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Abstract. In the last few decades, as industrial control systems (ICSs) became 
more interconnected via modern networking techniques, there has been a grow-
ing need for new security and monitoring techniques to protect these systems. 
Advanced cyber-attacks on industrial systems take multiple steps to reach ICS 
end devices. However, current anomaly detection systems can only detect attacks 
on individual local devices, and they do not consider the impact or consequences 
of an individual attack on the rest of the ICS devices. In this paper, we aim to 
explore how deep learning recurrent neural networks and correlation analysis 
techniques can be used collaboratively for anomaly detection in an ICS network 
on the scale of the entire systems. For each detected attack, our presented system-
wide anomaly detection method will predict the next step of the attack. We use 
iTrust SWaT dataset and Power System Attack datasets from MSU national Labs 
to explore how the addition of correlation analysis to recurrent networks can ex-
pand anomaly detection methods to the system-wide scale. 

Keywords: Anomaly Detection, Correlation Analysis, Deep Learning, Indus-
trial Control System. 

1 Introduction 

Traditional industrial control systems (ICSs) were not designed for security as they 
were isolated networks running proprietary control protocols. However, due to the con-
nection of current ICS networks to the Internet, the cybersecurity of ICSs becomes a 
growing concern. A cyber-attack in an ICS network can be caused by an attack spread-
ing maliciously from information technology (IT) networks to operational technology 
(OT) networks [1].  

Many anomaly detection methods have been proposed to detect anomalies against 
ICS devices. Existing work on anomaly detection in ICSs can be divided into two broad 
categories, network traffic-based and physical process-based [2]. Network traffic-based 
anomaly detection systems are based on the analysis of communication patterns be-
tween different devices in an ICS network [3], while physical process-based anomaly 
detection methods are built on the analysis of ICS device logs that record the state of 
physical devices such as sensors and actuators [4]. These anomaly detection methods 
only focus on monitoring a single source of data without considering the consequence 
of attacks on other devices. Analysis of correlation among various data sources is re-
quired to provide comprehensive and system-wide anomaly detection [5]. This enables 



2 

security experts to predict and prevent future steps of an attack. Correlation analysis 
was employed in some papers [6] to improve the security of enterprise networks. How-
ever, the novelty of our paper is presenting a combination of anomaly detection and 
correlation analysis to provide a system-wide anomaly detection in ICS networks. Re-
current networks will be coupled with correlation analysis to detect when and where an 
anomaly occurs and subsequently search correlated devices for signs of further attack 
or influence. The results will be evaluated using real-world ICS datasets to show the 
efficiency of the presented method.  

The rest of this paper is organised as follows. Section 2 explains background and 
related works. Section 3 describes the system-wide anomaly detection method proposed 
in this paper. Evaluation datasets are explained in Section 4. Section 5 discusses the 
evaluation results of our method in ICS datasets.  Section 6 analyses the results. Section 
7 concludes the paper. 

2. Background and related works 

Historically ICSs were immune to cyber-attacks because they were “Air-Gapped” [7]. 
This is a term used to describe a physical disconnect between the ICS and the organi-
zation’s cyber network. Meaning there is no connection an attacker could use to get 
from the corporate network onto the ICS network. This changed near the end of the 
1990s with the development of new IT systems and technologies that improved the ICS 
workflow but also made it less secure to outside threats [7]. This increasing trend of 
legacy industrial devices being connected to normal IT networks and the internet means 
these ICS networks are now vulnerable to new types of attacks. Zero-day attacks are 
almost inevitable in these ICS networks and are a serious concern. This is where anom-
aly detection and machine learning are used to detect anomalous events [8]. Different 
machine learning methods have been used for anomaly detection. However, research 
shows that deep learning methods outperform traditional methods as the scale of data 
increases, shown in Figure 1 [9, 19].  

 

 

 

 

 

 

 

 

Fig.  1. Performance comparison of deep learning Vs traditional anomaly detection methods [9] 

There are many papers that performed deep learning-based anomaly detection for 
ICSs [11, 19], and their results showed the high accuracy of deep learning-based 
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analysis. Motivated by the above discussions, a deep learning-based anomaly detection 
method is deployed in our paper to analyse ICS data.  

Advanced ICS attacks have multiple steps to gain access to their target device. 
Therefore, detecting a single anomaly cannot identify the future steps of an advanced 
attack. Using correlation analysis, we can assess correlated features and identify if an 
anomaly is isolated or potentially part of a larger complex multi-part attack [5, 6, 20]. 
In this paper, we use correlation analysis to expand the anomaly detection system-wide. 

When working with high dimensional data with low-value density, it is crucial to 
select correct features for analysis as a large amount of sensor data streams can lead to 
serious performance impacts [5, 6, 20]. Paper [10] used sensor data correlation changes 
to improve the performance of IoT equipment anomaly detection by correlating dupli-
cate deployed sensors and clustering them. The IoT devices used in the paper are sen-
sors measuring things much like those in ICS networks. The paper states “dynamic data 
correlations among industrial equipment sensors prevalently exist” is a key component 
of correlation analysis as if there is a change in a device then it is likely there will be 
impacts to correlated devices. Figure 2 that is an example from paper [10], shows a 
clear correlation when the coal flow dips power dips after a small delay. 

 

 

 

 

 

 

Fig.  2. Correlated power and coal flow of Coal mil.   [10] 

The methods used in the paper [10] would be an effective way to perform correlation 
analysis, however; on low dimensionality systems with few weakly correlated nodes or 
features, such as a limited number of sensors that only monitor isolated features, this 
method has the potential to be ineffective. If the features are not correlated strongly 
enough to impact each other when there is a change, the analysis method would need 
to be highly tuned or sensitive to changes. This can lead to false positives and mislead-
ing correlations. The paper on correlation-change anomaly detection [10] provides im-
portant information and methods for effectively correlating data.  

Inspired by the paper [10], we present our correlation-based solution to explore a 
method of system-wide anomaly detection in ICS networks. Using anomaly detection 
on a selection of key features, we will then use correlation analysis to explore other 
potentially anomalous features which may be related to a detected anomaly. 
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3. System-wide anomaly detection 

In this section, we will be discussing the methods and processes used to perform corre-
lation analysis, anomaly detection and the experimental process.  

3.1 Process 

The process involves identifying correlated features from a map of all features as nodes. 
Firstly, features that have the greatest impact on other features and features which are 
likely to change in clusters are identified using correlation analysis. This is done so that 
our single feature anomaly detection method can become system-wide. This means that 
it can comprehensively track anomalies throughout an entire system. This is advanta-
geous as many detection systems focus on monitoring individual devices and features 
but here, we incorporate correlation analysis on top of that to create a broader system-
wide detection system. Once several nodes are correlated then if an anomaly is detected 
in one the correlated nodes are checked for anomalies to see if the anomaly is isolated, 
spreading or a part of a larger chain of anomalies. 

When dealing with multidimensional datasets, it is important to filter out non-corre-
lated features. This can lead to difficulties with automated model-building methods 
struggling to select the important features from among thousands of candidates. As it 
is better to use fewer correlated features to train a model [12], the network map of 
correlated nodes can be used to identify nodes that are most correlated to other nodes, 
and it provides a good starting point for identifying high priority nodes for monitoring. 
Figure 3 provides an example of a correlation map. 

 
 
 
 
 
 
 

 
Fig.  3. Example of two correlated features 

3.2 Methodology 

Different phases of this paper were as follows (Figure 4): 

1. First feature reduction is performed to remove duplicate sensors or isolate key fea-
tures.  

2. Correlation analysis is performed on the system or dataset in question. This helps to 
identify correlated nodes and which features share the strongest relations to other 
features. 

3. We identify the key features/nodes for anomaly detection. Then, we monitor the 
nodes for anomalies using Long Short-Term Memory (LSTM) models to detect 
changes in the expected behaviour of the nodes.  
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4. If an anomaly is detected in a node, then we perform correlation analysis and exam-
ine each of its correlated nodes in turn. If an anomaly is identified or detected in a 
correlated node, its correlated nodes are checked as well. This process continues 
until no further anomalies are found or until every unique node is checked. 

5. Using the detected anomalies and their timestamps, it is then possible to show when 
the detected anomalies occurred in the system.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 4. Methodology flow 

Our model is a combination of deep learning for anomaly detection and correlation 
analysis to expand it to be system-wide. This combination allows for the anomaly de-
tection segment to focus on detection and the correlation analysis to provide the next 
target. This process allows us to follow the path an anomaly or attacker may have taken 
through a system and which devices may have been impacted and in what order. This 
can also be used to help identify attack insertion points and which nodes need hardening 
or further examination. 

    Anomaly Detection. For anomaly detection, an LSTM recurrent neural network 
was used as it is well suited for processing and making predictions based on time series     
data [9]. After correlation analysis is performed, nodes (aka features) are monitored by 
LSTM models of the features. If an anomaly is detected, then the correlated and adja-
cent nodes are also checked to see if the anomaly is isolated or if the anomaly is poten-
tially part of greater concern. The LSTM used here is relatively simple and consists of 
an input and output layer and 4 LSTM layers using ‘relu’ activation method separated 
by an attention layer.  

Correlation Analysis. When dealing with multidimensional datasets, it is important 
to filter out non-correlated features. This is done because two devices might monitor 
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the same sensor or device and would end up appearing highly correlated if there were 
a change in whatever device they were monitoring. This would create the impression 
these two sensors are linked or in some way impact each other when they do not. In this 
case, it may be better to use fewer highly correlated features to train a model [13]. For 
this paper, we use the Pearson correlation coefficient [18] as it indicates whether a sta-
tistically significant relationship exists between two continuous variables and whether 
a change in one variable may be associated with a proportional change in another vari-
able. 

When correlation analysis is performed, we can create a correlation matrix or corre-
lation map to display the data in a more human-readable way as shown in Figure 5. The 
map on the right of Figure 5 shows the more highly correlated features from the matrix 
on the left in a more concise easy to read format. This map is beneficial when dealing 
with datasets which require some significant feature reduction or when it is unclear 
which parts of the system are the most interconnected. In highly connected systems, 
this may also be beneficial to reduce noise and prevent correlations being shown be-
tween every node and confusing the model with extraneous data. The size of the node 
in Figure 5 is indicative of how many edges (correlations) it has and the darker the edge 
the more highly correlated the nodes are. This map can also give a visual representation 
of clustering if there is any. 

Fig.  5. SWaT Matrix and Map side by side comparison 

4. Datasets 

Our proposed model was evaluated using two ICS datasets, the Tommy Morris Power 
Systems dataset and the iTrust Secure Water Treatment (SWaT) dataset. These datasets 
were divided into training (70%), validation (10%) and testing sets (20%) for the eval-
uation of our model. 

Power Systems. The ICS Cyber Attack Power System Datasets was developed in 
[15]. It contains 37 scenarios divided into 8 cases of Natural Events, 1 case of No Events 
and 28 Attack Events. The power system testbed used in generating the test scenarios 
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contains power generators, breakers, and Intelligent Electronic Devices (IEDs) that can 
switch the breakers on or off.  

iTrust SWaT. The Secure Water Treatment (SWaT) dataset is a water treatment 
testbed for cybersecurity research [16]. The dataset consists of a modern six-stage pro-
cess. There are 6 attacks performed on the dataset: Attack on FIT401 (Spoof value from 
0.8 to 0.5), Attack on LIT301 (Spoof value from 835 to 1024), Attack on P601 (Switch 
from OFF to ON), Multi-point Attack (Switch from CLOSE to OPEN (MV201) and 
OFF to ON (P101)), Attack on MV501 (Switch from OPEN to CLOSE), and Attack on 
P301 (Switch from ON to OFF). FIT 401 sensor is a Flow Transmitter which controls 
the UV dechlorinator. LIT301 sensor is a Level Transmitter. P601 actuator pumps wa-
ter from RO permeate tank to raw water tank. MV201 actuator is a motorized valve. 
P101 actuator pumps water from the raw water tank to the second stage. P301 actuator 
is a UF feed Pump. 

5. Results 

The experimental results are separated into two sections. The first section is for the 
Tommy Morris Power System Dataset, which is a simple case where the anomaly is 
fast and affects multiple devices in the same way. The second section is for the SWaT 
dataset.  

5.1 Power Systems 

The data in this section is from the line maintenance scenario where one or more relays 
are disabled on a specific line to do maintenance for that line [15]. Figure 6 shows the 
correlation matrix for the line maintenance scenario in this system. The correlation ma-
trix uses Pearson correlation and shows which features have a correlation between each 
other, with highly correlated features being shown in yellow-green. This matrix has 
been sorted to show some clustering. 

This matrix can be converted to a correlation map to show the correlations in a more 
readable format as shown in Figure 7. However, with such a large number of features 
so many correlations would make the map almost solid and impossible to read so the 
map is split into the strongest positive (>0.5, left) and negative (<-0.5, right) correla-
tions. The first node monitored was R1-PA4:IH. Figure 7 shows the nodes readings in 
blue and the time periods where attacks were performed in red. 
In Figure 8, the anomaly graph shows that several anomalies were detected in node R1-
PA4:IH. These were determined to be anomalies by training a model of the data and 
taking the Mean Absolute Error (MAE) and lowering it by a small percentage to get a 
threshold for anomalies. As anomalies were detected in the initial node, as shown in 
Figure 8, all correlated nodes were also checked for anomalies. This process continues 
until no further anomalies were detected. This resulted in checking the following nodes:  

R1-PA1:VH R1-PA7:VH R1-PA10:IH R2-PA1:VH 
R2-PA7:VH R3-PA1:VH R3-PA7:VH R4-PA1:VH 
R4-PA4:IH R4-PA7:VH R4-PA10:IH R1-PA4:IH 

All of which also had detected anomalies. This shows that if an anomaly is detected 
in any one node whether that be from a directed attack or other reasons the algorithm 



8 

will spread out from that node and search all adjacent and correlated nodes to find other 
anomalous behaviour. The accuracy of our LSTM in anomaly detection in the Power 
System dataset was 95%, and the precision was 95%.  

 

 

 

 

 

 

 

 

 

Fig.  6. Power systems line maintenance correlation analysis matrix 

 

 

 

 

 

 

 

 
 

Fig.  8. R1-PA4:IH detected anomalies 

      Fig.  7. Power systems line maintenance positive and negative correlation network map 
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5.2 iTrust SWaT 

In the SWAT dataset, there are 6 different attacks performed. The first attack is on 
FIT401 trying to spoof value from 0.8 to 0.5 with the intent to stop de-chlorination by 
switching off  UV401. Correlation analysis is performed to identify which nodes should 
be monitored most closely. The matrix in Figure 9 shows the correlations. 

Using Figure 9 correlation Matrix, we construct the two maps in Figure 10 based on 
all the strongest positive (>0.5) and negative (<-0.5) correlations. Where a positive cor-
relation represents a ‘perfect’ increasing relationship and negative correlations repre-
sent a ‘perfect’ decreasing relationship. 

Using these maps, we can identify key nodes of interest with many strong positive 
correlations such as AIT402 and LIT401 as well as many strong negative correlations 
such as FIT401, AIT501 and LIT101. Any change in these nodes will likely have an 
impact on the network at large thus they are ideal for monitoring. The first node moni-
tored for this dataset is FIT 401. This node is the first one attacked in the dataset. The 
anomaly graph in Figure 11 shows the anomalies detected in the node. The attacks are 
also highlighted in red. An anomaly that is detected within one of the red areas can be 
considered to be a true positive detection representing an anomaly that was detected as 
a part of an attack. An anomaly found outside of one of the red zones can be considered 
a false positive. The accuracy of our LSTM in detecting anomalies in the SWaT dataset 
was 97%, and the precision was 96%.  
 
 
 
 
 
 
 
 
 
 
 
 

                         Fig.  9. SWaT correlation matrix 
 

 

 

 

 

 

 

 

 

 

 

 Fig.  10. SWaT Positive and Negative correlations 
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                                    Fig.  11. FIT 401 detected anomalies 

6. Analysis 

The Power Systems dataset contains many different types of events which makes it 
challenging to perform anomaly detection. For R1-PA4:IH, there were 10 detected 
anomalies. An LSTM is used to predict the expected behaviour of each node (Figure 
13), and a threshold value (Figure 12) helps to identify the anomaly area. The anomaly 
threshold is 10% in this paper to ensure as many anomalies are detected as possible. 
The area above this threshold shows anomalies, Figure 12. The LSTM models effec-
tively predicted values closely aligned with the testing data (Figure 13).  

The similar threshold value was used for the SWaT dataset. The testing and predicted 
data for FIT401 sensor in the SWaT dataset is shown in Figure 14. The accuracies of 
our LSTM in detecting anomalies in Power System and SWaT datasets were 95% and 
97% respectively. 

Existing anomaly detection methods can detect anomalies happening in each ICS 
device. However, advanced ICS attacks are mostly multi-step, and existing methods are 
not able to detect the correlation between different steps of an anomaly. In both Power 
System and SWaT datasets, our system-wide anomaly detection method provided high 
accuracy in anomaly detection, and it could detect the events correlated with each 
anomaly. 

 
 
 
 
 
 
 
 
 
 
 
 
 

Fig.  12. Anomaly detection threshold (Power 
System Dataset) 

Fig.  13. LSTM prediction of normal behaviour in 
R1-PA4:IH (Predicted values (red) and the actual 
values (green)) 
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Fig.  14. FIT401 testing and predicted data (predicted (red) and the actual values (green)) 

7. Conclusion 

Using deep learning-based anomaly detection in conjunction with correlation analysis, 
we could effectively expand single feature anomaly detection to be system-wide anom-
aly detection. This method of system-wide anomaly detection had the potential to ac-
curately detect anomalies and then immediately check adjacent and correlated nodes 
for other anomalies. In this paper, our focus was on identifying other correlated nodes 
to the node with anomalous behaviour, and we wanted to identify the future steps of the 
ICS attacks. Our presented solution was evaluated using two real-world ICS datasets 
and it showed high accuracy in both datasets. In our future work, we will improve our 
method to include the time lag of anomalies during correlation analysis.  
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