggest a concept for a schema service describing the data in which
they decide to distinguish schema information between payload and metadata.
The payload in this case is the actual content of the schema that describes the
underlying data, whereas the metadata is a piece of information that defines
meta attributes of the schema. As reasons for this distinction, they mention
increased flexibility regarding the storage system implementation and less ef-
fort when changing behaviours that affect one metadata or payload description.
Additionally, metadata is divided into different kinds of metadata which are ap-
plication metadata, replica metadata and system configuration metadata, where
each of these respectively covers different tasks. The article emphasizes that the
separation of metadata and payload is an important matter for many years and
that the design of a metadata service in combination with Big Data was already
reasonable in the year 2000. A similar approach can also be found in [6]. The ap-
proach described later divides information in schema documents into ”payload”
and ”metadata”.

Another related article is given by Krylovskiy, Jahn and Patti [5]. t deals with
the design of a smart city IoT platform by using the microservice architecture.
The presented platform architecture consists of applications, a service platform,
containing middleware services and smart city services, and information models.
Additionally, it contains components for the management of platform metadata.
Data can be accessed by a client application via a REST API and is stored in
a document-oriented database. Data with more semantic structure is stored in
a triplestore database and can be accessed by a semantic web client. The arti-
cle describes the advantages of the microservice architecture in the context of
its service platform, the most important ones are the componentisation of func-
tionality, decentralised governance and data management, which lead to tech-
nology heterogeneity, resilience, good scaling and composability. The separation
of metadata and payload consequently can be covered by using a microservice
architecture, which may lead to a separate service only dealing with metadata.
However, the work presented in [5] describes metadata in an abstract way, and
does not mention aspects like an appropriate metadata model or a distinction
of metadata depending on their respective domain.

Additionally, related to the present article is the work given by Agocs and
Le Goff [10]. It deals with the architecture of a web service using a REST API
and JSON Schema to construct knowledge graphs for data visualisation. They
describe the need for descriptors that are used to validate data. Moreover, they
suggest an ontology-like hierarchy as data structure. The latter requirement is
applied by using JSON Schemas referencing functionality. Agocss and Le Goffs
design of the web service is similar to the one that is described in the present

Design of a Web-Service for Formal Descriptions of Domain-Specific Data 5

article as they use a microservice architecture as well as a REST API, which
provides basic CRUD operations for applications using the knowledge graph.

However, concepts that are not discussed in Agocss and Le Goffs work are a
versioning concept, which will be included in the present work. Additionally, the
creation and management of domain concepts for different applications in the
same schema service and a metadata model are not addressed by Agocss and Le
Goffs work but will be discussed in the following chapters as part of the solution
presented in this paper.

3 Concept and Architecture

In this chapter, a solution for the problems described in the introduction is
presented.

3.1 Domain Model

First, the term Domain-specific Data is discussed. It refers to different cate-
gories of data for different application domains, for example environmental data
or energy data. These two application domains serve as examples in the context
of the present article as they already have good and well known semantic models
for their data. Domain-specific data is hierarchically categorised according to its
domain-specific meaning. A category defines a more specific type of data which
can be divided into more specific subgroups on its own. This process is repeated
until the scope of the grouped data items is specific enough that the structure
of the data can be defined by a formal description. The category names can be
associated with a more formal definition of a vocabulary of domain terms with
precise semantics within the application domain, which can also be described by
a thesaurus. Adding structural information to certain categories, results in a do-
main model. Figure 1 shows an example of such a hierarchical categorisation and
is a visualisation of the air/climate domain model given by the Umweltbunde-
samt [18]. The air/climate domain model contains more terms in the hierarchy,
which are not depicted in Figure 1 to keep it clear.

At the level of gaseous pollutant, i.e. emissions of gas into the air, an associ-
ated data schema can be basically defined by the name or type of the pollutant
(ozone, nitrogen dioxide) and its concentration, which can be seen as a measure-
ment value MV (see Figure 1) if there are means for measuring or calculating
it from measurements. This contrasts to air pollutants which are not gaseous
but particles (e.g. particulate matter). The size of the particle and the particle
type mix is important besides the concentration. Therefore, both concepts lead
to different schemas.

A set of such schemas which define the data semantics of all data belonging
to certain domain terms (e.g. gaseous pollutant) is called schema domain. The
schema service discussed in the present article allows to create as many schema
storage containers as required to provide schema domains as sets of schemas to
different applications. These applications can have different application domains

6 J. Sidler et al.

gaseous
pollutant

air/climate

nitrogen
dioxide (NO2)

ozone (O3)

MV MV MV MV

MV = Measured Value

layers between

Fig. 1. Excerpt from the air/climate domain model, extended by measured values.

as well. Each schema domain can contain many schemas which define the struc-
ture of certain types of data within the domain.

As schemas can reference other schemas to implement relations between
them, schemas defining the data structure of a certain application domain are
closely related to each other. If the structure of schemas is enhanced over time,
new versions of schemas are created, and not all versions of different schemas are
compatible with each other regarding their relationships. Therefore, it is neces-
sary to have a versioning concept for schema domains and for single schemas.

3.2 Versioning Concept

In this section, the versioning concept is discussed. Principally, there are differ-
ent methods and use cases how versioning can be applied to schemas. In the
present article, three approaches are discussed. The first one is Domain-specific
Versioning, which attaches a version number to a whole schema domain. In this
approach, all schemas that belong to the same domain have the same version
number as the schema domain. Consequently, updating a single schema in a
(sub)domain leads to an update of the version number of all schemas in this
domain. The mechanism is depicted in Figure 2. It shows an update request
which is handled by an interface managing the update of the domain. This leads
to a consistent version number in the entire domain, which is a crucial feature
for using software applications. However, this uniform version comes along with
a disadvantage. To keep the version consistent, every update leads to a large

Design of a Web-Service for Formal Descriptions of Domain-Specific Data 7

Schema_x
“version” : “v3”

Schema_b
“version” : “v3”Schema_a

“version” : “v3”

Schema_c
“version” : “v3”

Interface

Domain

update Schema_x

update

update
update

update

Fig. 2. Schema updating with Domain-specific Versioning.

number of update requests. Even if a schema contains no changes for a new
version, the version number must be incremented. Depending on the frequency
of updates, the effort for incrementing the version number may be too high to
be negligible.

This problem is the motivation for a second versioning approach, the Schema-
specific Versioning. In this approach, every schema has its own version number,
which implies that every schema can be updated independently of each other.
Figure 3 shows the updating of a schema using the Schema-specific Version-
ing method. As depicted, the updating of a single schema does not affect other
schemas in the domain. The advantage of this strategy lies in the efficiency as
only the affected schema is updated. This concept is well-known from versioning
source code files in software development processes [21, 22] and suitable for au-
thoring schemas since changes of schemas are tracked by the revision number and
different revisions can be compared to each other. However, as a consequence,
there is no consistent and uniform version number which may lead to difficulties
as schemas are linked to each other, and applications have no precise view on
which version of a schema is linked to which version of another schema.

For this reason, the third approach combines both formerly presented con-
cepts. The combination is similar to the versioning concepts applied to software
code where each source code file has a revision number. Each schema (e.g. analo-
gous to a source code file) has an internal version that is called revision number.
It is only relevant for authoring and managing schemas and schema domains
but not propagated to applications that are working with the data. Addition-
ally, there is a domain version applied to a schema domain as a whole which

8 J. Sidler et al.

can be considered as the version number of a schema domain release, which
can be a set of consistent schema definitions that are used by applications. The
domain version is relevant for applications and users working with schemas to
access a consistent set of schemas. The schema service itself internally manages
a mapping which revision number of a certain schema belongs to a given schema
domain release. Figure 4 shows an illustration of this concept.

Schema_x
“version” : “v8”

Schema_b
“version” : “v4”Schema_a

“version” : “v22”

Schema_c
“version” : “v7”

Interface

Domain

update Schema_x

update

Fig. 3. Schema updating with Schema-specific Versioning.

Related to this approach is the question of an updating strategy. Typically on
demand of application developers, schema authors have to evolve schemas to
add new functionalities. This is performed by preparing new schema domain
releases. The combined version approach supports this: schema authors work on
new releases by committing new versions of single schemas or single schema sets
analogous to the versioning of software source code which results in new instances
of the schema objects internally having an incremented revision number. When a
new set of consistent schema instances is finalised, a new schema domain release
is prepared by assigning the corresponding revision numbers of the schemas to
the new schema domain release. Afterwards, the consistent set of schemas is
released to be usable for applications. The applications refer to the new release
by the new schema domain version number. To provide backward compatibility,
the schema service has to provide more than one release of the same schema

Design of a Web-Service for Formal Descriptions of Domain-Specific Data 9

domain to clients according to the version number the client application uses. For
maintaining consistency across all schemas of a domain release, it is important
that schema revisions are fixed and not changeable anymore when they are
assigned to a released schema domain version.

Domain

Schema 1 r21 Schema N r65...

v2

Fig. 4. Updating using combined strategy of Domain-specific Version and Schema-
specific Version.

3.3 Modularisation

Another important topic in the context of this article is the modularisation of
schemas. Modularisation is a consequence of using references in schemas to di-
vide large schemas into smaller pieces. This approach has various advantages.
Redundancy is significantly reduced by using references. This leads to a concept
where schema information is stored exactly once, which means that schemas are
reusable. Consequently, updating is less expensive since an update request af-
fects only smaller parts of a schema. Strongly related to this is reusability which
is a desired feature as it reduces the efforts for updating and further editorial
work. Such reusable, ”common” schemas are helpful for authors who need them
as they can include them instead of creating them again. Additionally, schemas
become more readable for humans.

Related to the usage of references is their resolving. A reference is a URI
that points to a specific schema at a specific location described by the reference
itself. The resolving indicates the process of replacing the references URI by the
referenced schema itself. As there may be applications that are not able to re-
solve references by themselves, the service contains a functionality that performs
the resolving on demand. As internal references (where the referenced schema
is part of the schema itself, in which it may be used multiple times) can be re-
solved implicitly by the usage of JSON Schema [1, 2], external references (where
the referenced schema is located in a separate document) have to be treated
differently. JSON Schemas ”$ref” keyword uses URIs to define the location of
a specific linked schema. To resolve external references, an algorithm is needed
that locates all the corresponding references, queries the linked schemas using

10 J. Sidler et al.

the URI and writes them to the correct location in the schema. The algorithm
exactly fulfills the described requirements by recursively iterating through the
schema, detecting all references, querying the respective reference schema and
editing the base schema correctly. Whenever it detects the ”$ref” keyword in a
schema, it uses the value of this key to query the corresponding schema from
the database and writes it to the proper location, adding all necessary syntac-
tical characters. Whenever another keyword is detected, it is checked if there
is a nested schema. The complexity of the algorithm depends on the number
of nested schemas that are located in the main schema. The more nested the
schema structure is, the more recursive steps the algorithm has to perform.

Related to the modular schema structure that uses references is the usage of
a classification concept which divides the set of schema documents belonging to
a schema domain into more modular parts (in the following called package). In
many (sub)domains, schemas can be divided into several groups of reusable base
schemas, for example basic data attribute definitions, basic data objects, such as
measurements or more complex application object schemas. For this type of clas-
sification as well as for assigning internal revision numbers to schemas, metadata
attributes are required to be assigned to schema documents. As discussed before,
it is desirable to separate payload and metadata in a schema document. By using
JSON Schema, a possible representation of the schema document structure is
shown in Listing 1.1. This example contains the different sections for metadata
and payload (schema).

"metadata" : {
"class": "measurement",

"package": "DO",

"revisionNumber": " r44 ",

...

}
"schema": {

...

}

Listing 1.1. Structure of schema documents within a storage container of a document-
oriented database of the schema service (related to one schema domain).

The metadata section contains three properties:

– the ”class” property, which describes the type of the schema and the derived
objects which are instances of that schema

– the ”package” property, which defines the package to which a schema defi-
nition belongs to (e.g. DO for Data Objects)

– the ”revisionNumber” property, which represents the internal revision ver-
sion

Moreover, Figure 5 models the validation process that is used in JSON Schema
and in the schema service. It consists of three different layers. The lowest one

Design of a Web-Service for Formal Descriptions of Domain-Specific Data 11

is the object layer, where objects are given in the JSON data format [3]. They
are validated against a certain JSON Schema that serves as formal prototype
for the object. This schema, on the other hand, defines the structure of the
objects. JSON Schemas are the middle layer in the model given by Figure 5.
They are validated themselves against the upper layer, the JSON Meta Schema
or JSON Schema Draft. This draft defines the keywords and their functionality
and thereby, it defines the JSON Schemas in the middle layer. Figure 6 depicts

JSON Schema Draft

JSON Schema

JSON Object

validates against

validates against defines

defines

Fig. 5. Hierarchy in the validation process with JSON Schema.

the architecture of the schema service. It consists of different components con-
taining different tasks needed in the context.

The service is used by client applications. Examples for client applications are
dashboards or other visualisation components. For the applications, the service
provides a REST Interface (REST API) containing the necessary functionality
to process client requests. Requests are received and processed by the Appli-
cation Controller (AC). The AC uses a configuration file to manage necessary
system parameters, for example ports or authentication/authorisation informa-
tion. If the request contains a request body (in case of create/update requests),
it is validated by the validator first. If the validation is successful, the AC uses a
database interface to translate the request to the corresponding database query.
The query is sent to the database where the desired data is stored. If the val-
idation fails or the requested data is not available, the client receives an error
request with the corresponding HTTP status code.

3.4 Prototype Architecture

Figure 6 depicts the architecture of the schema service. It consists of different
components performing different tasks needed in the context. The service is used
by client applications. Examples for client applications are dashboards or other
visualisation components. For the applications, the service provides a REST

12 J. Sidler et al.

Interface (REST API) containing the necessary functionality to process client
requests. The REST API is designed accordingly to [12]. Requests are received
and processed by the Application Controller (AC). The AC uses a configuration
file to manage necessary system parameters, for example ports or authentica-
tion/authorisation information. If the request contains a request body (in case
of create/update requests), it is validated by the validator first. If the validation
is successful, the AC uses a database interface to translate the request to the
corresponding database query. The query is sent to the database where the de-
sired data is stored. If the validation fails or the requested data is not available,
the client receives an error request with the corresponding HTTP status code.

Schema Service

REST
Interface

Client
Application

Database
Interface

Validator

JSON Schema/
Schema Draft

Application
Controller (AC)

Database

Utility Tools

AC
Configuration

Fig. 6. Architecture of the the service and conntected systems.

4 Evaluation

To evaluate the concept provided within this article, the service was tested within
an application of the Landesanstalt für Umwelt Baden-Württemberg (LUBW),
Germany. The application beside other usages instruments a google maps chart
with an additional layer that shows the nitrogen dioxide content in the air (see
Figure 7) at different measurement points in Baden-Wrttemberg. On the right
side of the figure, the meaning of the different measurement point colors is shown,
which changes with a rising or falling value of nitrogen dioxide in the air depend-
ing on which predefined range of values contains the value.

Design of a Web-Service for Formal Descriptions of Domain-Specific Data 13

Fig. 7. Map with measurement data that shows the nitrogen dioxid (NO2) content in
the air.

In this example context, the schema service provides advantages for the appli-
cation. On the one hand, data that is stored in the system can be validated.
This helps to reduce the existence of error values which contain an illegal format
or illegal values. On the other hand, time series data used in the measurements
can be schematically linked with master data objects which provide the domain
specific interpretation context to the measurement values. They share informa-
tion about the chemical property measured (as nitrogen dioxide), the unit of the
measurement value, the time resolution, the measurement environment (mea-
surement station equipment) and the location of the station. The service that
delivers the data to the map client component is able to resolve the references
for concrete instance data and to provide an aggregated data object, which con-
tains all the information beside the measurement values that is required to have
the coloring information and the legend information available to render the data
on the map. Additionally, schemas are useful for preconfiguring components as
selectors (e.g. for filtering data) based on classification information according to
the schema of the corresponding dataset.

14 J. Sidler et al.

5 Conclusion

In the present article, the need for semantic descriptions of data objects in an
application domain and the usefulness of an external schema service for it were
motivated. Afterwards, related works and needed functionalities of such a service
were discussed. First, the versioning of semantic descriptions were discussed and
an appropriate concept was presented which is analogous to the versioning of
source code and releases in software development. Second, the data format of a
schema document within the schema service and its metadata for management
of schemas were described. Furthermore, a short overview of the overall archi-
tecture of the schema service was presented. Finally, the evaluation described in
the evaluation chapter showed that a larger environmental software project can
benefit from the presented concepts of the schema service in different ways. It
provides stricter checking of data consistency, can link data to meta information
given an interpretation context for the data which can be used by an applica-
tion without hardcoding the interpretation knowledge into the application itself.
Thus, it helps to implement advanced, but helpful functionalities for users, such
as filtering of data or navigation between data within the application.

Important further work lies in the extension of the service API. A basic set
of functions that is required for the usage of the service has already been im-
plemented. Still, additional features such as extended filtering and an extended
search would improve the API. Additionally, a more powerful user interface is
needed for updating and managing schemas. It simplifies the verification process
of the service API and makes it more reliable. Moreover, different data formats
can be considered. One of the services limitations is that it works with JSON/J-
SON Schema only, which are the most widespread data formats in the context of
web engineering. Still, it may be useful to support other data formats as well, for
example XML/XSD or RDF/OWL. Especially, schema information returned to
the client can be augmented with semantic annotations leading to Linked Data
using JSON-LD.

References

1. JSON Schema Homepage, http://json- schema.org. Last accessed 13 Sep. 2019.
2. Zyp, K., Court, G., Galiegue, F.: JSON Schema: core definitions and terminology, In-

ternet Engineering Task Force, Internet-Draft draft-zyp-json-schema-04, Aug. 2013,
https://tools.ietf.org/html/draft-zyp-json-schema-04. Last accessed 20 Aug. 2019.

3. The JSON Data Interchange Format, 1st ed. ECMA International, October 2013,
http://www.ecma- international.org/publications/files/ECMA-ST/ECMA-404.pdf.
Last accessed 23 Aug. 2019.

4. Bray, T., The JavaScript Object Notation (JSON) Data Interchange Format, IETF
RFC 7158, Oct. 2015, https://rfc-editor.org/rfc/rfc7158.txt. Last accessed 23 Aug.
2019.

5. Krylovskiy, A., Jahn, M., Patti, E.: Designing a Smart City Internet of Things
Platform with Microservice Architecture. In: 2015 3rd International Confer-
ence on Future Internet of Things and Cloud, Rome, August 24-26 2015.
https://doi.org/10.1109/FiCloud.2015.55

Design of a Web-Service for Formal Descriptions of Domain-Specific Data 15

6. Mattmann, C., Crichton, D., Medvidovic, N., Hughes, S.: A Software Architecture-
Based Framework for Highly Distributed and Data Intensive Scientific Applications.
In: ICSE ’06 Proceedings of the 28th international conference on Software engineer-
ing, Pages 721-730, Shanghai, May 20-28, 2006.

7. Kolchin, M., Klimov, N., Shilin, I., Garayzuev, D., Andreev, A., Mouromtsev,
D.: SEMIOT: An Architecture of Semantic Internet of Things Middleware. In:
2016 IEEE International Conference on Internet of Things (iThings) and IEEE
Green Computing and Communications (GreenCom) and IEEE Cyber, Phys-
ical and Social Computing (CPSCom) and IEEE Smart Data (Smart Data).
https://doi.org/10.1109/iThings-Green-CPSCom-SmartData.2016.98

8. Chervenak, A., Foster, I., Kesselman, C., Salisbury, C., Tuecke, S.: The data grid:
Towards an architecture for the distributed management and analysis of large sci-
entific datasets. In: Journal of Network and Computer Applications 23, 187-200
(2000). https://doi.org/10.1006/jnca.2000.0110

9. Kettouch, M., Luca, C., Hobbs, M.: Using Semantic Similarity for Schema Matching
of Semi-structured and Linked Data. In: 2017 Internet Technologies and Applica-
tions (ITA). https://doi.org/10.1109/ITECHA.2017.8101923

10. Agocs, A., Le Goff, J.-M.: A web service based on RESTful API and JSON
Schema/JSON Meta Schema to construct knowledge graphs. In: 2018 International
Conference on Computer, Information and Telecommunication Systems (CITS).
https://doi.org/10.1109/CITS.2018.8440193

11. Braun, E., Schlachter, T., Duepmeier, C., Stucky, K.-U., Suess, W.: A Generic
Microservice Architecture for Environmental Data Management. In: Environmental
Software Systems. Computer Science for Environmental Protection. ISESS 2017.
IFIP Advances in Information and Communication Technology, vol 507. Springer,
Cham. https://doi.org/10.1007/978-3-319-89935-0 32

12. Giessler, P., Gebhart, M., Steinegger, R., Abeck, S.: Checklist for the API Design
of Web Services based on REST. In: International Journal on Advances in Internet
Technology, vol. 9, no. 3 & 4, 2016.

13. Jensen, S.-K., Pedersen, T.-B., Thomsen, C.: Time Series Management Systems:
A Survey. In: IEEE Transactions on Knowledge and Data Engineering, vol. 29, no.
11, November 2017. https://doi.org/10.1109/TKDE.2017.2740932

14. Influx DB: https://www.influxdata.com/. Last accessed: 09 Sep. 2019.
15. MongoDB: https://www.mongodb.com/. Last accessed: 09 Sep. 2019.
16. Elasticsearch: https://www.elastic.co/. Last accessed: 09 Sep. 2019.
17. Fielding, R.: Architectural Styles and the Design of Network-based Software Ar-

chitectures. University of California, Irvine, 2000.
18. Environment Thesaurus of the Umweltbundesministerium.

https://sns.uba.de/umthes/de/hierarchical concepts.html. Last accessed: 27
Nov. 2019.

19. Leadbetter, B., Smyth, D., Fuller, R., OGrady, E., Shepherd, A.: Where Big
Data meets Linked Data: Applying standard data models to environmental
data streams. In: 2016 IEEE International Conference on Big Data (Big Data).
https://doi.org/10.1109/BigData.2016.7840943

20. Al Rasyid, M., Syarif, I., Putra, I.: Linked Data for Air Pollution Monitoring. In:
2017 International Electronics Symposium on Knowledge Creation and Intelligent
Computing (IES-KCIC). https://doi.org/10.1109/KCIC.2017.8228565

21. Hildenbrand, T., Rothlauf, F., Geisser, M., Heinzel, A., Kude, T. Ap-
proaches to Collaborative Software Development. In: 2008 International
Conference on Complex, Intelligent and Software Intensive Systems.
https://doi.org/10.1109/CISIS.2008.106

16 J. Sidler et al.

22. Hata, H., Mizuno, O., Kikuno, T. Historage: Fine-grained Version Control System
for Java. In: IWPSE-EVOL ’11: Proceedings of the 12th International Workshop on
Principles of Software Evolution and the 7th annual ERCIM Workshop on Software
Evolution, September 2011. https://doi.org/10.1145/2024445.2024463

23. Prasad, S., Bhole, A. Application of Polyglot Persistence to Enhance Perfor-
mance of the Energy Data Management Systems. In: 2014 International Con-
ference on Advances in Electronics, Computers and Communications (ICAECC).
https://doi.org/10.1109/ICAECC.2014.7002444

24. Newman, S.: Building Microservices. OReilly Media Inc., 2015.

