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Abstract. With the Industry 4.0 revolution currently underway, manufacturing 

companies are massively adopting new technologies to achieve the virtualization 

of their shop floor and the collaboration of their information systems. This pro-

cess often leads to the construction of a real-time, collaborative, and intelligent 

virtual factory of their physical factory (so-called digital twin). The application 

of digital twins and frontier technologies in production planning still faces many 

challenges. But the research is still limited about how these frontier technologies 

can be applied to enhance production planning. This paper introduces how to 

enhance material resource planning (MRP) with digital twins and other frontier 

technologies, and presents a framework for the integration of MRP software with 

digital twin technologies. Indeed, the data collected from the shop floor can im-

prove the accuracy of the optimization models used in the MRP software. First, 

several MRP parameters are unknown when planning, and some of these param-

eters may be accurately forecasted from the data with machine learning. Never-

theless, the forecast will never be perfect, and the variability of some parameters 

may have a critical impact on the resulting plan. Therefore, the optimization ap-

proach must properly account for these uncertainties, and some methods must 

allow building probability distribution from the data. Second, as the optimization 

models in MRP are based on aggregated data, the resulting plans are usually not 

implementable in practice. The capacity constraints may be acquired by commu-

nication with an accurate simulation of the execution of the plan on the shop 

floor.  

Keywords: Digital twin, Industry 4.0, Material resource planning, Metaheuris-

tics, Machining learning, Uncertainty. 

1 Introduction 

The current supply chain is characterized by high complexity, high flexibility, mass 

customization, dynamic conditions, and volatile markets [1]. The rapid industrial envi-

ronmental changes motivate an evolutionary and integrative perspective for supply 

chain management in Industry 4.0 [2]. In recent years, due to the rapid development of 

network technology, the technologies in the era of Industry 4.0 have developed rapidly, 

including the digital twin (DT), internet of things (IoT), cyber-physical systems (CPS), 



2 

big data (BDA) and analytics, artificial intelligence (AI), cloud manufacturing (CMg) 

[3,4]. Because smart manufacturing is the core of the Industry 4.0 concept, production 

planning would be crucial for the supply chain management of Industry 4.0 activities 

[5]. In production planning, the goal of material requirement planning (MRP) software 

is to decide the quantities to produce and purchase over a given planning horizon. In 

this context, companies must enhance MRP software to respond to dynamic and diver-

sified market changes.  Existing research mainly focuses on the technological frame-

work and how to achieve the technology of Industry 4.0. However, the research is still 

limited about how these frontier technologies can be applied to enhance MRP software. 

Therefore, in this work, we present a methodology for the integration of MRP software 

with digital twin technologies. The resulting tools enhance MRP software with machine 

learning to forecast MRP parameters, stochastic optimization to properly account for 

parameter uncertainty, and automatic constraints learning by communication with a de-

tailed simulation.  

The remainder of the paper is organized as follows. Section 2 provides a brief liter-

ature review for the production planning in the Industry 4.0 era. Section 3 introduces 

the optimization models used in MRP, and Section 4 presents the digital twin-driven 

methodology for MRP. Finally, the paper ends with the conclusion and some future 

research directions in Section 5. 

2 A state of the art 

In this section, we discuss the application and research status of the main technologies 

of Industry 4.0 used in MRP software, including the internet of things, big data and 

analytics/artificial intelligence, digital twin/cyber-physical systems, and cloud manu-

facturing. 
The internet of things is the crucial basis for realizing cloud manufacturing, digital 

twin, and big data analysis [9]. The core functions of IoT for MRP include the digital-

ization of resources and information sharing from different software. Indeed, intelligent 

devices, such as sensors and radio frequency identification (RFID), embedded in prod-

ucts and resources allow real-time data collection and monitoring. With these intelli-

gent devices, the MRP software can know the status of each resource (e.g., machine 

status, inventory levels, etc.) in real-time [2,10]. Besides, IoT facilitates the integration 

of information systems, such as enterprise resource planning (ERP) systems and man-

ufacturing execution system (MES), to realize information sharing and collaboration 

[7]. Most of the research on IoT focuses on real-time collection, and application in 

scheduling [11]. Besides, most researchers consider a macroscopic view on IoT (e.g., 

the whole supply chain), and little work focuses on the application of IoT for the MRP 

in detail [12]. Therefore, there are still various problems that need to be studied and 

solved. For example, how to integrate information systems to achieve data-driven and 

dynamic planning, achieve distributed and collaborative planning for different work-

shops to support decision-making, and minimize the complexity of MRP systems. 

MRP software is often used in an uncertain environment. That is, many parameters 

are not known when planning [6]. Therefore, big data and analytics/artificial 
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intelligence are often used to forecast the parameters required for production planning 

[1]. Based on the massive data collected by IoT, BDA/AI tools can help MRP systems 

to predict the uncertain input parameters, such as the demand and capacity [13,14]. In 

this way, we can improve the accuracy and performance of forecasting. Furthermore, 

we can realize precise representation for the workshop and get more practicable and 

adaptable planning [15,16]. Existing research mainly focuses on demand forecasting, 

and only considers single uncertainty. The use of machine learning to predict the values 

of the parameters is not straightforward, since there exists a wide variety of predictive 

analytic approaches. The selection of the most appropriate approach depends on the 

context, usage, and volume of data [17,18]. Therefore, one research trend is to propose 

a general big data prediction method for MRP software. 

The digital twin/cyber-physical systems can provide decision-making support, dy-

namic production planning, and real-time visualization by building the virtual duplicate 

for the physical system [19]. Based on the digital twin model, we can achieve automatic 

optimization, prediction, and re-planning for MRP [22], and extending MRP with real-

time calculations, early reports, traceability, and visibility [21].  In this context, one 

challenge for MRP under the CPS environment is that enterprises must improve their 

adaptability, automation, and efficiency to deal with large-scale problems and more 

complex systems. Besides, because digital twins emphasize the integration and collab-

oration between systems, the implementation of cloud manufacturing (CMg) in MRP 

is also a critical process for constructing cyber-physical systems. 

In summary, existing research mainly focuses on the technological framework and 

how to achieve the technology of Industry 4.0. However, the research is still limited 

about how these frontier technologies can be applied to upgrade the systems for pro-

duction planning in detail.  We summarize main challenges of frontier technologies in 

production planning as follows.  

1) The relationships inside physical systems, the relationships inside virtual systems, 

and the relationships between physical systems and virtual systems, are complex to 

integrate.  

2) The massive data creates new opportunities and challenges to make an effective 

production plan with frontier technologies.  

3) How to use frontier technologies to provide the dynamic and automatic support 

of production planning for the managers is also an important challenge. 

To address these challenges, we propose a vision and a methodology to enhance 

material resource planning with digital twins and other frontier technologies, 

3 Optimization model for MRP 

The problem solved by MRP software is a multi-echelon multi-item capacitated lot-

sizing problem (MMCLP). The MMCLP is to decide when to produce as well as the 

sizes of the production lots to minimize the expected total cost (including inventory 

holding costs, fixed setup costs, unit production costs, extra capacity cost). These deci-

sions are made based on the demand, the bill of material, the production capacity, and 

the lead time. We introduce below the optimization model used in current MRP 
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software. Several models exist in the literature, and we provide a generic enough model 

that would fit in most of the manufacturing industries. In particular, we consider the 

flexible bill of material (BOM), which leads to the flexibility and reactivity required in 

the Industry 4.0 era. 

The demand 𝐷𝑖𝑡  for item 𝑖 can be represented with a parameter or a probability dis-

tribution. We assume that all customer demand is for end items only. If there exists a 

demand for components, we can create a dummy end-item corresponding to compo-

nents reserved for shipping. 

The multi-echelon flexible bill of materials gives the production structure of each 

item in the set 𝐼 of items. We denote 𝐼 the set of all items, 𝐼𝑒  the set of end items, and  

𝐼𝑐 the set of components, where 𝐼 = 𝐼𝑒 ∪ 𝐼𝑐 . Each item 𝑖 can be acquired by alternative 

operations, and each operation 𝑜 produces 𝑎𝑜𝑖  units of item 𝑖, it consumes 𝑏𝑜𝑖  units of 

component 𝑖, and consumes 𝑘𝑜𝑟  units of resource 𝑟. Modelling operations leads to a 

very generic lot-sizing model that can include alternative production routing and make 

or purchase decisions (Begnaud et al 2009).  

The requirement plan must account for the production capacity. Each resource 𝑟 in 

the set of resources 𝑅 has a given capacity 𝐶𝑟. In each period 𝑡, the capacity of resource 

𝑟 can be expended, and each unit of extra capacity costs 𝑜𝑟. The component 𝑖 produced 

in period 𝑡 is available in period 𝑡 + 𝐿𝑖, where 𝐿𝑖 denotes the lead time of item 𝑖. This 

lead time may correspond to the time between the placement of an order to a supplier 

and its delivery, or to the number of periods between an order is released to the sched-

uler, and the period where the item is produced. The inventory 𝐼𝑖𝑡 will generate costs, 

and the backlog level 𝐵𝑖𝑡 in period 𝑇 corresponds to a lost sale. Besides, we define 𝑀 

as the big number.  

The objective of the MMCLP is to determine the suggested production plan, includ-

ing when to produce, how many items to produce, when to buy materials, and how 

many items to buy, and the amount of extra capacity required. We define the following 

decision variables: 

𝑌𝑜𝑡  If a batch of operation 𝑜 is performed in period 𝑡, and this is represented by a bi-

nary decision variable. 

𝑄𝑜𝑡  The quantity of operation 𝑜 to perform in period 𝑡 

𝑤𝑟𝑡  The amount 𝑤𝑟𝑡 of extra capacity required for resource 𝑟 in period 𝑡. 

The objective function is the expected total cost, and it includes inventory holding 

costs ℎ𝑖, setup costs 𝑠𝑜, production costs 𝑣𝑜, backlog costs 𝑏𝑖, and the extra capacity 

cost 𝑜𝑟. The MMCLP can be formulated as the following mixed-integer linear program 

(MILP). 

min ∑ ∑(ℎ𝑖𝐼𝑖𝑡 + 𝑏𝑖𝐵𝑖𝑡)

𝑖∈𝐼𝑒𝑡∈𝑇

+ ∑ ∑(𝑠𝑜𝑌𝑜𝑡 + 𝑣𝑜𝑄𝑜𝑡)

𝑜∈𝐼𝑐𝑡∈𝑇

+ ∑ ∑ 𝑜𝑟𝑤𝑟𝑡

𝑟∈𝑅𝑡∈𝑇

(1) 

Subject to: 

𝐼𝑖𝑡−1 − 𝐵𝑖𝑡−1 +  𝑎𝑜𝑖𝑄𝑜𝑡−𝐿𝑖
− 𝐼𝑖𝑡 + 𝐵𝑖𝑡 = 𝐷𝑖𝑡    𝑖 ∈ 𝐼𝑒 , 𝑜 ∈ 𝐼𝑐 , 𝑡 ∈ 𝑇  (2) 

𝐼𝑖𝑡−1 + 𝑎𝑜𝑖𝑄𝑜𝑡−𝐿𝑖
− ∑  𝑏𝑜𝑖𝑄𝑜𝑡𝑜∈𝐼𝑐

− 𝐼𝑖𝑡 = 0       𝑖, 𝑜 ∈ 𝐼𝑐 , 𝑡 ∈ 𝑇  (3) 
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𝑄𝑜𝑡 − 𝑀𝑌𝑜𝑡 ≤ 0                           𝑜 ∈ 𝐼𝑐 , 𝑡 ∈ 𝑇  (4) 

∑ 𝑘𝑜𝑟 ∙ 𝑄𝑜𝑡𝑜∈𝐼𝑐
≤ 𝐶𝑟 + 𝑤𝑟𝑡        𝑜 ∈ 𝐼𝑐 , 𝑡 ∈ 𝑇  (5) 

𝑌𝑜𝑡 = {0,1}  (6) 

𝐼𝑖𝑡 ≥ 0  (7) 

𝐵𝑖𝑡 ≥ 0  (8) 

𝑄𝑜𝑡 ≥ 0  (9) 

The objective function (1) is the expected total cost. Constraints (2) and (3) ensure 

the balance of flow for all items in each period. Constraints (4) set the production quan-

tities to zero in periods without operations. Constraints (5) enforce limits on production 

capacity. 

Based on this distribution, the tool will generate a set of scenarios with Monte Carlo 

or Quasi Monte Carlo methods. For instance, uncertain demands can be represented by 

the set Ω of demand scenarios, where each scenario ω ∈ Ω represent a possible reali-

zation of the demands over the planning horizon, and it has a probability 𝑝𝜔.  

4 The digital twin-driven material resource planning 

In this section, we propose a digital twin-driven MRP software, before describing its 

main elements, including the machine learning based uncertainty forecasting, and the 

fix-and-optimize algorithm for two-stage stochastic optimization. 

4.1 The digital twin-driven integration scheme 

Figure 1 shows the digital twin-driven integration scheme for the MRP software, which 

describes how the physical system communicates with the virtual systems, and how to 

integrate the production planning with the simulator and the scheduler. 
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Figure 1 The digital twin-driven integration scheme 

The domain model, one of the core components in the digital twin, is the bridge 

between the physical system and the visual systems. This domain model integrates data 

from heterogeneous sources (MES, ERP, IoT devices), and it provides the user with a 

rich data structure to understand this data. This data is then accessible to the simulation, 

the production planner, and the scheduler.  

The simulation models help the user validate a production plan by providing a pre-

cise execution of the plan at a detailed level (with each machine, employee, transport 

between machines, etc.). The simulation gives a clear understanding of the performance 

of a production plan, since it can compute various KPIs relevant to the user. The simu-

lation is also a valuable tool to enrich the optimization model. As explained in Section 

4.3, the simulation can learn the capacity constraint from various simulation runs.  

The production planner will provide the size of the production batches to the sched-

uler as well as a targeted production period. In the scheduler, the release date corre-

sponds to the start of the period, and the due date corresponds to the end of the period. 

The due date in the scheduler is a soft due date, to ensure adherence to the production 

schedule, whereas the customer due date might be penalized strongly or even consid-

ered as hard deadlines. 

4.2 Machine learning based uncertainty forecasting 

The machine learning based uncertainty forecasting creates a Bayesian network using 

the data from the domain model or simulation model. The user will select the parameter 

to learn and the possible explanatory parameter. The Bayesian network is built from the 

relations in the domain model, and we learn the conditional probability with pair cop-

ula. The major sources of uncertainties in material resource planning include the de-

mand, the production and delivery lead time, the process duration, and the production 
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capacity. For instance, the capacity uncertainty can be inferred from the machine break-

down represented by the mean time between failures, and the mean failure duration.  

To forecast the distribution of uncertain parameters, the input data for machine learn-

ing has two sources.  For uncertain demand, the input data is from historical data, in-

cluding the customer order and production plans implemented in the past. For uncertain 

lead time and production capacity, the input data can be generated by the simulation 

model. 

4.3 Predictive analytics of capacity constraints 

Tactical planning tools, such as MRP and APS (advanced planning and scheduling), 

decide the production amount over a long planning horizon (several months). In this 

context, the planning decisions are not based on a detailed model of the shop floor. The 

main reasons are that the resulting optimization problem would not be solvable, and it 

would lead to nervousness that aggregated data is more reliable than detailed one (e.g., 

determining the demand for the car is easier than for each specific car model). Conse-

quently, we aggregate items, resources, and periods. The granularity of production 

planning is a day or a week. The items and resources are aggregated into families. Typ-

ically, a resource family is a group of resources (a work cell).  This aggregation may 

lead to errors [24]. For instance, the resource consumption is computed for each re-

source group, but planning approaches allocate specific resources to each operation. 

More precisely, the capacity constraint is a linear function described as follows: 

∑ 𝑄𝑜𝑡 𝑘𝑜𝑟  ≤  𝐶𝑟𝑡  +  𝑤𝑟𝑡  (𝑜∈𝑂)  (10) 

where  𝑘𝑜𝑟  is an estimate of the processing time of an operation of family 𝑜 on a 

resource of family 𝑟. In practice, the process duration may vary depending on the pre-

cise operation to perform, and on the specific resource that performs the operation. Be-

sides, the production schedule may include idle time, and not all resources in a resource 

family can perform all operations. 

Consequently, a production plan may not respect the production capacity once im-

plemented in practice or the simulation. Some authors propose a rich model that inte-

grates planning and scheduling [25], but the resulting model can only solve small scale 

instances. We aim to learn the capacity constraints in the mathematical model through 

machine learning based on the output of the simulation. The tool can run a simulation 

model to get the capacity consumption associated with given production quantities.  
4.4 Fix-and-optimize algorithm for two-stage stochastic optimization 

Mathematical optimization is the most appropriate tool for planning. The lot-sizing 

models have attracted a lot of work from the operation research community. Research-

ers propose several reformulations, cuts, and solution algorithms such as Lagrangian 

Relaxation, cutting planes. However, solving the complex lot-sizing problem under un-

certainty is hard, especially in the dynamic decision framework, where the production 

setups are updated as the information unfolds. The existing works are limited to small-

scale instances in a simple environment [27]. To solve large instances, with multi-eche-

lon BOM in a long-term planning horizon, improved heuristic algorithms must be pro-

vided.  For instance, Thevenin et al [23] showed that the two-stage approximation 
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provides a good heuristic to the static-dynamic decision framework when the demand 

is uncertain. However, more research is needed to solve lot-sizing problems in a long-

term planning horizon, and the use of the fix-and-optimize approach may be a possible 

research direction. Besides, more research should focus on developing methods to han-

dle the dynamic decision framework. Based on the two-stage approximation proposed 

by Thevenin et al [23], more works required to do are listed as follows. 

1) Evaluate the quality of this heuristic for other types of uncertainties (lead time/ca-

pacity/process duration/demand). 

2) Extend the tool to a more generic lot-sizing model (with flexible BOM/possibility 

to add extra capacity). 

3) Evaluate the quality of this heuristic for the dynamic type of uncertainties. 

4) Improve the approach to solving large scale instances of the problem. 

5 Conclusion and Perspectives 

In this paper, we propose a digital twin-driven methodology for material resource plan-

ning software. The paper focuses on how to achieve the integration between the MRP 

system and other systems under the CPS environment. We also describe how to design 

a digital twin-based MRP system to solve planning problems in a dynamic and uncer-

tain environment.  First, the distribution of uncertainties can be predicted using machine 

learning. Then, with the distribution of uncertainties and basic data as the input of pro-

duction planning, the generic mathematical model can represent the physical system 

precisely. Third, the fix-and-optimize algorithm can obtain the results for the MMCLP. 

Based on this, MRP systems can provide practicable and adaptable production plans 

and re-plans efficiently for large-scale planning problems. 

For future research perspectives, we will conduct and implement the proposed 

method in a real factory. A comprehensive framework, which includes not only the 

production planning for MRP, but also a detailed description of the production sched-

uling and the connection protocols between them will be provided. Moreover, we are 

looking forward to improving the heuristic algorithm and machine learning method for 

the MMCLP. Finally, an interesting work direction is to study how to maximize effi-

ciency and minimize the complexity of the MRP system when we integrate it with other 

systems under the CPS environment in Industry 4.0. 
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