%0 Conference Proceedings %T Robust Pose Estimation Based on Maximum Correntropy Criterion %+ Xi'an Jiaotong University (Xjtu) %A Zhang, Qian %A Chen, Badong %Z Part 13: Machine Learning %< avec comité de lecture %( IFIP Advances in Information and Communication Technology %B 17th IFIP International Conference on Artificial Intelligence Applications and Innovations (AIAI) %C Hersonissos, Crete, Greece %Y Ilias Maglogiannis %Y John Macintyre %Y Lazaros Iliadis %I Springer International Publishing %3 Artificial Intelligence Applications and Innovations %V AICT-627 %P 555-566 %8 2021-06-25 %D 2021 %R 10.1007/978-3-030-79150-6_44 %K Pose estimation %K Orthogonal Iterative (OI) algorithm %K Maximum Correntropy Criterion (MCC) %Z Computer Science [cs]Conference papers %X Pose estimation is a key problem in computer vision, which is commonly used in augmented reality, robotics and navigation. The classical orthogonal iterative (OI) pose estimation algorithm builds its cost function based on the minimum mean square error (MMSE), which performs well when data disturbed by Gaussian noise. But even a small number of outliers will make OI unstable. In order to deal with outliers problem, in this paper, we establish a new cost function based on maximum correntropy criterion (MCC) and propose an accurate and robust correntropy-based OI (COI) pose estimation method. The proposed COI utilizes the advantages of correntropy to eliminate the bad effects of outliers, which can enhance the performance in the pose estimation problems with noise and outliers. In addition, our method does not need an extra outliers detection stage. Finally, we verify the effectiveness of our method in synthetic and real data experiments. Experimental results show that the COI can effectively combat outliers and achieve better performance than state-of-the-art algorithms, especially in the environments with a small number of outliers. %G English %Z TC 12 %Z WG 12.5 %2 https://inria.hal.science/hal-03287697/document %2 https://inria.hal.science/hal-03287697/file/509922_1_En_44_Chapter.pdf %L hal-03287697 %U https://inria.hal.science/hal-03287697 %~ IFIP %~ IFIP-AICT %~ IFIP-TC %~ IFIP-WG %~ IFIP-TC12 %~ IFIP-AIAI %~ IFIP-WG12-5 %~ IFIP-AICT-627